
Computer Science • 20(1) 2019 https://doi.org/10.7494/csci.2019.20.1.3023

Micha l Jungiewicz
Aleksander Smywiński-Pohl

TOWARDS TEXTUAL DATA AUGMENTATION
FOR NEURAL NETWORKS:
SYNONYMS AND MAXIMUM LOSS

Abstract Data augmentation is one of the ways to deal with labeled data scarcity and

overfitting. Both of these problems are crucial for modern deep-learning algo-

rithms, which require massive amounts of data. The problem is better explored

in the context of image analysis than for text; this work is a step forward to help

close this gap. We propose a method for augmenting textual data when train-

ing convolutional neural networks for sentence classification. The augmentation

is based on the substitution of words using a thesaurus as well as Princeton

University’s WordNet. Our method improves upon the baseline in most of the

cases. In terms of accuracy, the best of the variants is 1.2% (pp.) better than

the baseline.

Keywords deep learning, data augmentation, neural networks, natural language

processing, sentence classification

Citation Computer Science 20(1) 2019: 57–83

57

https://doi.org/10.7494/csci.2019.20.1.3023
https://orcid.org/0000-0001-6684-0748

58 Micha l Jungiewicz, Aleksander Smywiński-Pohl

1. Introduction

This work approaches the notion of data augmentation (DA) in training neural net-

works for solving the text classification problem. DA is based on the idea that the

automatic modification of the data used to train a neural network (or another clas-

sification algorithm) can improve its performance. The modifications are designed

in a way that should preserve the label assigned to the original piece of data. For

example – the small rotation of an image of a triangle results in a new data sample

but keeps the original (triangle) label intact. Such a procedure can be used in cases

when the data acquisition process is particularly costly as well as for producing more

diversified samples, making the network less prone to overfitting.

The so-called deep learning has improved the state of the art in multiple different

fields [23]. It gives stunning results and is definitely the focus not only of academia

but also of the industry. Most of the work has been done with visual data, but

a deep-learning tsunami (as Christopher Manning puts it) is also engulfing the field

of natural language processing (NLP) [26].

Although it provides very promising results, deep learning also has its shortcom-

ings. Among others, there is a problem of labeled data scarcity. This kind of data

is most valuable for deep-learning algorithms, as generally supervised models provide

more accurate results than unsupervised models. The data-labeling process is time-

-consuming and expensive. Moreover, the performance of a single data annotator may

deteriorate with time, since many of the tasks are extremely repetitive and boring. As

a result, the annotators who are paid for each piece of data often optimize their efforts

and are less focused on the task. For example, a comparative study of cyberbullying

annotation by means of Mechanical Turk and a group of carefully selected annota-

tors [34] showed that the latter group performed much better, since all of the tested

cyberbullying detection systems, as well as the machine-learning algorithm trained

on the latter annotation, gave higher scores on the data set annotated by the sec-

ond group. The data annotation may also face legal issues, especially in cases when

personal data is processed.

Another problem that is also difficult to tackle is overfitting, meaning a large

difference between the performance of a given data-trained model on the training

and the test sets. If the model has a large-enough number of parameters, the model

memorizes all of the training examples instead of generalizing the patterns present in

the data; as a result, it shows poor performance in real-world scenarios. The primary

means of tackling this challenge is using dropout [42] – “turning off” large parts of

the network during the training process, which forces it to generalize rather than

memorize the patterns. But DA can also be used, as the observed data is different in

each epoch. To sum up, DA can reduce data annotation costs and overfitting.

This work focuses specifically on textual data augmentation. As with deep learn-

ing in general, more work has been done for visual data than for textual data. This

paper helps to close this gap. What is more, DA enables us to leverage existing lan-

guage resources (e.g., dictionaries) and integrate them into machine-learning methods.

Towards textual data augmentation for neural networks: synonyms and maximum loss 59

Finally, there is a need for a more systematic approach to DA. Very often, techniques

of augmenting data are more of an improvisation than an evidence-based procedure.

This paper is a step towards a systematic approach to the matter.

Our solution builds upon the method proposed in [13] for augmenting visual

data. The authors of this paper present a technique for choosing augmented data

samples. By maximizing the current loss of a classifier on the new data sample, an

overfitting reduction can be achieved. We transferred this approach to the language

domain, with synonym replacement using available language resources as a primary

text transformation. We tested it on a sentence-classification problem and made

use of the convolutional network models proposed by Yoon Kim [17] and Sosuke

Kobayashi [19].

Our results are promising because models leveraging our DA technique performed

better than the baseline in most cases. On the other hand, this did not happen in

all cases; this is also a very interesting finding. The best of our variants was 1.2%

(percentage points) better than the baseline in terms of accuracy. We also conclude

that a dictionary extracted from Thesaurus.com was generally a better resource for

augmenting data in our case than Princeton’s WordNet [30]. This is also an impor-

tant conclusion; it shows that not all resources are equal in terms of boosting the

effectiveness of neural models using DA.

2. Related work

One of the most notable trends now in natural language processing is the application

of deep learning for its tasks, whereas data augmentation is one of the investigated

ways for improving its achievements.

2.1. Deep learning for NLP

Deep learning for NLP has shown its achievements in multiple different areas. For

example, there has been a surge of interest in pre-trained language models used for

different NLP tasks [50]. One of the most promising models was proposed by Devlin

et al. [9]; the authors called it BERT – Bidirectional Encoder Representations from

Transformers. They introduced a new language representation model that improves

on the state-of-the-art results in multiple NLP tasks. The distinguishing feature of

this model is that it conditions on both the left and right context in all layers.

Another NLP task at which deep learning has shown to excel is machine trans-

lation. Researchers have proposed multiple different approaches for neural machine

translation systems. Some of the most effective models include the attention mech-

anism [45], CNN-based seq2seq learning [14], and deep LSTM network with residual

and attention connections [49].

A further area of application for deep learning has been dialogue systems. Here,

some of the best models are comprised of one employing the LSTM encoder on top

60 Micha l Jungiewicz, Aleksander Smywiński-Pohl

of sentence-level CNN embeddings [53], another model leveraging a memory net-

work [11], and a different method using LSTMs to encode the message and response

with the inner product for ranking [25].

2.2. Overview of data augmentation

Data augmentation is not intrinsically connected to neural networks; however, this

work focuses specifically on using DA as a part of training neural networks.

Deep learning has become one of the most popular topics in recent computer

science research. Most of the work has been done with visual data [5, 6, 13, 32] yet

less with textual data, although more and more papers have been published on deep

learning for NLP [7, 41, 52] (see Figure 1). The same phenomenon occurs in data

augmentation for deep learning. There is considerably more work that treats the

visual data augmentation topic than that of textual data. There is also research that

focuses on more general methods for DA, which can be used in the context of different

data types: images, texts, etc.

2010 2012 2014 2016 2018

0

5000

10000

15000

year

p
u
b
li
ca

ti
o
n
s

Deep learning: image vs language

deep learning

+image

+language

Figure 1. Deep-learning trends according to app.dimensions.ai website [2]. We searched for

keywords in abstracts and titles. We looked only for phrase “deep learning” and then “deep

learning” plus “image” and “deep learning” plus “language”

2.3. General data augmentation

One approach for general data augmentation is to replicate the data in feature-space

instead of data-space. The authors of [47] propose one method for augmenting data

in data-space and another for feature-space. They compare the results and find out

Towards textual data augmentation for neural networks: synonyms and maximum loss 61

that, if we know the plausible kinds of transformations on the data, the data-space

approach surpasses the feature-space approach.

