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Abstract 
This paper discusses a prototype of a temporal pattern 
predictor, which was built on specifications derived from the 
descriptions of the “Ergotrix” temporal memory network in 
Valentino Braitenberg’s “Vehicles” (Braitenberg, 1984). The 
prototype was developed as a component for a control 
architecture for virtual characters. 

Introduction 
In Valentino Braitenberg’s “Vehicles - Experiments in 
Synthetic Psychology” (Braitenberg, 1984), the author 
describes a temporal pattern memory component that enables 
the synthetic creatures to base their behaviour on past 
experiences: Rather than just reacting to the currently 
perceived sensory stimuli, these agents first form predictions 
based on the statistical probability of previously perceived 
patterns re-occurring. These predictions then form the basis 
for their actions. In other words, the creature reacts to a 
pattern of expected stimuli, instead of waiting for the stimulus 
to actually occur.  
Braitenberg’s temporal pattern memory component is 
implemented in the form of a connectionist network of nodes. 
In such a network, each node may represent the presence of a 
sensory stimulus, a pixel on a screen or a sensory ‘value’ of 
another kind (e.g. the distance value of an infra-red sensor). 
The individual nodes can potentially form connections (which 
are often referred to as associations) to any other nodes in the 
network. The strength of the connection is determined by the 
connection weight.  
 
In many classical neural network models, such as feed-
forward or back propagation networks, (e.g. McCulloch Pitts 
1943, Bryson and Ho 1969,), the connection weights are set 
using sophisticated learning algorithms. However, many of 
these separate the process of setting weights (learning or 
training phase), from actually using the network (execution 
phase). The model presented in this paper, uses a learning 
model that can form new associations while it is being used. 
This learning rule is based on Hebb’s “what fires together, 
wires together” postulate (non-verbatim from Hebb, 1949), 
which itself tried to summarize the general behaviour of 
connecting neurons in biological brains.  
Regardless of the learning rule used, traditional 
implementations of connectionist networks will see that a 
signal passes from active nodes to all their connected peers. 

The amount of activity transmitted is determined by the 
weight of the connection. 
 
In addition to the properties that define a Hebbian learning-
based neural network, Braitenberg specifies two further key 
characteristics, which our network model intends to address: 
 

1. The memory network associates only elements that 
are active in succession, within a brief delay and not 
those, which are active simultaneously. This 
differentiates it from a basic associative 
connectionist network. 

2. Memorized patterns can be reproduced at an arbitrary 
speed. If they are reproduced at a more rapid pace 
than they are likely to occur as sensed via the 
sensory system, the network acts as a predictor. 

 
These two functional requirements were at the core of a series 
of our incremental prototypical experiments.  

Methods 

A Fixed-Delay Network 
After initial investigation into delay-line networks, which 
used timers to record variable activation delays between a set 
of elements (see Figure 1), we employed a network with fixed 
delays between the activation of elements. The previous 
models had focused on implementing the ability of modelling 
a variety of time delays between device pairs in order to learn 
temporal patterns in threshold device populations. The model 
discussed in this paper moves away from this variable delay 
paradigm towards a notion inspired by the way film cameras 
record the passage of time. Film cameras are usually set to 
operate at a fixed frame-rate; say 25 frames per second (fps). 
When a slowly moving object passes by the camera lens it 
leaves a contiguous trace of strongly activated pixels on the 
film (or CCD chip for that matter). On the other hand, if a fast 
moving object passes by the camera lens, it would only leave 
trace signals on a few, further apart areas of the film/CCD 
chip. Thus the speed of the object is represented by two 
distinct patterns on the film, even though the delay between 
the activation of the neighbouring contiguous pixels was the 
same in both cases. The time delay between the contiguous 
and distant impressions was 1/25 of a second. 
This model uses the idea that speed is not a matter of delaying 
information transmission between devices. At one time-step 
the delay between one node activating another is always 



constant. Rather, time is a property of an observed object and 
the pattern that its observation leaves in the connections of a 
perceiving network. Figure 1 illustrates the fixed delay 
network. The activation timing between each pair of devices 
in the network is fixed. The timings are not stored in the 
connections, but in the patterns that are left when sensed by a 
group of connected devices. 

