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Abstract

Cooperation is vital for maintaining the integrity of complex
life forms. In many cases in nature cooperation manifests it-
self through constituent parts performing different, but com-
plementary, functions. The vast majority of studies on the
evolution of cooperation, however, look only at the special
case in which cooperation manifests itself via the constituent
parts performing identical tasks. In this paper we investigate a
class of games in which the socially optimal behaviour has the
property of being heterogeneous. We show that this class of
games is equivalent to a region of ST space (the space of nor-
malised two-player games characterised by the ‘sucker’ and
‘temptation’ payoffs) which has previously been dismissed.
We analyse, through a simple group selection model, prop-
erties that evolving agents would need to have in order to
“solve” this dilemma. Specifically we find that positive as-
sortment on pure strategies may lower mean individual pay-
off, and that assortment on mixed strategies will increase pay-
off, but not maximise it.

Introduction

Division Of Labour (DOL) is ubiquitous in the biologi-
cal world. Social insects often have specialised castes for
performing individual tasks (Holldobler and Wilson, 2009).
Multicellular organisms exhibit high levels of cell differ-
entiation. Colonial marine invertebrates have differentiated
parts which also specialise (Dunn and Wagner, 2006). Even
bacteria have been shown to exhibit specialisation (Crespi,
2001). Arguably DOL is one of the major benefits to group
living. It has long been recognised that specialisation may
result in gains in efficiency; the idea can be traced at least as
far back as Adam Smith’s Wealth of Nations (Smith, 1776).
However, with all group living comes the potential for the
emergence of cooperative dilemmas. Whenever a task is
broken down into smaller parts the products of the sub-tasks
must be shared or distributed. This potentially opens the
door to free riders who benefit from the distribution of the
products of labour, without contributing to its costs.

There are a growing body of artificial life studies con-
cerning the evolution of the division of labour. Specifically
authors have addressed: the mechanisms by which a divi-
sion of labour can occur (Goldsby et al., 2012), the evolu-

tionary pathway to the emergence of complex internal fea-
tures (Lenski et al., 2003), the evolution of differentiation
in multicellular organisms (Ray and Hart, 1999), the role of
gene networks in multicellular development (Joachimczak
and Wrdbel, 2008) and the evolutionary role of asymmetric
cell division (Hotz, 2004).

DOL is also one of the key theoretical ideas behind
the major evolutionary transitions research program (May-
nard Smith and Szathmary, 1997). A major transition is one
in which biological entities which were, preceding the tran-
sition, able to replicate as individuals are, after the transi-
tion, only able to replicate as part of a larger whole. DOL is
likely to be one of the key concepts that leads to a deeper un-
derstanding of the major transitions. As increased speciali-
sation develops, individuals become increasingly dependent
upon one another, to the point where it is no longer sensible
to regard them as functionally independent entities. For ex-
ample, a potentially defining characteristic of certain types
of major transition (i.e. the fraternal transitions (Queller,
1997)) is a reproductive division of labour (Michod, 2006).

Cooperative dilemmas are the class of games in which
well-mixed populations of agents evolve to a state which
does not maximise mean individual payoff. Theoretical con-
siderations regarding the evolution of cooperation posit a
game in which the socially optimal behaviour, for the popu-
lation, is for every agent to perform the action labelled as
cooperate. These set of games are cooperative dilemmas
if there exists an ESS which is different from total coop-
eration. That is that under freely evolving conditions the
population is composed either partially or entirely of defec-
tors. Models of the evolution of cooperation then typically
consider extensions of the underlying game which result in
an increase in the level of cooperation. A common way in
which this is achieved is through imposing population struc-
ture which leads to positive assortment and hence to an in-
crease in cooperation (see for instance: Nowak and May
(1992); Maynard Smith (1964)). Here positive assortment
means that like strategies play each other more often than
would be expected from random interactions. (For general
arguments concerning the role of assortment in the evolution
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of cooperation see: Eshel and Cavalli-Sforza (1983); Queller
(1985); Dugatkin and Mesterton-Gibbons (1992); Godfrey-
Smith (2008)).