Another way of dealing with the general case is proposed by the authors of [37].

Given a user-specified set of data transformations, they train a generative sequence

model that can then be used to augment both visual and textual data. Their method

is unsupervised, so it uses unlabeled data for training.

2.4. Image data augmentation

Within the visual data augmentation problem, multiple approaches can be observed.

Presumably, the most obvious solution is to replicate the data randomly with carefully

selected types of transformations [5, 6]. The authors of [5] use affine transformations

on images (translation, rotation, scaling, horizontal shearing) and elastic deformations

taken from [40]. The authors of [6] use similar augmentation techniques: rotations,

translations, and scaling (among others).

A greedy algorithm to solve the issue is proposed by Paulin et al. [32], which

offers promising results but is computationally expensive. The authors introduce the

Image Transformation Pursuit (ITP) algorithm to choose the right types of transfor-

mations; however, this approach is time-consuming because it involves multiple cases

of classifier retraining.

Finally, the authors of [13] propose a method that does not involve classifier

retraining. On the other hand, they choose examples for DA by maximizing the

current loss of the classifier. This approach should intuitively reduce overfitting and,

thus, increase the overall effectiveness of the trained model. This work builds upon

their work, using the loss maximization approach and transferring this idea to the

language domain.

2.5. Textual data augmentation

One work that approaches the problem of textual data augmentation is [52]. It is

not the main focus of the work, but DA is used as a way to improve the training

performance of a convolutional neural network. The authors use a thesaurus for the

augmentation.

Ryan R. Rosario proposes a preprocessing approach that uses DA [38]. The

author classifies short texts, whereas this work focuses on sentence classification.

The other difference is the employed classifier: Rosario uses SVM, while this work

concentrates on neural networks. Moreover, Rosario creates longer texts out of the

original fragments, while we focus on transforming sentences without changing their

lengths.

Jonathan Quijas has published research on DA for texts [36]. Among other

issues, the author examines the effect of DA techniques on training convolutional

and recurrent neural networks for text classification. However, the work is different

from ours because it takes a different approach. The author examines shuffling, noise

injection, and padding. Shuffling means randomly changing the order of words within

62 Micha l Jungiewicz, Aleksander Smywiński-Pohl

a small context window. Noise injection is changing a word to a different randomly

chosen one. Padding means filling the input with the words from a sentence instead

of null characters. Our approach, on the other hand, examines synonym replacement

and leverages the maximum loss approach from [13]. What is more, the samples for

augmentation are chosen during training, not as preprocessing. The rationale for why

this difference is important is given in Section 4.3.

More recently, Sosuke Kobayashi proposed another approach [19]. The author

suggests replacing the word in a sentence by its counterparts generated with a bi-

-directional language model. Sosuke calls the method “contextual augmentation”.

The author shows improvements across multiple datasets. To our knowledge, this

is the only paper that proposes textual data augmentation during training, which is

also our approach. On the other hand, Sosuke proposes a different method for trans-

forming the data.

Claude Coulombe has also published a paper on textual data augmentation for

neural networks [8]. The author tested multiple different approaches: textual noise,

spelling errors, synonyms replacement, paraphrase generation (using regular expres-

sions or syntax trees), and back-translation. Claude performs tests on different net-

work architectures; the difference between this work and ours is that it augments the

data as a preprocessing stage, not during training.

3. Background

We introduce the essential theoretical background for understanding the prob-

lem we are trying to solve. It depicts some of the machine-learning concepts and

methods we leverage as well as the language resources and dataset we use.

3.1. Classification

Classification is one of the typical problems that machine learning is trying to ad-

dress [15]. The problem is the assignment of one of k predefined categories to a given

previously unobserved input object. The learning algorithm that involves a neural

network should typically produce a function (f : IRn → {1, ..., k}) that maps the

input of real values to a single category. If the task is to assign a single category, it

is called single-label classification, but there is also multi-label classification, where

multiple categories can be assigned to a single data sample.

3.2. TREC dataset

This paper focuses on the single-label classification of English sentences. For testing

our model, we used the TREC dataset [24], where questions have to be classified into

predefined sets of types. Table 1 summarizes the primary statistics of the dataset.

The data is split into six disjoint classes: ABBR (abbreviation), DESC (descrip-

tion and abstract concepts), ENTY (entities), HUM (human beings), LOC (locations),

and NUM (numeric values). Actually, the TREC dataset is split into more specific

Towards textual data augmentation for neural networks: synonyms and maximum loss 63

categories within these six general classes; however, in the paper by Kim [17] as well

as in our work (which builds on top of it), only these general categories are taken into

account. Table 2 shows example sentences for each of these six categories.

Table 1
Statistics for TREC dataset as given by [17]

Classes 6

Average sentence length 10

Dataset size 5952

Vocabulary size 9592

Number of words present in word2vec 9125

Test size 500

Table 2
Examples of sentences from TREC dataset. One example for each class

ABBR

What is the full form of .com?

DESC

How can I find a list of celebrities’ real names?

ENTY

What films featured the character Popeye Doyle?

HUM

Who killed Gandhi?

LOC

What sprawling U.S. state boasts the most airports?

NUM

What is the date of Boxing Day?

3.3. Neural networks

Artificial neural networks (ANNs) are models that share some common characteristics

with biological neural networks [12]. ANNs consist of simple elements called neurons

that are connected to each other by links. Each link has a weight that multiplies the

signal that is passed over it. The neuron applies an activation function to the sum of

its inputs and outputs the output of the function. The following formula describes it:

y = f(w1x1 +w2x2 + ...+wnxn), where y is the output of a neuron, f is an activation

function, wn is the weight of the nth input to the neuron, and xn is the value of the

nth input to the neuron.

3.4. Backpropagation algorithm

The most basic and widely used method for training ANNs is the backpropagation

algorithm [22,31,39,46]. As the author of [12] puts it, the backpropagation algorithm

64 Micha l Jungiewicz, Aleksander Smywiński-Pohl

is simply a gradient descent method for minimizing the total squared error of the

output of an ANN.

The training of an ANN by backpropagation is comprised of four stages:

• propagation of the signal forwards through the net (from the input to the output

layer),

• calculation of the error (by comparing the actual and expected value at the output

layer),

• backpropagation of this error (from the output layer to the input layer),

• adjustment of weights according to the computed error and learning rate.

3.5. Convolutional neural networks

A convolutional neural network (CNN) is a suitable model for processing data that

has a well-known grid-like topology [15]. CNNs are used predominantly in image pro-

cessing, but they can also be found in NLP and other fields. Their distinctive feature

is the convolution operation that is used instead of general matrix multiplication, as

in fully connected feedforward ANNs.

In the continuous domain, the convolution can be described by the following

formula:

s(t) =

∫
x(a)w(t− a)da (1)

where x and w are continuous functions, x is the input function, and w the kernel

function. The name kernel and filter are often used interchangeably in this context.

