Task decomposition with neuroevolution in extended predator-prey domain

Ashish Jain', Anand Subramoney! and Risto Miikulainen®

1University of Texas at Austin, Austin, TX 78701
{ajain,anands,risto} @cs.utexas.edu

Abstract

Learning complex behaviour is a difficult task for any artifi-
cial agent. Decomposing a task into multiple sub-tasks, learn-
ing the sub-tasks separately, and then learning to use them as
a whole is a natural way to reduce the dimensionality and
complexity of the task function. This approach is demon-
strated on a predator agent in the predator-prey-hunter do-
main. This extended domain has a new agent, a ‘hunter’, that
chases the predators. The evading and chasing behaviours are
learnt as separate sub-tasks by separate networks using the
NEAT neuro-evolution method. A separate network is then
evolved to use these networks based on the situation. Task de-
composition using this approach performs significantly better
in the predator-prey-hunter domain compared to a monolithic
network evolved directly on the whole task.

Introduction

Developing complex behavior using machine learning is still
a challenging goal for artificial life. At a high level, many
such problems have a natural solution — split the large com-
plex task into smaller manageable parts. Solving the parts
may be easier than solving the entire problem at once and
these smaller solutions then can be combined to give a solu-
tion for the entire problem.

This paper presents a neuroevolution approach to such a
task decomposition in a predator-prey domain with multiple
hunters chasing a predator that is also trying to catch a prey.
The predator-prey domain is a well studied problem in ma-
chine learning (Benda et al. (1986)). It has also been studied
in several variations in the evolutionary context (Luke and
Spector (1996), Miller and Cliff (1994), Haynes and Sen
(1996), Yannakakis and Hallam (2005), Yong and Miikku-
lainen (2010), Rajagopalan et al. (2011)). Although it is not
a complex real-world domain, it is a versatile domain that
can be used to illustrate important concepts of problems and
approaches.

There are multiple parameters that can be varied in the
predator-prey domain including relative speed of the prey
with respect to the predator, number of predators, number
of prey, the type of the world (continuous, closed toroidal,
plane etc.), having separate teams of predators and/or prey,

whether both the predator and prey learn or one has fixed
behaviour, etc. Additional goals may also be added to the
problem apart from capturing prey. Each of these variations
alters the problem significantly and also changes the diffi-
culty of learning the problem significantly. For instance,
having multiple predators, and defining the capture method
as one or more predators occupying cells adjoining the prey
in all directions makes the task cooperative. On the other
hand, allowing only one of the predators to capture the prey
at a time, and that predator receiving the entire reward for
capture of the prey, makes the problem competitive. The
prey may also be evolved along with the predator, leading to
an arms race between the predators and the prey. The intro-
duction of multiple agents and multiple sub-goals makes the
domain quite difficult for a simple network to solve.

Neuro-evolution as a method of training neural networks
has been successfully used to solve large complex domains
Yao (1999), Stanley et al. (2005), Floreano and Urzelai
(2000), Gomez and Miikkulainen (1997). Although com-
putationally more intensive than back-propagation, it is less
prone to stagnation and more efficient in searching complex
landscapes. One of the more successful neuro-evolution
techniques is Neuro-evolution of Augmenting Topologies
(NEAT) Stanley and Miikkulainen (2002). NEAT evolves
increasingly complex networks in each generation, starting
from a very simple network. NEAT is chosen here because
it evolves both the weights and the topology of the network
and it tends to find a solution close to the minimal size.

In this paper, the predator-prey-hunter task is decomposed
into predator-prey and predator-hunter tasks. Networks are
trained using NEAT on each of these tasks. These sub-
networks are combined using another selection network that
is also trained using NEAT. This selection network chooses
between the sub-networks given the positions of the hunters
and prey in the overall task. Such a decomposed and hi-
erarchical approach is shown to perform much better than
training a single monolithic network for the overall task. It
is also shown that with increasing complexity of the domain
(with more hunters), this hierarchical approach outperforms
the monolithic network by an increasing magnitude.

Related work on task decomposition is first discussed. A
brief outline is then given of the predator-prey domain fol-
lowed by a description of the approach to solving the ex-
tended predator-prey domain with multiple sub-goals using
task decomposition. The experiments are described in de-
tail and the paper concludes with the discussion and future
work.