Despite the large variety of computational and analytic
models along these lines all such studies are built on a com-
mon assumption: namely the final optimal state is a homo-
geneous one in which all individuals play the same strat-
egy. However, many situations in nature can be said to be in
cooperative states, but between individuals or components
which are not exhibiting homogeneous behaviours. To the
best of the authors’ knowledge none of these evolutionary
game-theoretic investigations have considered situations in
which a heterogeneous final state is desirable.

This paper firstly identifies the class of games in which a
mixed state is socially optimal, i.e. games in which a divi-
sion of labour may evolve. We show that these games are
related to the conventional cooperative dilemmas. We then
go on to present two models to illustrate some key points.
The first model challenges the assumption that positive as-
sortment on pure strategies will lead to an increase in the
population’s mean payoff. The second model extends this
by introducing the additional assumption of mixed strate-
gies. The model shows that positive assortment on mixed
strategies does lead to an increase in the population’s mean
payoff. Finally we sketch some further theoretical consid-
erations which show that, although positive assortment on
mixed strategies does lead to an increase in payoff, it is not
the highest payoff that can be reached under any circum-
stance. Specifically in order to maximise average payoff in-
dividuals would have to control not just the frequency of
strategies, but the frequency of interactions within the popu-
lation. In this case a negative assortment on social strategies
is optimal for the population; however, we show that it is not
evolutionarily stable. In order for this optimal configuration
to be stable it is necessary to have a higher level positive as-
sortment on genotypes which provides a lower level negative
assortment of phenotype/social strategy.

Division of Labour Games

We now outline a formalism which enables us to think about
the division of labour in the simplest non-trivial case.

Consider a situation in which individuals meet and per-
form one of two tasks: A or B. Each task bestows a benefit
to both of the individuals involved in the interaction. The
benefits are given by by and bp respectively. Each individ-
ual must bear the cost of their performed task themselves.
Costs are given by c4 and cg. However, if both individuals
perform the same task the cost of that task is shared between
them. In addition, there is a synergistic benefit which is the
benefit of having both tasks performed together: 6. We con-
sider the cases in which A has a higher cost but also a higher
benefit than B, i.e. ¢4 > cp and by > bp.

An example of the situation described above might go as
follows. Two human individuals living in the same tribe may
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perform one of two tasks. Task A is to go and hunt for meat.
Task B is to build a fire. Hunting comes at an extra cost
to the individual either because it requires more energy or
because it is inherently riskier. The benefit of hunting is
meat. Building the fire has a lower, but non-zero, cost. The
benefit of building the fire is warmth. We assume that the
meat is more valuable than the warmth, but that both tasks
provide some benefit in isolation. In this instance the syn-
ergistic benefit, 8, is that of having cooked meat. It is the
benefit above and beyond that of the sum of the two bene-
fits in isolation. We are assuming here that the benefits are
non-excludable, that is that the hunter could not stop the fire
builder from taking meat, and vice versa. This cartoon is an
aid to understanding; the essential features of the situation
are represented via the payoff matrix:

A B
A ba —caf2 ba+bp+8—ca
B | ba+bg+6—cp bB—CB/Z

Given that games have two arbitrary degrees of freedom
we will assume that: by —ca/2 =1 and bg —cz/2 =0. We can
thus rewrite the above payoff matrix as:

A B
A 1 1—r+6
B|1+r+0 0

Where r = 1 (ca — cg). This reduces to the 1 dimensional
parameterisation of the snowdrift game if 6 = 0 (Hauert,
2004). Conceptually we may also think of the story behind
the snowdrift game as the special case in which task B is the
task of doing nothing with no benefit and no cost.

We can trivially see that this game represents a region of
ST space using S=1—r+8 and T =1+r+ 6. For an
explanation of ST space see Santos et al. (2006).