The output of convolution is sometimes called a feature map. The operation is often

denoted with an asterisk:

s(t) = (x ∗ w)(t) (2)

In the discrete version, it can be defined as follows:

s(t) =

∞∑
−∞

x(a)w(t− a) (3)

Convolutional networks are organized in layers. For grayscale image processing,

each layer of convolution has two dimensions – width and height. To process an image

with colors, you need another dimension (which is most often called channels). Each

channel corresponds to one of the RGB colors.

Convolutional networks have multiple features that facilitate data processing.

They have sparse connectivity, which is accomplished by making the kernel con-

siderably smaller than the input. Typically, kernels are of a constant size that is

independent of the data size. We give some examples of kernel sizes from the literature

to provide a better picture. The famous Alexnet paper [21] states the following sizes:

11×11×3 (11 by 11 pixels window spanning 3 channels) in the first layer, 5×5×48,

3×3×256, 3×3×192, and 3×3×192 in the subsequent layers. Yoon Kim’s paper on

sentence classification mentions filters of sizes 3, 4, and 5 [17]. The sparse connectivity

Towards textual data augmentation for neural networks: synonyms and maximum loss 65

feature of CNNs results in the simplification of the model, which in turn enables better

memory, computational, and statistical efficiency.

Another feature of convolutional networks is called parameter sharing. Instead of

learning a separate set of parameters for each part of the data (e.g., the region of an

image), one set is learned. It is one of the key features of CNNs, which distinguishes

them from more-basic models such as feedforward fully connected MLPs without

convolutional layers. This feature also improves memory and statistical efficiency.

A pooling operation is used as a part of the convolutional network data process-

ing. It consists of replacing the value of a few neighboring outputs with a summary

statistic. This statistic can be a maximum, minimum, average, etc. depending on the

task that the network must solve. Pooling makes CNNs invariant to small translations

of the data. Pooling can also be useful for handling inputs of varying size, which is

needed in sentence classification, for example.

3.6. Transformer architecture

The CNN architecture has been used for a long time in research. One of the most

recent neural network architectures that is specially designed for NLP tasks is the

Transformer. It is proposed in Google’s paper: ,,Attention is all you need” [45].

The authors of the Transformer state that it is simpler than convolutional and

recurrent neural networks (RNNs). Instead of using CNNs or RNNs, it leverages

only the attention mechanism that connects the encoder and decoder. It achieves

impressive results, especially in machine translation (for which it is designed). What

is more, it turns out that it applies well to English constituency parsing. On top of

being superior in effectiveness, it is also more parallelizable and requires significantly

less time to train. It has also been used for text classification.

Multiple authors have built upon the Transformer architecture. One of these

works proposes the use of the model for training a character-level language model [1].

In this paper, the authors use a deep transformer model, which surpasses RNN vari-

ants on two popular benchmarks: text8 and enwik8.

3.7. Word2vec

Word2vec is a popular name for a set of models that have recently been widely used

and studied [27, 28]. Word2vec is a distributed representation of words. Unlike the

simple bag-of-words representation, each word is represented as a vector of continuous

values that uses one hot encoding (only one value is 1 – the rest are 0). In a bag-of-

-words vector space, every two words are orthogonal to each other, and the vectors

representing the words have as many dimensions as the size of the whole vocabulary

(which reaches hundreds of thousands of words for a typical corpus). On the other

hand, word2vec vectors have fewer dimensions – for example, a few hundred. There-

fore, the word2vec model can (and in fact does) capture some meaning similarity

between words.

66 Micha l Jungiewicz, Aleksander Smywiński-Pohl

Since Tomas Mikolov proposed the word2vec model, various teams from around

the world have tried to come up with a different approach for obtaining word em-

beddings. Among others, we might mention Stanford’s GloVe [33] and Facebook’s

Fasttext subword embeddings [3].

3.8. Synonym sources

For synonym replacement (see Section 4), we used two sources in our solution: Word-

Net [29,30,48], and Thesaurus.com [43].

Princeton’s WordNet is a large lexical database for English. In this database,

words are grouped in so-called synsets that gather synonyms. Words inside the synsets

are synonyms, but synsets between each other are connected by multiple other kinds

of relations. These include antonymy, hyponymy, and hypernymy (super-subordinate

relationship or ISA relationship), meronymy (part-whole relationship), troponymy

(which is to verbs what hyponymy is to nouns), and entailment. These relationships

are also a part of WordNet; by using WordNet, it is possible to extract words con-

nected by these relationships. Table 3 shows the size of WordNet, taking into account

the different parts of speech [48]. These statistics apply to WordNet Version 3.0. In

this paper, Princeton’s WordNet is referred to as WordNet.

Table 3
Size of WordNet, taking into account different parts of speech [48]

Part of speech Unique strings Synsets Total word-sense pairs

Noun 117,798 82,115 146,312

Verb 11,529 13,767 25,047

Adjective 21,479 18,156 30,002

Adverb 4481 3621 5580

Totals 155,287 117,659 206,941

Thesaurus.com is a website that is connected to Dictionary.com. The owners

state on their site that Dictionary.com is the world’s leading digital dictionary [43].

They provide millions of English definitions, spellings, audio pronunciations, example

sentences, and word origins. Thesaurus.com and Dictionary.com were created in 1995;

in 2014, they surpassed 70 million monthly users. Thesaurus.com is a service that

finds synonyms for a given word. The site is used as a source of synonyms by the

Python library called PyDictionary [35], which we used in the experiments shown in

this paper. We refer to Thesaurus.com as Thesaurus.

4. Solution

The gist of this paper is our proposed solution for the data augmentation of texts.

We used two similar CNN models for classifying sentences and modified them to use

our method for transforming the sentences while training the network.

Towards textual data augmentation for neural networks: synonyms and maximum loss 67

4.1. Problem statement

This paper focuses on solving the sentence classification task with the use of the

convolutional neural networks model. It examines the influence of the DA technique

proposed by us on the effectiveness of this model in solving the task.

4.2. Classifier

As a model for sentence classification, we chose the CNN architecture proposed by

Yoon Kim [17]. It is trained on top of pre-trained word vectors – word2vec [28].

The model is used for sentence classification. The general view of the architecture

of this model is shown in Figure 2. Looking from the left side, we first have a layer of

word2vec vectors; then, there is a convolutional layer with multiple filter widths and

feature maps. After that, there is a pooling layer; and finally, a fully connected layer

with dropout and softmax output.

wait
for
the

video
and
do
n't

rent
it

n x k representation of

sentence with static and

non-static channels

Convolutional layer with

multiple filter widths and

feature maps

Max-over-time

pooling

Fully connected layer

with dropout and

softmax output

Figure 2. Illustration of Kim CNN model architecture

We chose this because it improves upon the state of the art in some NLP tasks.

What is more, ANNs have recently been the focus of NLP research [50]. The Kim

CNN model is not deep, as it has only one layer of convolution; however, it achieves

good results, and its simplicity makes it easier to use in experiments. Moreover, the

distributed representations of words used by Kim have also been heavily researched

recently.

The Kim CNN model comes in different variants: CNN-rand, CNN-static, CNN-

-non-static, and CNN-multichannel. We used two of these four variants: static and

non-static. In the static variant, the word vectors are initialized with word2vec but

do not change during training, whereas they change during training in the non-static

variant. The architecture shown in Figure 2 is for two channels of word2vec vectors.