Related Work

Task decomposition has been studied before in several other
domains using different training and combination methods.

Lee (1999), studied the task of finding a box in an enclo-
sure and pushing it towards a light source by a robot, de-
composing it into separate subtasks of finding the box, po-
sitioning the robot, and pushing the box in a straight line.
Separate controller circuits were evolved in simulation for
each of the sub-tasks, one at a time, using Genetic Program-
ming (GP). Then higher level controller circuits were then
evolved to select the appropriate sub-task controller based
on the sensory inputs. Such a decomposition of the overall
task into separate subtasks performed better than evolving
a monolithic controller circuit. The current paper follows a
similar approach but evolves neural networks using NEAT
instead of controller circuits.

On the soccer-keepaway task, Whiteson et al. (2005)
evolved an agent for playing keep-away. Keep-away is a
subdomain in robo-soccer where one team of agents, the
keepers, try to keep the ball away from the other team, the
takers, within a given fixed region. The subtasks were: inter-
cepting a pass, passing the ball to a team mate, evaluating if
passing a ball to a particular team mate is viable, and mov-
ing to a good position for intercepting the ball. The agent
was trained for each of these sub-tasks separately, and then
all these networks were combined, using decision tree in one
case, and a combiner network in the other case. Their per-
formance was compared to the case where a single network
was evolved for all four tasks simultaneously. The task de-
composition gave significantly better results than having a
single monolithic network. Apart from the overall perfor-
mance, there were some interesting behaviours observed in
the modular network that was not present in the monolithic
network. In particular, the agent learnt to approach the ball
from the direction opposite to that in which it was going to
kick the ball, since “kicking” the ball in this domain was ac-
tually coming in contact with the ball at the right velocity.
The agent actually learnt that it was inefficient to first ap-
proach the ball from an arbitrary direction, and then move to
the right position to kick the ball. Task decomposition gave
good results only when a fixed decision tree was used to
combine the subnetworks. Evolving the combiner network
didn’t perform as well as the fixed decision tree. The goal
of the current paper is to show that a proper combination of
the subtasks enables the combiner network to be learned as
well.

There has also been some work done on learning tasks
incrementally (Gomez and Miikkulainen (1997) being one
of them) — starting with a simple task, and slowly increas-
ing the task difficulty as the network learns. This approach
is different from the task decomposition addressed in this
paper in that the task remains the same, and just a few pa-
rameters of the task are varied to make it more difficult. For
instance, in the predator-prey domain, the speed of the prey
is increased slowly. In contrast, the task decomposition ap-
proach in the current paper divides the task into specific sub-
tasks and later combines them.

In Yong and Miikkulainen (2010), multi-agent ESP (En-
forced Sup-Populations) was used to coevolve multiple net-
works for each set of inputs for a predator-prey task, and it
was shown that this coevolved network performs better than
a monolithic network when there were multiple predators
and prey involved. This work was extended in Rajagopalan
et al. (2011) to domains with different types of prey, and
with individual and shared fitness, where cooperation be-
tween the agents was seen to evolve. Multi-agent ESP de-
composes the overall network in terms of the inputs auto-
matically, but cannot be directly applied to arbitrary task de-
composition. The current paper develops a mechanism to
decompose networks for arbitrary (manually specified) task
decomposition. Currently the NEAT neuroevolution method
is used, although in the future, multi-agent ESP could be
modified to work for arbitrary task decomposition.

The Extended Predator-Prey Domain

A toroidal grid world of size 10 x 10 with one predator,
one prey and multiple hunters is used. This is illustrated in
Figure 1, which has four hunters (filled blue circles), one
predator (red square) and one prey (black circle). The agent
being evolved is the predator. The goal of the predator is
to capture the prey in as few time steps as possible without
being caught by the hunter(s) in the process.

Figure 1: Illustration of the extended predator-prey domain.
The four filled blue circles are the hunters chasing the preda-
tor, which is indicated by the red open square. The black
open circle is the prey being chased by the predator.

“Capture” of the prey is defined as the predator occupying
the same cell as the prey. Likewise, capture of the predator
is defined as a hunter occupying the same cell as the preda-
tor. The behaviour of the prey and the hunters are fixed.
The prey always moves away from the predators with a fixed
move probability, while the hunter moves towards the preda-

tor with a fixed move probability. The prey and the hunters
move slightly slower than the predator, their move probabil-
ities being 0.8 (and hence their speed is 0.8 times the speed
of the predator).