 
Applying the above example to a network of connected nodes 
ABCDEF, that are aligned in the visual field of a camera from 
left to right and an object passes by them at slow speed, then 
all devices A-B-C-D-E-F will be activated in sequence. If the 
object passes by at high speed, some visual receptors might 
actually fully activate- in this case only triggering the 
sequence A-C-E for example. 
Thus, even though the activation speed between the threshold 
devices in the visual receptor is constant, they can capture 
different timings/speeds within varying received activation 
patterns. 
Comparing this theoretical model to the subjective experience 
of observing moving objects, an object moving past a photo-
cell faster would allow less light to pass from it into any given 
receptor - therefore triggering a weaker activation signal. In 
addition there even seems to be a threshold for the maximum 
speed that can be perceived by a given visual system. A very 
high velocity object, such as a spinning airplane propeller may 
appear to be entirely transparent, with only a slight "dimming" 
of the background signifying their presence. 
To summarize: If time is a property of the object being 
observed and is not represented in the network as a property 
of the connections between nodes, then time is perceived and 
encoded as a pattern in the network and not as a value. This 
makes time a relation between an observed object's speed/rate 
of movement and an observer’s perception/processing rate. 
 
Based on initial observations, the predictor model had to 
address the following issues: 

1. Feedback loops can create uncontrolled activity and 
irrecoverable states. 

2. One time-step is not sufficient for accurate long-term 
predictions. A short-term, working memory should 
be used to extend the predictor. 

3. Currently, every association is stored, leading to a 
quick saturation of the network. Competition and 
pattern decay should be introduced to: 

a.   Resolve conflict between opposing patterns 
b. Decay old and rare patterns over time 

 

Results 

The Algorithm 
The first version of a model based around the notion of a 
fixed-delay network used a very simple algorithm. At each 
time step, the currently firing network node is associated with 
the node that fired on the previous time step. The association 
is uni-directional, meaning that only the connection from the 
previous node is reinforced, while the connection to that node 
is not reinforced. The association weight is determined by the 
time that has passed since the previous node fired.  
The initial implementation used a counter to determine the 
time that had passed between the firing of the two connected 
nodes. However, due to requiring counters for each node that 
fires during a single time step, the revised implementations 
instead use an extension of the action-potential charge of each 
node. While traditional artificial neural networks use a binary 
charge state of either 1 or 0, this extended model still outputs 
a binary energy value, but instead of returning to 0 
immediately, the value is gradually decreased over a series of 
time steps. This made it possible to use the charge falloff as an 
individual measure of time for each node. 
Below is the pseudo code for the algorithm used: 
 
For each node A in the network 
 
//Update CURRENT and PREDICTED charge: 
�Retrieve charge from previous time step 

 �Decay the previous charge 
 �Add external stimuli to charge 
  

�Calculate internal stimuli 
�For each node B (that is not A) that 
fired on the previous time step (in 
fired list) 
  �If previous node B is connected to 
  current node A 
   �Calculate and add the input    
   charge from B to A (node B’s    
   output & weight from B to A) 
   �Decay the connection weight from 
   A to B (if a connection exists) 

 
�Update current charge for node A 
(previous charge + external stimuli) 
�Update the predicted charge for node 
A (internal stimuli / past effect 
scaling value) 

 
//Fire Nodes and Update Associations: 

 �If current charge > threshold 
  �For each node B (that is not A) that 
  fired on the previous time step 
   �Increase the weight from B to A 
   �Decrease the weight from A to B (if 
   a connection exists) 
  �Add the current node A to the fired  
  list 
  �Remove the oldest element from the  
  fired list 

Figure 1 Illustrates variable delay and fixed delay paradigms 



The model showed the capability of reproducing time series 
patterns, albeit without any intermittent pauses between node 
activations. The pattern sequence was reproduced faithfully, 
but the reproduction was sped up with each node activating 
exactly one time-step after the previous one.  
Another issue was that pattern loops could end up creating 
feedback patterns similar to Conway’s “Game of Life” 
(Gardner, 1970). 

Separating Internal Activity from Prediction 
The first change from the previous model was that the 
predicted activity was separated from the actual activity in the 
network. Instead of adding the internal activation energy to 
the total charge of each node (which determines whether the 
node would fire), it is instead accumulated in a new node 
property, the prediction. In the visualization that was used in 
our simulation, the prediction and the charge are displayed as 
two separate coloured bars to make it clear to the observer 
which was the charge caused by external stimulus and which 
was the predicted path. Separating the two immediately 
resolved the internal feedback problem of course. Figure 2 
shows the implementation of the temporal pattern predictor 
which visualizes the separation between sensory input and 
prediction. The left most active threshold device is currently 
active. The two paths emanating from it are two previously 
perceived patterns of node activity. The darker shading 
indicates that a predicted pattern has been perceived more 
often and/or more recently than the weaker prediction. 