Both channels are used only in the CNN-multichannel variant (which we do not

test in this paper). It is a hybrid of static and non-static architectures. One of the

channels holds the word2vec embeddings that are changed by backpropagation during

68 Micha l Jungiewicz, Aleksander Smywiński-Pohl

training, and the other channel consists of vectors that keep their values throughout

the training. We used the Kim CNN model for the experiments shown in Section 5.1.

The second baseline model we used was implemented by Sosuke Kobayashi [19,20]. It

is similar to the Kim CNN architecture, and we used it in Section 5.2. We used only

the baseline Kobayashi’s model – not the one Sosuke proposed and called “contextual

augmentation”.

4.3. Data augmentation

The main topic of this paper is to determine how data augmentation techniques can

improve the effectiveness of CNNs used for classifying sentences. Therefore, it is the

most important part of our solution.

We modified the Kim CNN model according to the solution proposed by Fawzi

et al. [13] for augmenting visual data. The idea of the work is as follows. The pos-

sible space of transformations for augmenting data is theoretically infinite; therefore,

it is a challenge to determine which types of changes should be performed. Certain

augmentation transformations can be beneficial to our model, but others are not nec-

essarily so. There should be a way to choose the best ones; i.e., those that increase

the effectiveness of the model. Fawzi et al. propose choosing the transformations

that maximize the current loss of the classifier. Intuitively, it should reduce over-

fitting, because the classifier is trained on examples that are “least familiar” to the

classifier in its current state. The authors explain the intuition in their paper with

a simple example. According to this idea, they modify the step of stochastic gradient

descent (SGD) algorithm [4]. With probability p, they transform the example used

for training. With probability 1− p, they leave the original sample for training.

The last question in our case is this – what types of DA transformations should

we use for texts? The literature introduces the term label preserving transformations

(LPTs) for visual data augmentation; this is used in [47], for example. It defines those

transformations that do not change the meaning of the data.

As LPT for text, we propose synonym replacement according to the procedure

described below. Actually, this procedure ensures that the transformations preserve

the labels in most or all cases, but the transformed sentence might not be linguistically

correct. This is because the replaced synonym might not fully fit the context that is

shown in Table 4. The words in bold are replacements that are linguistically correct;

the other replacements make some sense but do not fit the context. The replacements

shown in Table 4 come from Thesaurus [43].

To cope with the problem of choosing synonyms that do not fit the context, we

restrain the replacement of only those words that belong to certain parts of speech.

This solution does not solve the problem completely; on the other hand, it is a simple

way of employing synonyms as LPTs. What is more, it is not certain what is the

effect of those replacements that do not fit the context but have a similar meaning.

They might as well boost the ultimate effectiveness of the model.

Towards textual data augmentation for neural networks: synonyms and maximum loss 69

Table 4
Example of sentence and its transformations done by synonym replacement. Changes linguis-

tically correct are shown in bold. Replacements in this example come from Thesaurus [43]

Original sentence

aspartame is known by what other name?

Transformations

aspartame is known by what new name?

aspartame is known by what alternative name?

aspartame is known by what more name?

aspartame is known by what another name?

aspartame is known by what auxiliary name?

Our exact solution to the problem of sentence classification using DA is as fol-

lows. For each mini-batch in SGD, we use our augmentation procedure (Algorithm 1)

with probability p. For part-of-speech tagging, we use the Stanford part-of-speech

tagger [44]. The Kim CNN model is used for sentence classification, and so is our

model. We do not try multiple replacements but only one replacement of a word per

sentence.

Algorithm 1 Transformation of sentences in mini-batch

POS(W) returns part of speech tag for word W

SY NONYMS(W) returns W ’s synonyms

REPLACE(x, y, z) replaces y with z in x

POS tags is a set of allowed part of speech tags

LOSS(M,S) returns loss for sentence S on model M in its current state

Input: A mini-batch MB that contains multiple sentences

Output: Transformed mini-batch

1: for each sentence Si ∈MB do

2: max loss← 0

3: best sentence← Si

4: for each word Wj ∈ Si do

5: POS tag ← POS(Wj)

6: if POS tag ∈ POS tags then

7: for each SY Nk ∈ SY NONYMS(Wj) do

8: STR
i ← REPLACE(Si,Wj , SY Nk)

9: loss← LOSS(M,STR
i)

10: if loss > max loss then

11: max loss← loss

12: best sentence← STR
i

13: end if

14: end for

15: end if

16: end for

17: REPLACE(MB,Si, S
TR
i)

18: end for

70 Micha l Jungiewicz, Aleksander Smywiński-Pohl

The novelty of our solution lies in the following achievements. First, it transfers

the technique of DA proposed by [13] from images to text. Second, it tests the

basic data transformations for text (namely, synonym substitution) using two different

resources. Our proposed solution improves upon the baseline Kim CNN model in most

cases (as is shown in Section 5). Finally, our work is a step towards a systematic

approach to DA for textual data in the context of ANN models.

5. Results and discussion

We performed two sets of experiments. The first one (shown in Section 5.1) checked

the effectiveness of our DA method for different values of its hyperparameters. We

used the Kim CNN model here. In the second set of tests, we used Kobayashi’s

implementation (see Section 5.2). We checked if the DA variant that performed the

best on the validation set was better than the baseline there. We also added some

statistical analysis at the end of the latter part.

5.1. Tests for different parameters

For this set of tests, we used the Harvard implementation of the Kim CNN model [16]

with its default parameters (shown in Table 5). For each test, we averaged the results

for five different seeds of a random number generator. We tested our model on the

TREC dataset [24] with the specific task of determining the types of subjects in

the user questions. The dataset consists of around 6000 questions labeled with the

6 subject-type categories given in Table 2.

Table 5
Default parameters of Harvard Kim CNN implementation

Size of mini-batch 50

Optimization method ADADELTA [51]

Dropout [42] probability 0.5

L2 norm of final linear layer weights 3

Number of epochs to train 25

Kernel sizes of different convolutions 3, 4, 5

Number of convolution feature maps 100

Our solution has the following hyper-parameters:

• presence or absence of dropout;

• probability of choosing the transformed mini-batch for training instead of original

mini-batch p: 0.25, 0.5, 0.75;

• part of speech that is replaced: noun, adjective or both;

• source of synonyms that is used for replacements: WordNet or Thesaurus.

The results for the baseline Harvard Kim CNN implementation with default

parameters and without our DA method are shown in Table 6.

Towards textual data augmentation for neural networks: synonyms and maximum loss 71

Table 6
Results for baseline Harvard Kim CNN implementation on TREC dataset. Results present

accuracy (AC); i.e., proportion of total number of predictions that were correct

With dropout [%] Without dropout [%]

Static 92.32 92.64

Non-static 92.44 92.72

The results of our own solution are shown in both Tables (7 to 9) and on plots to

easier capture the relative differences between the approaches (Figures 3 to 5). The

tables show the results for the different parts of speech of the words that are replaced:

Table 7 is for nouns, 8 for adjectives, and 9 for both. The plots are organized in

the same way: Figure 3 is for nouns, 4 for adjectives, and 5 for both. In all cases, the

results show the accuracy on the test set for the model that gave the best result on

the validation set throughout training. We did not perform test time augmentation,

so we did not change the test dataset from the original.