If the predator is caught by the hunters, it receives a large
negative reward equal to —10 times the number of remain-
ing steps in the episode. And hence the predator agents have
to learn to stay away from the hunters, apart from chasing
and capturing the prey. On capturing the prey, the predator
receives a large positive reward of 10 times the number of re-
maining steps in the episode. If the predator neither catches
the prey nor is caught by the hunter at the end of 100 steps,
the episode ends and the predator receives a small positive
reward equal to the difference of its distance from the hunter
and its distance from the prey. This means that it receives a
larger reward if it is farther away from the hunter and closer
to the prey.

In this extended domain, the two tasks that the predator
has to do — running away from the hunters and chasing the
prey are not completely independent. If the predator were to
blindly chase the prey (or blindly evade the hunter), it will
not be successful. It would keep getting caught by the hunter
(or not catch the prey at all), since the hunter is programmed
to always chase the predator (and the prey to always run
away from the predator). A successful strategy would in-
volve doing both tasks simultaneously as much as possible,
and if not, run away from the hunter, since the reward on
capture by the hunter is negative. The tasks are not very
tightly coupled either, in the sense that the predator does not
always have to do both simultaneously to be successful. A
strategy of alternation between the tasks would also work.
The primary reason such a task was chosen was that (1) the
behaviours for each task is easily identifiable and well de-
fined, and (2) the tasks are neither too tightly nor too loosely
coupled. It provides, in the authors’ opinion, a good balance
of behaviours similar to those many animals exhibit in the
real world.

Method

The task of the predator agent is decomposed into two parts
— capturing the prey, and avoiding the hunter. The predator
agent is trained separately on each of these subtasks i.e. the
agent is first trained in an environment with only one prey
and no hunters where it learns to capture prey successfully.
Then the agent is trained in an environment with only one
hunter and no prey, where it learns to avoid the hunter suc-
cessfully.

A selection network is then evolved in the presence of one
prey and multiple hunters. This selection network chooses
between the outputs of the one modular prey chasing net-
work (which gets the relative position of the prey as input)
and n modular hunter evading networks (each of which gets
the relative position of one hunter as input). These n hunter
evading networks are copies of the hunter evading network

evolved in the subtask. The selection network sees the en-
tire domain, i.e. the positions of the prey and all the hunters.
The task of the selection network is to decide which agent
it wishes to chase or avoid at any given time step given this
information. In practice only one of two networks (the prey
chasing or hunter avoiding network) has to be activated, with
the relative positions of the selected agent as the input. Since
the selection network selects only one task at a time, it would
seem that it might have trouble doing both the evading and
chasing simultaneously. But, as will be seen later, the se-
lection network is able to switch between multiple tasks fast
enough to accomplish both the tasks simultaneously, and it
does it surprisingly effectively. The results of this selection
network are compared with a monolithic network — a single
network that is evolved to solve the entire domain (without
any modularity).

Experiments

The experiments were conducted on a 10 x 10 toroidal grid.
Since the normalized relative x and y positions of the prey
and hunters are provided to the predator the effect of increas-
ing the grid size is not significant.

A total of six experiments each were conducted for both
the monolithic and the selection network. For each experi-
ment the predator network was evolved for 200 generations.
Each experiment was conducted 30 times and the results
were averaged. Two hundred generations was chosen be-
cause while running initial experiments for 1000 generations
it was seen that the fitness of the monolithic and selection
network did not change much after 200 generations. NEAT
neuroevolution was restricted to feed forward networks for
simplicity, since memory was not strictly required to solve
this task. The number of hunters was varied from 0 to 5
in six separate experiments. The prey chasing modular net-
work was evolved for 1000 generations with only one prey
and no hunter in the domain. Likewise, the hunter evad-
ing modular network was evolved for 1000 generations with
only one hunter and no prey in the domain. At the end of
each generation the champion fitness i.e. the fitness of the
best performing network in that generation, was saved.

The same chasing and evading networks were used in all
six experiments, i.e only the selection network was evolved
in each of them.

Results

The champion fitness for experiments conducted with 1, 3
and 5 hunters are shown in figures 3, 4, and 5, respectively.
The results are summarized in table 1. Figure 2 shows the
mean champion fitness as the difficulty of the task i.e. the
number of hunters increases.