Short Term Memory Trajectory 

The main problem that occurred with the previous version of 
the predictor was that of pattern interference. In a network, 
any given node may be part of several trained patterns. When 
this node is activated, how does the network choose which 

pattern to activate? While any of the patterns are valid when 
taking into account only the current state of the network, 
viewed as a series of states in time, the idea of all being valid 
becomes less likely. To illustrate this, the diagram in Figure 3 
shows an experiment that sees four different opposing 
stimulus sequences presented to the network. Each of the four 
sequences passes through the same middle node and sequence 
pairs 1&2 and 3&4 share the same path. Figure 4 shows the 
false predictions the current model makes. 
 
 

 

 

 

 
 
 
 

 
Note how only 9 unique states can be identified from the 
perspective of this network. Viewing state C without taking 
the preceding time-steps into account, the predictor could 
validly predict either state D,B,H or G as the next possible 
position in the sequence. 
In order to deal with this problem of differentiating between 
different temporal patterns, a short-term memory was 
introduced into the model. This sees a series of past devices 
associated to the current device under the notion that they are 
precursors of the currently active device. The further in the 
past these devices are active, the weaker the association to the 
current device. Figure 5 is an illustration of this mechanism. It 
shows an example of impact of short-term memory the 
possible predicted paths A, B and C. While all three are 
equally likely from the perspective of the current node, the 

Prediction: Most 
likely next node to 
become active. 

Activity: 
Short Term 
Memory of 
active nodes 

Prediction: 
Two 
previously 
learned 
patterns of 
activity. 

Figure 2 The Predictor model implementation 

Figure 3 Experiment setup to test pattern interference 

Figure 4 The false predictions the network makes due to 
pattern interference 



additional stimulus from the two previous nodes in the short-
term memory accumulate to support path C as the most likely 
pattern. 
 
The result of adding a short-term memory of past nodes to the 
model is illustrated in Figure 6. The perception of the 
predictor has changed as it keeps the series of past nodes in 
mind. From the outset, this allows the network to differentiate 
between 20 unique states instead of just 9. 

Based on the altered perception, Figure 7 shows that these 20 
states are then associated with 20 different predictions. Since 
the influence from the short-term memory adds additional 
activity to the network, the problem of saturating the entire 
network becomes relevant. To deal with this problem the 
model needs to include the notion that certain patterns are 
competitive in that they represent opposing positions to a fact. 
 

Figure 6 Introducing a short-term memory of active nodes 
changes the perception of the network Figure 7 Using a short-term memory allows the network to 

differentiate between predictions 

Figure 5 Diagram illustrating how the short-term memory allows the network to differentiate between predicted patterns. 



Pattern Inhibition 
A simple form of competition that was tested with this model 
was inhibition between patterns. Inspired by the lateral 
inhibition algorithm commonly used in edge-enhancement 
algorithms in computer vision, this mechanism allows 
currently active nodes and the nodes in short-term memory to 
inhibit all the nodes that they are currently not connected to. 
The result is a cumulative effect of inhibition. In parallel with 
exciting connected nodes as depicted in Figure 5, past and 
present nodes will inhibit every other node in the network, 
thus enhancing the strongest mutual patterns among them. 
Figure 8 illustrates this effect. 

Discussion and Further work 
Since the model uses fixed delays, the predicted sequence is 
triggered simultaneously. Speeding up a predicted pattern is 
certainly desirable according to Braitenberg, who states that a 
predictive brain would need to “reproduce sequences at a 
more rapid pace” (Braitenberg, 1984, pg. 72). However, the 
interval information between the activation of nodes is lost, 
which contradicts Braitenberg’s earlier statement that “we 
implicitly assumed that the Ergotrix wires would be trained to 
reproduce sequences of activation at the same pace as the 
original occurrence of the sequences of events.” (Braitenberg, 
1984, pg. 72). 
Overcoming this issue would require re-introducing some 
form of internal self-activation to the network, albeit with a 
mechanism for preventing undesirable states such as feedback 
loops. 
While this internal dynamic is desirable in a future model of 
the predictor mechanism, a feedback-free predictor has the 
benefit of stability and the ability to clearly visualize the 
discrepancy between sensed input and predicted output. It 
might also be possible to derive the timings from the 
prediction value of nodes. 