Table 7
Results of classification on TREC dataset. Only nouns are replaced. Kim CNN static or non-

-static model with or without dropout. Scores for different values of p, which is probability of

choosing transformed mini-batch for training instead of original mini-batch. Results present

accuracy (AC); i.e., proportion of total number of predictions that were correct. For each

set of variants, best result is shown in bold

Nouns, WordNet

Model p = 0.25 0.5 0.75

dropout
static 92.16% 92.36% 92%

non-static 92.12% 92% 91.8%

no dropout
static 92.48% 92.76% 92.16%

non-static 92.32% 92.04% 91.88%

(Augmented with p = 0.5, no dropout, static) = 92.76%

Nouns, Thesaurus

Model p = 0.25 0.5 0.75

dropout
static 92.16% 92.04% 92.28%

non-static 93.16% 93.16% 93.2%

no dropout
static 92.72% 93.2% 92.08%

non-static 92.68% 92.68% 92.08%

(Augmented with p = 0.75, dropout, non-static) = 93.2%

Nouns, WordNet + Thesaurus

Model p = 0.25 0.5 0.75

dropout
static 92.96% 92.96% 93.36%

non-static 93% 93.28% 93%

no dropout
static 92.92% 93.2% 93.2%

non-static 93% 92.88% 93.12%

(Augmented with p = 0.75, dropout, static) = 93.36%

72 Micha l Jungiewicz, Aleksander Smywiński-Pohl

Table 8
Results of classification on TREC dataset. Only adjectives are replaced. Kim CNN static

or non-static model with or without dropout. Scores for different values of p, which is

probability of choosing transformed mini-batch for training instead of original mini-batch.

Results present accuracy (AC); i.e., proportion of total number of predictions that were

correct. For each set of variants, best result is shown in bold

Adjectives, WordNet

Model p = 0.25 0.5 0.75

dropout
static 93% 93% 92.96%

non-static 93.12% 92.84% 93.08%

no dropout
static 93.48% 92.92% 92.8%

non-static 93.2% 93.24% 93.12%

(Augmented with p = 0.25, no dropout, static) = 93.48%

Adjectives, Thesaurus

Model p = 0.25 0.5 0.75

dropout
static 92.32% 92.8% 92.64%

non-static 93.04% 92.96% 93.32%

no dropout
static 92.76% 92.96% 93.28%

non-static 93.2% 92.56% 93.56%

(Augmented with p = 0.75, no dropout, non-static) = 93.56%

Adjectives, WordNet + Thesaurus

Model p = 0.25 0.5 0.75

dropout
static 93% 92.32% 92.28%

non-static 92.88% 92.76% 91.92%

no dropout
static 92.2% 92.4% 91.04%

non-static 92.72% 92.16% 92.28%

(Augmented with p = 0.25, dropout, static) = 93%

Table 9
Results of classification on TREC dataset. Both nouns and adjectives are replaced. Kim

CNN static or non-static model with or without dropout. Scores for different values of p,

which is probability of choosing transformed mini-batch for training instead of the original

mini-batch. Results present accuracy (AC); i.e., proportion of total number of predictions

that were correct. For each set of variants, best result is shown in bold

Nouns + adjectives, WordNet
Model p = 0.25 0.5 0.75

dropout
static 92.44% 92.96% 92.48%

non-static 92.68% 92.24% 92.4%

no dropout
static 92.68% 92.92% 92.44%

non-static 92.52% 93.2% 92.24%
(Augmented with p = 0.5, no dropout, non-static) = 93.2%

Nouns + adjectives, Thesaurus
Model p = 0.25 0.5 0.75

dropout
static 92.24% 91.88% 93.4%

non-static 93.08% 93.12% 92.32%

no dropout
static 92.96% 92.44% 92.4%

non-static 93.92% 93.04% 93%
(Augmented with p = 0.25, no dropout, non-static) = 93.92%

Towards textual data augmentation for neural networks: synonyms and maximum loss 73

Table 9 (cont.)

Nouns + adjectives, WordNet + Thesaurus

Model p = 0.25 0.5 0.75

dropout
static 92.28% 92.24% 91.72%

non-static 93.12% 92.48% 92.76%

no dropout
static 93% 92.4% 92.72%

non-static 93.28% 92.36% 92.16%

(Augmented with p = 0.25, no dropout, non-static) = 93.28%

static, dropout

0.25 0.5 0.75

92

92.5

93

93.5

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

non-static, dropout

0.25 0.5 0.75

92

92.5

93

93.5

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

static, no dropout

0.25 0.5 0.75

92

92.5

93

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

non-static, no dropout

0.25 0.5 0.75

92

92.5

93

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

Figure 3. Results of classification on TREC dataset. Only nouns are replaced. Kim CNN

static or non-static model with or without dropout. Scores for different values of p, which is

probability of choosing transformed mini-batch for training instead of original mini-batch.

WN means replacements are from WordNet, TH from Thesaurus, WN+TH – both. BASE is

baseline result. Results present accuracy (AC); i.e., proportion of total number of predictions

that were correct

74 Micha l Jungiewicz, Aleksander Smywiński-Pohl

static, dropout

0.25 0.5 0.75

92.2

92.4

92.6

92.8

93

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

non-static, dropout

0.25 0.5 0.75

92

92.5

93

93.5

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

static, no dropout

0.25 0.5 0.75

91

92

93

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

non-static, no dropout

0.25 0.5 0.75

92

92.5

93

93.5

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

Figure 4. Results of classification on TREC dataset. Only adjectives are replaced. Kim

CNN static or non-static model with or without dropout. Scores for different values of p,

which is probability of choosing transformed mini-batch for training instead of the original

mini-batch. WN means replacements are from WordNet, TH from Thesaurus, WN+TH

– both. BASE is baseline result. Results present accuracy (AC); i.e., proportion of total

number of predictions that were correct

The most important findings should answer the main research question: does

the proposed data augmentation method improve the effectiveness of the

Kim CNN model on the task of sentence classification?

The first finding is that the results of the augmentation are generally better than

the baseline due to the following:

• The best overall result is (nouns + adjectives, augmented with p = 0.25, no

dropout, non-static, Thesaurus). This means that the best result uses DA.

The result for this variant is 93.92%, which is 1.2% (percentage points) better as

compared to the no dropout non-static baseline (which is 92.72%).

Towards textual data augmentation for neural networks: synonyms and maximum loss 75

• For each set of variants, the best result is with data augmentation (p > 0):

– for (nouns, WordNet) the best result is for (augmented with p = 0.5,

no dropout, static), which is 92.76%;

– for (nouns, Thesaurus) the best result is for (augmented with p = 0.75,

dropout, non-static), which is 93.2%;

– for (nouns, WordNet + Thesaurus) the best result is for (augmented

with p = 0.75, dropout, static), which is 93.36%;

– for (adjectives, WordNet) the best result is for (augmented with p =

0.25, no dropout, static), which is 93.48%;

– for (adjectives, Thesaurus) the best result is for (augmented with

p = 0.75, no dropout, non-static), which is 93.56%;

– for (adjectives, WordNet + Thesaurus) the best result is for (aug-

mented with p = 0.25, dropout, static), which is 93%;

– for (nouns + adjectives, WordNet) the best result is for (augmented

with p = 0.5, no dropout, non-static), which is 93.2%;

– for (nouns + adjectives, Thesaurus) the best result is for (augmented

with p = 0.25, no dropout, non-static), which is 93.92%;

– for (nouns + adjectives, WordNet + Thesaurus) the best result is for

(augmented with p = 0.75, no-dropout, non-static), which is 93.28%.