Note that r is the difference in cost between performing
the two tasks, and can thus be thought of as parameteris-
ing the severity of the dilemma. & represents the synergistic
benefits of having both tasks performed. é > 0 corresponds
to the region S+ 7 > 2.
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Figure 1: The location of all games in ST space. Previously
the top right quadrant was simply referred to as the snow-
drift game. Here we split this region into two. Snowdrift
A corresponds to games which are snowdrift games but not
DOL games. Snowdrift B refers to snowdrift games which
are also division of labour games. The remainder of this pa-
per is concerned with the region labelled snowdrift B.

Cooperative Dilemmas

The previous section introduced a class of games which are
formally equivalent to the region of ST space in which S+
T > 2. We shall refer to these games as Division of Labour
games. Snowdrift games are definedby 0 <S<1land T > 1.
We shall focus our investigation on the class of games which
are both snowdrift games and DOL games (note that neither
one implies the other).

ST space was conceived of in order to systematically in-
vestigate all classes of cooperative dilemmas. Some authors
(see for instance Macy and Flache (2002)) specifically ex-
clude the region S+ 7T > 2 from the definition of cooper-
ative dilemmas. We find this exclusion somewhat artificial.
The essence of a cooperative dilemma is a situation in which
evolution leads to a state which does not maximise mean
individual payoff. It just so happens that in conventional
cooperative dilemmas social welfare is maximised by ev-
ery agent cooperating, but this is by no means an essential
part of the argument. Let us define the Socially Optimal Fre-
quency (SOF) as the frequency of cooperate (or type A in the
language of DOL games) which maximises the mean payoff
of the population under well mixed conditions. We then de-
fine a cooperative dilemma as one in which SOF#£ESS.

We now need to derive an equation for the SOF in terms
of S and T. To do this note that the mean fitness of the
population is given by:

f:chc+fde (1
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We consider a fixed population size so that p; = 1 — p.. Fit-
nesses are given by f. = p. + Spg and f; = Tp.. We then
arrive at a formula for average fitness in terms of density of
cooperators (P):

F=p(S+T+p(1-S-T)) @

The SOF is the maximum of this function for p € [0, 1]. Tt
is straight forward to prove that:

S+T
SOF — 4 2B+7-T) S+T>2 3)
1 S+T<2
The ESS of the snowdrift game is (Nowak, 2006a):
S
ESS=—— 4
S+7T-1 @

for DOL games which are also snowdrift games the ESS is
only equal to the SOF in the very special instance in which
S =T. Thus, by our slightly broader definition, DOL games
are cooperative dilemmas.

Figure 2: Left: The equilibrium frequency of cooperate.
Right: the SOF, note that in the top right hand corner this
is not equal to 100% cooperation.

Model

In this section we demonstrate that positive assortment on
pure strategies is only sufficient in allowing populations to
reach the SOF in the non-generic case in which SOF = 1.
We go on to show that positive assortment is still one of
the key elements in allowing populations to reach the SOF.
However, in this case the assortment must be on something
other than pure social strategies.

We implement two generational GAs (labelled model I
and II) to illustrate some key points. In both cases we con-
struct a scenario in which one can exogenously control the
level of assortment in a population of evolving individuals
and measure the total payoff in the population. Model I
serves as a control for model II. With model I we allow only
pure strategies which are only able to perform one of two
tasks, A or B, for the entirety of their lifetime. In model
IT we lift this assumption and allow for mixed strategies.
Specifically a genotype specifies not a task A or B, but a
probability, p € [0, 1], which determines how often task A is
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performed. Apart from this difference models I and II have
the same underlying structure.

The models consist of two distinct phases, a group phase
and a population phase. Rounds of the game during one gen-
eration occur in T discrete time steps; the first X time steps
within groups, the remaining 7 — X time steps within the
fully mixed population. If f is fitness acquired within the
group phase and fp fitness acquired within the population
phase then total fitness, fr, is given by:

Jr= )*(f G+ = X

T

fe &)

There are Ng groups consisting of g players in each group.
Individuals acquire fitness over both stages of the genera-
tion. Ng individuals are chosen at the end of the population
stage via fitness proportionate selection and go on to form
new groups. The founding individuals immediately repli-
cate g — 1 times so that the groups are composed of g clonal
individuals. Figure 3 shows schematics for the two models.