Further Work 
Testing the predictor in an embedded scenario is the primary 
priority at this point. Two experiments are currently being 
prepared. The following is a summary of some of the early 
findings.  
The scenario for both experiments is a chase-and-catch setup, 
with the goal being to stay as close as possible to a moving 
target. The simulation features a differential drive-driven 
driven agent with two distance sensors, which can be set to 
track a target. The aim of these experiments is to see whether 
adding the ability to anticipate the path of a moving target 
leads to more optimal behaviour. Note that in both 
experiments, the tracked target is moving faster than the 
agent. To catch the target, the agent therefore needs to 
intercept the target: 
 
The first experiment implements the predictor as a 
probabilistic occupancy map (POM), inspired by previous 
work by Damian Isla (2002a, 2002b). The experiment sees the 
predictor network represent the location of a tracked object on 
an occupancy grid. The predictions generated therefore 
propose the possible future location of the tracked object and 
an agent’s sensors can be set to track the prediction instead of 
the ‘actual’ tracked object. This can be implemented using the 
current predictor, which only tracks a single point (the 
location of the object on the map). 
Figure 9 shows the path of the agent without using the 
predicted position of the target, indicated by a cross. Figure 10 
shows that the agent manages to get closer to the target when 
using the predicted position as the input. While this early 
result shows that our predictor can function as a POM, the 
result is still highly dependent on tuning. Further Increasing 
the speed of the target, would require an agent that is capable 
of adopting a strategy that does not involve it following the 
target, but instead waiting for it at an expected location. The 
current predictor would need to be extended to allow for such 
behaviour. 
 
 

Figure 8 Pattern Inhibition enhances the prediction by inhibiting patterns only pointed to by individual nodes.  



 
Figure 11 shows the second experiment, which uses the 
predictor to generate a multi-dimensional sensory space. By 
using multiple individual predictors, one for each sensor 
input, separate predictions of the expected future state of each 
sensor are generated. In this case, the sensors used are two 
distance sensors. To function with the current predictor 
model, the distance reading need to be converted into discrete 
values that can be mapped to the predictor grid. Thus finding 
a suitable approach to balancing the performance and the 
accuracy of the predictions will be of particular interest.  
The two distance sensor readings are not sufficient to 
accurately triangulate and predict the position of an object’s 
position, since the distance sensors are omni-directional and 
always return a positive distance measurement in our 
simulation. The agent therefore requires an additional internal 
calculation that tells it in which direction (in front or behind) 
the observed object is. Combining this with the sensor 
readings thus gives discrete values ranging from negative 

(behind) to positive (in front) that can be fed into the predictor 
network. While this model already works for a stationary 
agent, the main issue that remains is effect of self-movement 
on the sensed values. This feedback-loop between the relative 
position of the agent with regard to the tracked object has to 
take into account, or rather counteract, the effect that self-
movement has on the sensory data. Without this additional 
system in place, the current prototype will only work in a 
stationary agent, observing and predicting the location of a 
moving tracked object using its distance sensors. 

Conclusions 
Our model of a Braitenberg-inspired temporal pattern 
predictor can successfully predict and visualize the path of a 
moving object and can avoid interference between crossing 
patterns through the use of short-term memory. A set of 
experiments successfully tested the model in the context of a 
chase scenario and has revealed several ways in which the 
current model could be further improved. 
In the first experiment, the choice between following the 
sensed position of the target versus the predicted position on 
the occupancy map was controlled by the experiment. Using 
the user interface we were able to switch between the two and 
compare the resulting behaviours of the agent. A central topic 
for further research on our particular predictor model is the 
inclusion of an automatic switching mechanism that enables 
the agent to make a choice between purely reactive behaviour 
(following the sensory input directly) and pro-active 
behaviour (following the internal representation of the target 
on the POM). This in turn could be extended to include the 
ability to optimise the prediction mechanism by re-enforcing 
accurate predictions. Braitenberg’s original description of the 
predictor includes this functionality and suggests a method of 
positive reinforcement based on classical conditioning 
(Pavlov, 1903). 
The current model only supports sequences of single nodes. It 
only allows a single past node to be associate with a single 

Figure 9 Chase-scenario with a moving target. The objective 
is to stay as close to the moving target as possible. 

 -- Movement Path 
 
          --Agent 
 
 
                  --Target 
 
 
          --Prediction 

  | 
Predictor  
Network 

Figure 11 Experiment testing the use of the predictor network 
to anticipate sensory data. The future position of the target is 
triangulated and displayed. 

Figure 10 Using the predicted position of the target improves 
the behaviour. 

| 
2 Predictor Networks 
(1 row per sensor) 
              --Target 
      Prediction -- 
 
            --Triangulation 
            of predicted position 
            is based purely on 
            sensory data 



current node. To allow for more complex patterns and a wider 
range of application, it should be possible to associate groups 
of past nodes with groups of current nodes. The ability to 
support multi-point patterns could improve the predictor 
further. Connecting the currently separate sensor readings to 
the same network should give the predictor more evidence to 
base individual predictions on. As we saw with the inclusion 
of short-term memory, this could potentially improve its 
ability to differentiate between similar patterns. 
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