• There are two sets of variants for which DA always improves the baseline:

(nouns, WordNet + Thesaurus) and (adjectives, WordNet). There is

one set of variants (adjectives, Thesaurus) that almost always improves the

baseline (10 out of 12 times).

On the other hand, DA does not always improve the result. For some sets

of variants, DA improves the baseline for each value of p; however, for other sets of

variants, some values of p improve the baseline and others do not. This naturally

brings up another research question: which variants of data augmentation are

better than others and why?

The first finding is that the Thesaurus variants are generally better than the

WordNet variants:

• The overall best result comes from Thesaurus variant: (nouns + adjectives,

augmented with p = 0.25, no dropout, non-static, Thesaurus).

• The variant (nouns, Thesaurus) is better than (nouns, WordNet) – the best

result is 93.2% as compared to 92.76%. (nouns, WordNet) improves the base-

line in only two cases, whereas (nouns, Thesaurus) improves it in five cases.

• The variant (adjectives, Thesaurus) the best result is 93.56%, whereas with

(adjectives, WordNet), the best is 93.48%. However, (adjectives, The-

saurus) improves the baseline 10 out of 12 times, whereas (adjectives, Word-

Net) always improves the baseline.

• The variant (nouns + adjectives, WordNet) improves the baseline seven

times with a best result of 93.2%, whereas (nouns + adjectives, Thesaurus)

also improves it seven times but yields the best result – 93.92% (the best overall).

76 Micha l Jungiewicz, Aleksander Smywiński-Pohl

static, dropout

0.25 0.5 0.75

91.5

92

92.5

93

93.5

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

non-static, dropout

0.25 0.5 0.75

92.5

93

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

static, no dropout

0.25 0.5 0.75

92.4

92.6

92.8

93

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

non-static, no dropout

0.25 0.5 0.75

92

93

94

p

sc
o
re

in
%

o
f

a
cc

u
ra

cy

WN TH WN+TH BASE

Figure 5. Results of classification on TREC dataset. Nouns and adjectives are replaced.

Kim CNN static or non-static model with or without dropout. Scores for different values

of p, which is probability of choosing transformed mini-batch for training instead of original

mini-batch. WN means replacements are from WordNet, TH from Thesaurus, WN+TH

– both. BASE is baseline result. Results present accuracy (AC); i.e., proportion of total

number of predictions that were correct

The second finding is that broadening the source of synonyms may improve the

best overall result; however, this also comes with a higher risk of the result dropping

below the baseline:

• The variant (adjectives, Thesaurus) improves the baseline 10 out of 12 times

with a best result of 93.56%, whereas (nouns + adjectives, Thesaurus) im-

proves the baseline only 7 out of 12 times but yields a best result of 93.92%

(which is the best overall).

• The variant (adjectives, WordNet) improves the baseline in all cases with

a best result of 93.48%, whereas (nouns + adjectives, WordNet) improves

the baseline 7 out of 12 times with a best result of 93.2%.

Towards textual data augmentation for neural networks: synonyms and maximum loss 77

For this part of the experiments, we can say that the techniques for augmenting

data we proposed generally improve the effectiveness of the Kim CNN model on the

sentence-classification task. On the other hand, they do not improve it in all cases

and variants. From our tests, it can be concluded that Thesaurus.com is generally

a better source for replacing synonyms for DA than Princeton’s WordNet. However,

it is not entirely clear why this is the case. We provide another set of experiments

with a different methodology and statistical significance analysis in the next section.

5.2. Further experiments and statistical significance tests

For this further analysis, we have used a different implementation of CNNs that is simi-

lar to the Kim CNN model; this was published by Sosuke Kobayashi on github [19,20].

We conveyed the experiments without using dropout. As suggested by the author,

further hyperparameters are shown in Table 10. This time, we used only Thesaurus

as the source of synonyms. We tested on nouns, adjectives, or both.

Table 10
Suggested parameters of Kobayashi’s implementation

Size of mini-batch 64

Optimization method Adam [18]

The number of units of word embedding 256

Learning rate 0.001

We also adopted a different methodology for these tests, although we used the

same TREC dataset. We ran the experiments for ten different seeds of a random

number generator. For each seed, we compared the baseline CNN results with dif-

ferent variants of our DA method. We observed which of the DA variants had the

best result on validation set and noted its result on the test set (“DA TEST for best

VAL” column). We also show the best test result of all of the DA variants (“best DA

TEST” column). We show the results in Table 11.

Table 11 shows that the result that performed the best on the validation set is

better than the baseline in all cases. On the other hand, the difference was sometimes

marginal; it ranged from 0.2% to 1.2%.

We also examined some of the cases for their statistical significance. We used the

approach proposed by Thomas G. Dietterich in his work about statistical significance

for supervised classifiers [10]. The author states that, among the different statistical

tests, the one that is best-suited for comparing classification algorithms that are run

once is McNemar’s test.

McNemar’s test consists of building a contingency matrix for two compared clas-

sifiers showing their relative performance on a test set. The matrix is 2×2, and its

fields hold the number of examples classified correctly by both algorithms, labeled

correctly by only one of them and incorrectly by both. We can tag these numbers as

A, B, C, and D, respectively.

Thesaurus.com

78 Micha l Jungiewicz, Aleksander Smywiński-Pohl

Table 11
Results of classification on TREC dataset with use of Kobayashi’s implementation. The first

column from left shows the number of experiment execution – each one for a different seed of

random number generator. Next column shows the result of the baseline on the test dataset.

Next three columns show the result on the test set of DA variant that performed best on

the validation set, the name of variant, and the difference between this result and baseline.

Finally, the next three columns show analogous information but for DA variant with the

best result on the test set. Results present accuracy (AC); i.e., the proportion of the total

number of predictions that were correct

No. BASE [%] Best VAL [%] Variant Diff [%] Best [%] Variant Diff [%]

1 89.6 90 (both, p = 0.25) +0.4 90.4 (adj, p = 0.5) +0.8

2 89.8 90.8 (adj, p = 0.75) +1.0 91 (adj, p = 0.25) +1.2

3 89.8 90.4 (adj, p = 0.25) +0.6 90.4 (adj, p = 0.25) +0.6

4 90.2 90.8 (adj, p = 0.25) +0.6 91.8 (both, p = 0.25) +1.6

5 89.8 91 (adj, p = 0.25) +1.2 91.8 (adj, p = 0.5) +2.0

6 90.4 90.6 (adj, p = 0.25) +0.2 90.8 (adj, p = 0.75) +0.4

7 89 90.2 (adj, p = 0.5) +1.2 90.8 (noun, p = 0.75) +1.8

8 89.4 91.4 (adj, p = 0.25) +1.0 92 (noun, p = 0.5) +2.6

9 90 90.2 (adj, p = 0.25) +0.2 91.2 (both, p = 0.75) +1.2

10 90 90.8 (adj, p = 0.5) +0.8 91 (adj, p = 0.25) +1.0

We choose the best run for testing statistical significance; this was Run Number 5.