As can be seen from figure 2, the task decomposition ap-
proach performs better than the monolithic approach in ev-
ery experiment with any hunters in the world. Further, as
the difficulty of the task increases (number of hunters > 3),

Champion Fitness
Number of Hunters | Monolithic | Selection | Percentage Improvement
0 822.66 832.00 1.13
1 703.65 752.50 6.94
2 503.68 704.46 39.86
3 204.02 649.40 218.29
4 -138.69 278.80 301.01
5 -79.41 289.96 465.14

Table 1: Champion fitness of generation 200 (averaged over 30 experiments). Notice that for domains with 4 and 5 hunters the
monolithic network has very low fitness and is unable to catch the prey at all on average whereas the selection network is still

able to catch the prey.

1000

—¥— Monolithic

Selection

Fithess

o 0.5 1 1.5 2 25 3 3.5 4 4.5

Number of hunters

Figure 2: Average Champion fitness of Monolithic network
(red) and Selection network (blue) as the number of hunters
increases. The average champion fitness has been computed
using champions of generation 200 averaged over 30 exper-
iments.

the selection network does increasingly better, relative to the
monolithic network. Inspection of its behavior suggests that
with that many hunters, it cannot balance the two tasks, but
focuses on mostly surviving or escaping from the multiple
hunters. On the other hand, the selection network deals with
the increase in the difficulty of the task gracefully. It is able
to catch the prey even with more than three hunters although
it takes more time.

Table 2 shows how the number of hidden neurons of the
champion networks varies as the difficulty of the task in-
creases. Each hidden neuron increases the number of pa-
rameters, which can be detrimental in finding the optimal
solution. The selection network searches for a solution in
a much smaller space compared to the monolithic network,
making it easier to find good solutions, which is indeed the
main benefit of task decomposition.

Number of Hunters 1
[00F

00

600

Fithess

500

400

300 1 1 1 1

1] a0 100 150 200 250

Number of generations

Figure 3: Champion fitness of Monolithic network (red) and
Selection network (blue) with only one hunter and one prey.
The results have been averaged over 30 experiments. The
error bars represent the standard deviation.

Behavior The monolithic network was strongly affected
by hunter movements. Even though for the one hunter and
two hunter case, the monolithic network was overall focused
on the prey, it reacted sharply to the hunter movements. As a
result, it changed tracks quite often. As a result, it lost time,
and consequently scored lower in fitness. Its reaction to the
hunters became dominant in the 3, 4, and 5 hunter case. The
monolithic network lost a lot of opportunities to capture the
prey even when the prey was close by (figure 6), because the
dominant behaviour it learnt was to avoid the hunters.

On the other hand, the selection network was not easily
perturbed by the hunters (figure 9). Furthermore, the selec-
tion network made decisions taking into account the posi-
tions of more than one agent. Note that the selection net-
work only decides which modular network to use, and the
module decides how to move. Figures 7 and 8 show how the

Number of Hunters 3

1000

500 - T

E00

400

200

Fithess

-200

400 I I I I

o 50 100 150 200 250

Number of generations

Figure 4: Champion fitness of Monolithic network (red) and
Selection network (blue) with three hunters and one prey.
The results have been averaged over 30 experiments. The
error bars represent the standard deviation.

Number of Hidden Neurons
Number of Hunters | Monolithic | Selection
1 136 88
2 182 96
3 120 101
4 153 107
5 163 126

Table 2: Number of hidden neurons of the champion net-
work of generation 1000 for the monolithic network and the
selection network.

predator takes into account the prey position as well as the
hunter position in order to decide its next move.

Figure 10 shows a case where the selection network
chooses between the network corresponding to chasing the
prey and the one corresponding to evading the hunter, de-
pending on their positions. In figure 10(a) the predator
is chasing the prey, but when the hunter gets too close, it
switches to evading it as seen in figure 10(b). In the next
time step, it goes back to chasing the prey as seen in figure
10(c). The selection network was observed to predominantly
choose the network corresponding to chasing the prey, but
occasionally selected the network corresponding to evading
the hunter in case the hunter got too close while the prey was
far. The selection network was also observed to choose the
network corresponding to evading the hunter for the first few
steps at the beginning of each episode. It should be noted
that most of the time, chasing the prey also gets the preda-
tor away from the hunters, and the few times it doesn’t, the

Number of Hunters 5

o0

OO

400

200 F

Fithess

=200

-400 |

o 50 100 150 200

Number of generations

Figure 5: Champion fitness of Monolithic network (red) and
Selection network (blue) with five hunters and one prey. The
results have been averaged over 30 experiments. The error
bars represent the standard deviation.

predator explicitly evades the hunter.