T ’ s
N/ ® \ 7 W
i \ \ / \ . \ 5
@ | °® ,"‘.\.. ,’l I‘.\. ® | I‘.. ) g
A NE N NS >
= 9g® @ 0 @ e o )

Selection

Figure 3: Schematics for models I and II respectively.

We consider the model in two different manners. First
of all, we model the situation through numerical integration
of the relevant replicator equation (see appendix A). This
corresponds to infinite populations without mutations. Sec-
ondly, we model the system via an agent based simulation
with finite population and mutations. The two approaches
show good agreement in final results.

In the agent-based model there is mutation. Mutation
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leads to one of the individuals in the group stage being ge-
netically different to their parent.

In model I we model mutation by allowing an A to create a
B, and vice versa, with a probability g = 1 x 1072, In model
II, with probability y = 5 x 1072, an individual is born with
a value of p which differs from its parent by an amount cho-
sen from the random uniform distribution [—0.1,0.1]. Mu-
tations are capped to physically meaningful ranges (i.e. be-
tween 0 and 1) if they mutate outside of this range.

Figure 4: Top: The mean value of p at equilibrium for a
range of values of & in model II. The lower dotted line is
the ESS and the upper one the SOF. Bottom: Fitness at ESS
for the two models. The solid line is generated from the pre-
dictions of the analytic model, points from the agent based
model. Clearly agents in model II are at an advantage over
those in model I. (r,6) = (0.5,0.5).

This group structuring model allows us to fine-tune the
level of assortment on the population. It bears some similar-
ities to the hay-stack model (Maynard Smith, 1964). How-
ever, within a group there is no selection, as all members
are clonal. The groups are formed from a founder and serve
only to limit the interactions of individuals to a certain, non-
random, subset of the population. In this sense the models
bear some conceptual similarities to the ones discussed in
Godfrey-Smith (2008). The qualitative results would be re-
peatable with any of the standard repertoire of “evolution of



cooperation” models (Nowak, 2006b). This particular model
is not chosen for biological realism, but because the essen-
tial property of population structure leading to positive as-
sortment is completely transparent. The models have the
convenient feature of being able to tune the level of popula-
tion structure via the parameter o = X/«.

Previously the distinction between pure and mixed strate-
gies has not been important. In a snowdrift game the fre-
quency of cooperate at the ESS can represent either the
frequency of pure strategy cooperators within the popula-
tion or the average value of p (the probability of coop-
erating) within a population of mixed strategy individuals
(Maynard Smith, 1982, p.17). These two models show that
this distinction is important when playing a game in which
SOF # 1.

In model I there is a one-to-one correspondence between
the genotype and the social strategies A and B. Group struc-
ture provides only positive assortment on pure strategies.
Assortment is needed for the evolution of cooperation. How-
ever, positive assortment leads to groups comprised only of
one type.

It is important to realise that model II provides assortment
on mixed strategies rather than on the pure phenotypes A and
B. This is crucial to the following results.

Figure 5: The mean fitness at ESS. Left column is for pure
strategies, as in model I, right column is for mixed strategies,
as in model II. Going down the page the figures correspond
to increasing levels of o. Top: & = 0, middle: o = 0.25 and
bottom: ¢t = 0.5.

Figure 4 shows the results of the two versions of the
model. There are 125 groups composed of 5 individuals
each. The simulation is run for 5 x 10° generations and the
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average value of p (probability of playing strategy A) over
the entire population is recorded. We find that groups in
model II evolve towards the SOF for larger values of o (the
degree of population structure). As expected with o = O the
population simply evolves to the ESS in both models.

We plot the relative fitness for models I and II for increas-
ing o to illustrate the fact that mixed strategies are at an
evolutionary advantage over pure ones. Note that by con-
struction pure strategies only interact with types of the same
pure strategy within groups (in model I). In the case where
the socially optimal solution was pure cooperate the abil-
ity to form pure groups is sufficient to solve the dilemma.
However, in general these are a special type of game. For
DOL games, in which a mix of strategies is desirable, mixed
strategies can outperform pure ones.