The variant that performed the best on validation set (adj, p = 0.25) is 1.2% better

than the baseline, and the best on test dataset (adj, p = 0.5) is 2% better. For the

first case, we have A = 444, B = 5, C = 11, and D = 40. The p-value according to

McNemar’s test is 0.21. This indicates that this result is not significantly different

from the baseline. In the second case (the best test result), we have A = 444, B = 5,

C = 15, and D = 36. The p-value is 0.0414. This indicates that the best test result

is significantly different from the baseline.

This shows that our proposed method has the potential for boosting a neural net-

work’s classification performance, although the improvement might rarely be statisti-

cally significant. Therefore, this paper shows an interesting basis for further research

but does not propose a ready and ultimate technique for textual data augmentation.

6. Conclusions and future work

We presented a method for data augmentation used for text classification with convo-

lutional neural networks. Our technique performed better than the baseline in most of

the cases. The best of our variants performed 1.2% better than the baseline in terms

of accuracy. We also conducted a partial statistical analysis of our results. We con-

clude that this work shows some promising results, although the proposed method is

not a ready and ultimate technique for augmenting textual data with neural networks.

Towards textual data augmentation for neural networks: synonyms and maximum loss 79

We leveraged a technique proposed for augmenting visual data [13]. It chooses

data transformations that maximize the current loss of the classifier. We adapted

it to the language domain, suggesting synonym replacement transformations using

multiple language resources. As a CNN model, we used the one proposed by Yoon

Kim [17] and another implemented by Sosuke Kobayashi [19,20].

There are multiple possibilities for future work. One of them is examining other

types of transformations, such as using the parse tree of a sentence instead of synonym

replacement. Another idea is to test the DA method proposed by us in this work on

other tasks and datasets. Eventually, all of these experiments might lead to the

development of a more general DA method that could boost the performance of

different neural network architectures on a variety of NLP tasks.

Acknowledgements

We used the computational resources of the Prometheus computer of the PLGrid in-

frastructure for the experiments described in this paper.

References

[1] Al-Rfou R., Choe D., Constant N., Guo M., Jones L.: Character-Level Language

Modeling with Deeper Self-Attention, CoRR, vol. abs/1808.04444, 2018. http:

//arxiv.org/abs/1808.04444.

[2] app.dimensions.ai website. https://app.dimensions.ai.

[3] Bojanowski P., Grave E., Joulin A., Mikolov T.: Enriching Word Vectors with

Subword Information, Transactions of the Association for Computational Lin-

guistics, vol. 5, pp. 135–146, 2017.

[4] Bottou L.: Large-scale machine learning with stochastic gradient descent. In:

Proceedings of COMPSTAT’2010, pp. 177–186. Springer, 2010.

[5] Cireşan D., Meier U., Masci J., Gambardella L.M., Schmidhuber J.: Flexible, high

performance convolutional neural networks for image classification. In: Twenty-

-Second International Joint Conference on Artificial Intelligence, pp. 1237–1242,

2011.

[6] Cireşan D., Meier U., Schmidhuber J.: Multi-column deep neural networks for

image classification. In: IEEE conference on Computer vision and pattern recog-

nition (CVPR), pp. 3642–3649, 2012.

[7] Collobert R., Weston J., Bottou L., Karlen M., Kavukcuoglu K., Kuksa P.: Nat-

ural Language Processing (almost) from Scratch, Journal of Machine Learning

Research, vol. 12, pp. 2493–2537, 2011.

[8] Coulombe C.: Text Data Augmentation Made Simple By Leveraging NLP Cloud

APIs, CoRR, vol. abs/1812.04718, 2018. http://arxiv.org/abs/1812.04718

http://arxiv.org/abs/1808.04444
http://arxiv.org/abs/1808.04444
https://app.dimensions.ai
http://arxiv.org/abs/1812.04718

80 Micha l Jungiewicz, Aleksander Smywiński-Pohl

[9] Devlin J., Chang M.W., Lee K., Toutanova K.: BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding, CoRR, vol. abs/1810.04805,

2018. http://arxiv.org/abs/1810.04805.

[10] Dietterich T.G.: Approximate statistical tests for comparing supervised classifi-

cation learning algorithms, Neural Computation, vol. 10(7), pp. 1895–1923, 1998.

[11] Dodge J., Gane A., Zhang X., Bordes A., Chopra S., Miller A., Szlam A., We-

ston J.: Evaluating Prerequisite Qualities for Learning End-to-End Dialog Sys-

tems, CoRR, 2015. https://arxiv.org/abs/1511.06931.

[12] Faucett L.: Fundamentals of Neural Networks: Architectures, Algorithms, and

Applications, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[13] Fawzi A., Samulowitz H., Turaga D., Frossard P.: Adaptive data augmentation

for image classification. In: 2016 IEEE International Conference on Image Pro-

cessing (ICIP), pp. 3688–3692, 2016.

[14] Gehring J., Auli M., Grangier D., Yarats D., Dauphin Y.N.: Convolutional se-

quence to sequence learning. In: Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pp. 1243–1252, 2017.

[15] Goodfellow I., Bengio Y., Courville A.: Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[16] Harvard NLP, Kim CNN implementation. https://github.com/harvardnlp/

sent-conv-torch.

[17] Kim Y.: Convolutional Neural Networks for Sentence Classification. In: Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, 2014.

http://dx.doi.org/10.3115/v1/D14-1181.

[18] Kingma D.P., Ba J.: Adam: A Method for Stochastic Optimization, CoRR,

vol. abs/1412.6980, 2015. https://arxiv.org/abs/1412.6980.

[19] Kobayashi S.: Contextual Augmentation: Data Augmentation by Words with

Paradigmatic Relations. In: Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 2 (Short Papers), pp. 452–457. Association for

Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/N18-2072.

[20] Kobayashi S.: CNN implementation. https://github.com/pfnet-research/

contextual augmentation.

[21] Krizhevsky A., Sutskever I., Hinton G.E.: ImageNet classification with deep

convolutional neural networks. In: Advances in neural information processing

systems 25 (NIPS 2012), pp. 1097–1105, 2012.

[22] LeCun Y.: Une procedure d’apprentissage pour reseau a seuil asymetrique. In:

Proceedings of Cognitiva 85, pp. 599–604, 1985.

http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1511.06931
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/harvardnlp/sent-conv-torch
https://github.com/harvardnlp/sent-conv-torch
http://dx.doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.18653/v1/N18-2072
https://github.com/pfnet-research/contextual_augmentation
https://github.com/pfnet-research/contextual_augmentation

Towards textual data augmentation for neural networks: synonyms and maximum loss 81

[23] LeCun Y., Bengio Y., Hinton G.: Deep learning, Nature, vol. 521(7553), p. 436,

2015.

[24] Li X., Roth D.: Learning question classifiers. In: Proceedings of the 19th in-

ternational conference on Computational linguistics – Volume 1, Association for

Computational Linguistics, pp. 1–7, 2002.

[25] Lowe R., Pow N., Serban I., Pineau J.: The Ubuntu Dialogue Corpus: A Large

Dataset for Research in Unstructured Multi-Turn Dialogue Systems. In: Pro-

ceedings of the 16th Annual Meeting of the Special Interest Group on Discourse

and Dialogue, Association for Computational Linguistics, pp. 285–294, 2015.

http://dx.doi.org/10.18653/v1/W15-4640.