The selection network was sometimes caught while focus-
ing on the prey and ignoring the hunters. This is attributed to
the small randomness present in the movement of the prey
and hunters, as a result of which it could sometimes catch
the prey while ignoring the hunters, and sometimes it was
caught while exhibiting the same behavior. Overall, how-
ever, such risk taking was effective, which may be why it
evolved.

Discussion and Future Work

In this paper, learning a complex task using task decompo-
sition was shown to perform significantly better than using a
monolithic network. The task decomposition performs bet-
ter the more complex the domain is. Note that in the current
approach task decomposition has to be done with human in-
put. The way the task is decomposed may not be obvious or
unique for most domains. Further, there may exist domains
where the tasks are too tightly coupled to be amenable to
task decomposition. However, when it is applicable, the re-
sults in this paper show that task decomposition is a power-
ful approach.

There are also multiple avenues for extensions of this
work. Broadly, these can be classified as (1) changing the
methods of combining subtasks, (2) changing the type of
networks itself, (3) giving different types of input to the net-
works and (4) applying the approach to more complex do-
mains. Apart from these four broad categories, the two other
major possible extensions are co-evolving the networks and
automating task decomposition. These extensions are de-

250

(a) (b) (© (d

Figure 6: Monolithic network is strongly affected by hunter movements. As can be seen in (a) the predator is very close to
the prey. However in (b) it reacts sharply to the hunters especially the one at the bottom (which is closest to it in the toroidal
world). As a result it loses sight of the prey, and eventually gets caught as can be seen in (d).

E L]]
(@ (b)

Figure 7: The selection network is able to make decisions taking into account more than one agent. As can be seen in (a) the
predator has agents to its right and the prey to its left. Instead of moving forward, it moves down, as shown in (b) thereby
allowing it to both evade the hunters and come closer to the prey at the same time. Although it might seem that the predator
only tries to minimize its distance with respect to the prey, it has to routinely avoid the hunters in order to avoid getting caught
to ensure high fitness scores.

[o]
[
O <H

(a) (b) (©

Figure 8: Here we see another instance where the selection network is able to make decisions taking into account more than
one agent. As can be seen in (a), the predator is flanked by a hunter on the top and to its right. However, instead of moving left
in order to maximize the distance from the hunters, it moves down to also simultaneously try to reduce its distance from the
prey. Note that the hunters to the right of the predator move up, as in (b) to minimize the distance with respect to the previous
position of the predator.

(a) (b) (©

Figure 9: Unlike the monolithic network shown in figure 6 the selection network is not easily perturbed by hunter actions. The
predator is chasing the prey in (a). As the hunters get closer in (b), the predator continues to chase the prey, unperturbed, and
catches it in (c)

(a) b)

(©

Figure 10: Illustration of switching behaviour between hunter and prey in three consecutive steps. The agent corresponding to
the selected network is highlighted yellow. The predator is chasing the prey in (a) . As the hunter gets closer in (b), the predator
starts evading the hunter for one time step, and goes back to chasing the prey in (c)

scribed briefly below.

In the approach described in this paper, the selection net-
work takes inputs from all the agents in the domain and se-
lects between the various sub-networks. Intuitively, this se-
lection might seem limiting since the network is restricted
to selecting just one of the sub-networks in each time step.
To allow for more complex behaviour that is a combina-
tion of the behaviours suggested by the sub-networks, the
combiner network could combine the outputs from all the
sub-networks instead of selecting only one. Even using
just the selection network, a hierarchy of selection net-
works could be developed, each one only selecting between
two sub-networks. This approach would allow for a more
fine-grained control of decomposition and task assignment
among the networks.