Figure 5 shows the fitness at ESS for models I and II for
all games parameterised via r and . Interestingly positive
assortment on pure strategies can actually be detrimental to
the population’s payoff if d (the synergistic benefit to hetero-
geneous behaviours) is sufficiently high. The higher the syn-
ergistic benefit is the greater the advantage of having mixed
strategies.

Group Phenotypes

Groups composed of mixed strategies do not maximise so-
cial welfare. The reason for this is that they are unable to
control their internal structure or organisation. In this sec-
tion we formalise this point. We leave a detailed specifica-
tion and analysis of a model for a forthcoming work.

In a well-mixed population the parameter p (frequency of
type A) characterises the state of the system. However, if
interactions are not random then p on its own is insufficient.
We also need to know the frequency of the different types of
within-group interactions. In principle there are three types
of interactions: (A-A, A-B and B-B). If the total number of
interaction of all types is fixed, then knowing the fractional
density of each type will specify the state of the group. We
will denote these three densities as @44, @45 and @pp. How-
ever, it is sufficient to know only one of these. Let us then
use @4p and drop the subscript. We shall define the group
phenotype as a point in the space (p, ¢). The following for-
mulae show how the densities of all types of interaction can
be found from these two variables.

1
Par = P59 (6)
Pap = @ @)
1
opg = l—p-— 59 ®)

Notice that ¢ is confined within certain ranges based on
p. Specifically 0 < ¢ < 2Min{p,1—p}. ¢ is equivalent
to certain measures of linkage disequilibrium (see for in-
stance Hartl and Clark (1998)). For interesting parallels be-
tween population genetics and the evolution of cooperation
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see Gardner et al. (2007).

The previous section considered the cases in which groups
only had control over the parameter p and had no way of
controlling the internal composition of within group interac-
tions. In this case they were confined to have a value of

p=0® =2p(1-p) ©9)

where R stands for random. Thus the SOF (Socially Opti-
mal Frequency) corresponds to the fittest group with random
internal interactions. Let us also define the Optimal Group
Phenotype (OGP) to be the point in (p, ¢) space which max-
imises average fitness. To see this, note that average fitness
is given by:

fzp-l-%(S—I—T—l)(p (10)

for games in (S, T) space. The OGP is then given by:

_J@0  s+T<2
OGP{(I/z,l) S+T>2 an

thus in DOL games a group which maximises the amount of
A-B links at the expense of all other types of interactions is
the one which maximises group fitness.

Figure 6: Left: The average fitness in terms of p and @,
for a certain game in which R+ 7 > 2. Right: the abso-
lute difference between the fitness of the two phenotypes A
and B (assuming that the group is composed of pure strat-
egy individuals). The dotted line marks ¢®). Circled points
correspond to A: The ESS under well mixed conditions, B:
The SOF, C: The optimal point for pure groups and D: the
OGP. Note: if S+ T < 2 B, C and D coincide. The fact that
stability is non-zero at points B and D shows that these sit-
uations are fundamentally unstable without the addition of
extra assumptions.

With reference to figure 6 model I of the previous section
was only able to evolve to point C, model II was able to do

ECAL 2013

better and reach point B. However, neither model produced
groups who were able to reach point D. This is the subject
of a forthcoming work in which we investigate the effects of
developmental or aggregational processes.

Discussion

Kant said:

“Act only according to that maxim whereby you
can, at the same time, will that it should become a uni-
versal law.”

In a fully assorted population Kant’s principle is not only
morally commendable, but it is also entirely sensible. Given
that you will only meet individuals who are the same as you
it makes sense to perform social actions which are beneficial
to be on the receiving end of. Thus it would seem that posi-
tive assortment is the answer to the evolution of cooperation.

On the other hand gains from specialisation occur via
a collection of different types of individuals. We have
seen that a division of labour game may be a cooperative
dilemma. There are two needs which seem to be fundamen-
tally at odds with each other: firstly, the need for positive as-
sortment to alleviate the cooperative dilemma, and secondly,
the need for negative assortment in order to gain from spe-
cialisation. This is the fundamental problem of the evolution
of the division of labour. How does nature have her cake and
eat it? That is how does evolution create the positive assort-
ment necessary to alleviate the cooperative dilemma, but at
the same time maintain the diversity needed to benefit from
a division of labour?