[26] Manning C.D.: Computational linguistics and deep learning, Computational Lin-

guistics, vol. 41(4), pp. 701–707, 2015.

[27] Mikolov T., Chen K., Corrado G., Dean J.: Efficient Estimation of Word Repre-

sentations in Vector Space, CoRR, vol. abs/1301.3781, 2013. http://arxiv.or

g/abs/1301.3781.

[28] Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J.: Distributed Represen-

tations of Words and Phrases and their Compositionality. In: Advances in neural

information processing systems 26 (NIPS 2013), pp. 3111–3119, 2013.

[29] Miller G.A.: WordNet: An electronic lexical database. MIT Press, 1998.

[30] Miller G.A.: WordNet: a lexical database for English, Communications of the

ACM, vol. 38(11), pp. 39–41, 1995.

[31] Parker D.B.: Learning Logic Technical Report TR-47,Center of Computational

Research in Economics and Management Science, Massachusetts Institute of

Technology, Cambridge, 1985.

[32] Paulin M., Revaud J., Harchaoui Z., Perronnin F., Schmid C.: Transformation

pursuit for image classification. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3646–3653, 2014.

[33] Pennington J., Socher R., Manning C.: GloVe: Global Vectors for Word Repre-

sentation. In: Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pp. 1532–1543, 2014.

[34] Ptaszyński M., Leliwa G., Piech M., Smywiński-Pohl A.: Cyberbullying Detection

– Technical Report 2/2018, Department of Computer Science AGH, University

of Science and Technology, CoRR, vol. abs/1808.00926, 2018. http://arxiv.or

g/abs/1808.00926.

[35] PyDictionary. http://pypi.org/project/PyDictionary/.

[36] Quijas J.K.: Analysing the effects of data augmentation and free parameters for

text classification with recurrent convolutional neural networks, Master Thesis,

The University of Texas at El Paso, 2017.

http://dx.doi.org/10.18653/v1/W15-4640
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1808.00926
http://arxiv.org/abs/1808.00926
http://pypi.org/project/PyDictionary/

82 Micha l Jungiewicz, Aleksander Smywiński-Pohl

[37] Ratner A.J., Ehrenberg H., Hussain Z., Dunnmon J., Ré C.: Learning to Compose

Domain-Specific Transformations for Data Augmentation. In: Advances in Neural

Information Processing Systems, pp. 3239–3249, 2017.

[38] Rosario R.R.: A Data Augmentation Approach to Short Text Classification, Ph.D.

thesis, University of California, Los Angeles, 2017.

[39] Rumelhart D.E., Hinton G.E., Williams R.J.: Learning representations by back-

-propagating errors, Nature, vol. 323(6088), pp. 533–536, 1986.

[40] Simard P.Y., Steinkraus D., Platt J.C.: Best practices for convolutional neural

networks applied to visual document analysis. In: Proceedings of Seventh Inter-

national Conference on Document Analysis and Recognition, 2003, Edinburgh,

UK, vol. 3, pp. 958–962, 2003.

[41] Socher R., Lin C.C., Ng A.Y., Manning C.: Parsing natural scenes and natural

language with recursive neural networks. In: Proceedings of the 28th international

conference on machine learning (ICML-11), pp. 129–136, 2011.

[42] Srivastava N., Hinton G.E., Krizhevsky A., Sutskever I., Salakhutdinov R.:

Dropout: a simple way to prevent neural networks from overfitting, Journal of

Machine Learning Research, vol. 15(1), pp. 1929–1958, 2014.

[43] Thesaurus.com. www.thesaurus.com.

[44] Toutanova K., Klein D., Manning C.D., Singer Y.: Feature-rich part-of-speech

tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference

of the North American Chapter of the Association for Computational Linguistics

on Human Language Technology – Volume 1, pp. 173–180, Association for Com-

putational Linguistics, 2003.

[45] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N.,

Kaiser L., Polosukhin I.: Attention is all you need. In: Advances in Neural In-

formation Processing Systems 30 (NIPS 2017), pp. 5998–6008, 2017.

[46] Werbos P.: Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences, PhD thesis, Harvard University, 1974.

[47] Wong S.C., Gatt A., Stamatescu V., McDonnell M.D.: Understanding data aug-

mentation for classification: when to warp? In: Digital Image Computing: Tech-

niques and Applications (DICTA), 2016 International Conference on, pp. 1–6,

2016.

[48] WordNet online. wordnet.princeton.edu.

[49] Wu Y., Schuster M., Chen Z., Le Q.V., Norouzi M., Macherey W., Krikun M.,

Cao Y., Gao Q., Macherey K., Klingner J., Shah A., Johnson M., Liu X.,

Kaiser L., Gouws S., Kato Y., Kudo T., Kazawa H., Stevens K., Kurian G.,

Patil N., Wang W., Young C., Smith J., Riesa J., Rudnick A., Vinyals O.,

Corrado G., Hughes M., Dean J.: Google’s Neural Machine Translation Sys-

tem: Bridging the Gap between Human and Machine Translation, CoRR,

vol. abs/1609.08144, 2016. http://arxiv.org/abs/1609.08144.

www.thesaurus.com
wordnet.princeton.edu
http://arxiv.org/abs/1609.08144

Towards textual data augmentation for neural networks: synonyms and maximum loss 83

[50] Young T., Hazarika D., Poria S., Cambria E.: Recent trends in deep learning

based natural language processing, IEEE Computational intelligence magazine,

vol. 13(3), pp. 55–75, 2018.

[51] Zeiler M.D.: ADADELTA: an adaptive learning rate method. In: arXiv preprint

arXiv:1212.5701, 2012.

[52] Zhang X., Zhao J., LeCun Y.: Character-level convolutional networks for

text classification. In: Advances in neural information processing systems,

pp. 649–657, 2015.

[53] Zhou X., Dong D., Wu H., Zhao S., Yu D., Tian H., Liu X., Yan R.: Multi-view

response selection for human-computer conversation. In: Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pp. 372–381,

2016.

Affiliations

Micha l Jungiewicz
AGH University of Science and Technology, Faculty of Computer Science, Electronics
and Telecommunications, Department of Computer Science, Krakow, Poland,
mjungiew@agh.edu.pl

Aleksander Smywiński-Pohl
AGH University of Science and Technology, Faculty of Computer Science, Electronics
and Telecommunications, Department of Computer Science, Krakow, Poland, apohllo@o2.pl,
ORCID ID: https://orcid.org/0000-0001-6684-0748

Received: 21.08.2018

Revised: 04.03.2019

Accepted: 04.03.2019

https://orcid.org/0000-0001-6684-0748

	Introduction
	Related work
	Deep learning for NLP
	Overview of data augmentation
	General data augmentation
	Image data augmentation
	Textual data augmentation

	Background
	Classification
	TREC dataset
	Neural networks
	Backpropagation algorithm
	Convolutional neural networks
	Transformer architecture
	Word2vec
	Synonym sources

	Solution
	Problem statement
	Classifier
	Data augmentation

	Results and discussion
	Tests for different parameters
	Further experiments and statistical significance tests

	Conclusions and future work