Given the domain used in this paper, if the predator could
keep track of the number of time steps remaining before the
end of the episode, it should be able to select a better strat-
egy. For example, if the predator knew that the time remain-
ing is not sufficient to chase down any prey, it could con-
centrate on avoiding the hunters and not risk getting caught.
This information could either be given to the predator as an-
other input, or more generally, recurrent networks could be
used.

Co-evolving the sub-networks and the combiner/selection
network simultaneously is a promising avenue for extending
this work. Rather than evolving sub-networks that only do
the task optimally, a sub-network that cooperates well with
the other sub-networks and the combiner network would
be evolved. This approach would reduce the cases where
the combiner/selection network would have to make sub-
optimal choices.

There are various ways in which the domain itself might
be extended for more complex tasks that might be able to
take more advantage of the sub-task decomposition. For in-
stance, it would be interesting to have teams of predators that
need to cooperate to achieve the goal. Multiple subtasks that
have dependencies on each other, and require a hierarchy of
sub-task networks would also be an important step towards
simulating complex behavior.

Developing a method to partially or completely automate
the task decomposition would help reduce the human input

that is required right now to specify the sub-tasks. It would
also help us understand which tasks are amenable to task de-
composition and how decomposition contributes to complex
behavior.

Conclusion

In this paper, an approach was developed for task decom-
position in the neuroevolution framework. This approach is
successfully demonstrated on the predator-prey-hunter do-
main, an extension of the predator-prey domain where there
are additonal agents (hunters) that can hunt the predators.
This approach scales well as the difficulty of the task in-
creases, and consistently performs better and more robustly
than the network evolved over the whole task directly. This
approach can be seen as a stepping stone to methods that dis-
cover task decomposition automatically, thus leading to de-
velopment of complex general behavior in artifical agents.

References

Benda, M., Jagannathan, V., and Dodhiawala, R. (1986). On
optimal cooperation of knowledge sources — an empirical
investigation. Technical Report BCS-G2010-28, Boeing
Advanced Technology Center, Boeing Computing Services,
Seattle, WA, USA.

Floreano, D. and Urzelai, J. (2000). Evolutionary robots with
on-line self-organization and behavioral fitness. Neural Net-
works, pages 431-443.

Gomez, F. and Miikkulainen, R. (1997). Incremental evolution of
complex general behavior. Adaptive Behavior, pages 317—
342.

Haynes, T. and Sen, S. (1996). Evolving behavioral strategies in
predators and prey, volume 1042 of Lecture Notes in Com-
puter Science, pages 113—-126. Springer Berlin / Heidelberg.

Lee, W. (1999). Evolving complex robot behaviors. Information
Sciences, 121(1-2):1-25.

Luke, S. and Spector, L. (1996). Evolving teamwork and coordina-
tion with genetic programming. In Proceedings of the First
Annual Conference on Genetic Programming, pages 150—
156, Cambridge, MA, USA. MIT Press.

Miller, G. and Cliff, D. (1994). Co-evolution of pursuit and eva-
sion I: Biological and game-theoretic foundations. Brighton:
School of Cognitive and Computing Sciences, University of
Sussex.

Rajagopalan, P., Rawal, A., Miikkulainen, R., Wiseman, M. A.,
and Holekamp, K. E. (2011). The role of reward structure,
coordination mechanism and net return in the evolution of
cooperation. In Proceedings of the IEEE Conference on Com-
putational Intelligence and Games (CIG 2011), Seoul, South
Korea.

Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2005). Real-
time neuroevolution in the nero video game. IEEE Transac-
tions on Evolutionary Computation, pages 653—-668.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural net-
works through augmenting topologies. Evolutionary Compu-
tation, 10(2):99-127.

Whiteson, S., Kohl, N., Miikkulainen, R., and Stone, P. (2005).
Evolving soccer keepaway players through task decomposi-
tion. Machine Learning, 59(1-2):5-30.

Yannakakis, G. N. and Hallam, J. (2005). Al in Computer Games:
Generating Interesting Interactive Opponents by the use of
Evolutionary Computation. PhD thesis, University of Edin-
burgh. College of Science and Engineering. School of Infor-
matics.

Yao, X. (1999). Evolving artificial neural networks. Proceedings
of the IEEE, 87(9):1423 —1447.

Yong, C. H. and Miikkulainen, R. (2010). Coevolution of role-
based cooperation in multi-agent systems. /[EEE Transactions
on Autonomous Mental Development, 1:170-186.