It could be argued that many interesting and complex as-
pects of the biological world are about solving this problem.
Phenotypic plasticity is a way in which a social strategy is
able to become decoupled from the genotype which under-
lies it (Gavrilets, 2010). Thus we can have assortment on
genotype without assortment on phenotype (as in model II),
which goes some way to alleviating the problem of the di-
vision of labour. This is the key point which the models
presented here attempt to illustrate. One way of express-
ing this would be to say that the social strategy has become
de-Darwinised (sensu Godfrey-Smith (2009)). In division of
labour games the optimal configuration involves As interact-
ing with Bs to the exclusion of all other types of interaction.
However, in this situation the fitness acquired by the pheno-
type B will always outweigh that acquired by A (because in
our framework 7 > S). Thus the optimisation of the higher
level entity, the group, is in direct conflict with that of the
lower level entities, the individuals. The only way in which
higher level optimisation can occur is if selection does not
act directly on the frequency of the constituent types A and
B. This is what we mean by de-Darwinisation. A potential
way for this to occur is through a genotype-phenotype map
which is not one-to-one (i.e. a genotype may specify more



than one phenotype). In this case, although social interac-
tions lead to Bs having a higher fitness, the configuration
is sustainable because natural selection does not “see” the
phenotypes A and B, it only “sees” genotypes which spec-
ify certain frequencies and organisations of social strategies.
We see the concept of de-Darwinisation as a powerful con-
ceptual tool for understanding the emergence of higher lev-
els of biological organisation.

An ALife approach will doubtless be one of the key the-
oretical tools in our quest to understand biological organisa-
tion. Simulation is necessary not only because the processes
of interest are obscured by time, but also because we only
have one truly independent example of life. What we really
want to know is which aspects of biology are contingent on
the particulars of our bio-chemistry, and which are profound
consequences of the logic of natural selection. This paper
has attempted to add to the small, but growing number, of
AlLife studies which tackle the question of the division of
labour and internal organisation. We have laid down ground
work for a systematic investigation of the ultimate causes of
the evolution of internal differentiation and organisation.
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Appendix A

We sketch the solution to the model via the replicator equa-
tion formalism, for the case of mixed strategies playing
within variable levels of group structure.

Individuals have strategies which are specified via a prob-
ability p. They play strategy A with probability p, and there-
fore B with probability 1 — p. An individual with strategy
p who interacts with another individual with strategy g re-
ceives an expected payoff of:

Flp,q] = pgR+p(1 —q)S+(1—p)gT + (1= p)(1 —q)P
(12)
Selection acts on p and thus the population is specified by
the function p(p) which is a 1D function which specifies the
density of the population playing a strategy for every value
of p € [0,1]. The systems dynamics are specified by the
replicator equation:

p(p)=p(p) (f(p)—F(p)) (13)

where f(p) is the fitness of the individuals for a given p, and
f(p) is the mean fitness of the population.

The fitness of any strategy comprises of two parts. The fit-
ness gained in the group phase, and the fitness gained in the
population phase. Call these fitness f; and fp respectively.

In the absence of mutations strategies always play with like
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strategies in the group phase, thus:

Je=Flp,p] (14)

in the population phase strategies play with every other strat-
egy. The average payoff is given by the strategy they would
have received from playing a hypothetical average individ-
ual. That is:

fe=Flp.p) (15)

where p is the average value of p in the population.
Total fitness is thus:

f(p) =TgF[p,p]+TpF|p, p] (16)

we normalise by saying that 7 + Tp = 7, i.e. that the whole
cycle happens over 7 units of time. Let o = Ti; /7. By divid-
ing by 7T we arrive at:

f(p) = aF[p,p]+(1—a)F|p,p] (17)

We thus have a fitness defined for every possible strategy,
which can be used to model the situation by means of the
replicator equation.

Population dynamics follow from numerical integration
of equation 13.
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