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Abstract

Robustness of ecological flow networks under random failure
of arcs is considered with respect to two different function-
alities: coherence and circulation. In our previous work, we
showed that each functionality is associated with a natural
path notion: lateral path for the former and directed path for
the latter. Robustness of a network is measured in terms of the
size of the giant laterally connected arc component and that
of the giant strongly connected arc component, respectively.
We study how realistic structures of ecological flow networks
affect the robustness with respect to each functionality. To
quantify the impact of realistic network structures, two null
models are considered for a given real ecological flow net-
work: one is random networks with the same degree distri-
bution and the other is those with the same average degree.
Robustness of the null models is calculated by theoretically
solving the size of giant components for the configuration
model. We show that realistic network structures have pos-
itive effect on robustness for coherence, whereas they have
negative effect on robustness for circulation.

Introduction
Networks have been usually considered as undirected in the
field of complex networks (Newman, 2003). However, many
real-world networks are directed so that the direction of in-
teraction is important for the functioning of the systems.
Recently, it has been revealed that directed networks have
richer structures such as directed assortativity (Foster et al.,
2010) and flow hierarchy (Mones, 2013).

In our previous work, we proposed a new path notion in-
volving directedness called lateral path that can be seen as
the dual notion to the usual directed path (Haruna, 2011).
Based on category theoretic formulation, we derived the lat-
eral path as a natural path notion associated with the dy-
namic mode of biological networks: a network is a pattern
constructed by gluing functions of entities constituting the
network (Haruna, 2012). Thus, its functionality is coher-
ence, whereas the functionality of the directed path is trans-
port. We showed that there is a division of labor with respect
to the two functionalities within a network for several types
of biological networks: gene regulation, neuronal and eco-
logical ones (Haruna, 2012). It was suggested that the two

complementary functionalities are realized in biologicalsys-
tems by making use of the two ways of tracing on a directed
network, namely, lateral and directed.

In this paper, we address robustness of ecological flow
networks with respect to the lateral path and directed path,
respectively. Since the natural connectedness notion associ-
ated with the directed path is the strong connectedness, we
consider robustness of the giant strongly connected compo-
nent (GSCC) for the latter. For the former, robustness of
the giant lateral connected component (GLCC) is of inter-
est. Thus, we assess robustness of ecological flow networks
in terms of two different functionalities, namely, coherence
and circulation, both of which are important for the func-
tioning of them (Ulanowicz, 1997).

Robustness of ecological networks is an intriguing is-
sue in recent studies (Montoya et al., 2006; Bascompte,
2009). Initially, robustness of general complex networks has
been argued qualitatively in terms of critical thresholds for
the existence of the giant component (Albert et al., 2000;
Cohen et al., 2001). For ecological networks, their robust-
ness has been measured by the size of secondary extinc-
tions (Solé and Montoya, 2001; Dunne et al., 2002). Here,
we employ a recently proposed idea to measure robust-
ness quantitatively (Schneider et al., 2011; Herrmann et al.,
2011). As a first step, we consider only random failure of
arcs. The size of giant components is measured by the num-
ber of arcs involved because laterally connected components
are defined only on the set of arcs.

Here, we study the impact of realistic network structures
on robustness with respect to the two functionalities. Two
complementary measures of it are proposed by comparing
the robustness of a given real network with that of the two
null models: random networks with the same degree dis-
tribution and those with the same average degree. The ro-
bustness of the two null models is calculated by theoreti-
cally solving the percolation problem on the configuration
model, random networks with an arbitrary degree distribu-
tion (Newman et al., 2001).

This paper is organized as follows. In Section 2, we de-
velop a theory to calculate the size of GLCC and GSCC un-
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Figure 1: An example of lateral path.

der random removal of arcs in the configuration model. In
Section 3, we propose two measure for the impact of realistic
structures on robustness of networks by using the theoretical
result obtained in Section 2. In Section 4, the proposed mea-
sures are applied to 10 ecological flow networks. In Section
5, we discuss the results and indicate future directions.

Random Removal of Arcs in the Configuration
Model

In this section, we consider a percolation problem, random
removal of arcs, in the configuration model with respect to
the lateral connectedness and the strong connectedness.

A lateral path in a directed network is a path in the net-
work such that the direction of arcs involved changes alter-
nately (Haruna, 2012) (Fig. 1). Two arcs are calledlaterally
connectedif they are connected by a lateral path (Haruna,
2011). Lateral connectedness defines an equivalence rela-
tion on the set of arcs. Each equivalence class is calledlat-
erally connected component.

Since lateral connectedness is defined on the set of arcs,
here we also consider strong connectedness for arcs. Two
arcs are calledstrongly connectedif there is a directed path
from one arc to the other arc, and vice versa.

Let us consider a random directed network with degree
distributionP (ki, ko). P (ki, ko) is the fraction of nodes in
the network with in-degreeki and out-degreeko. We make
use of the generating function formalism (Callaway et al.,
2000; Newman et al., 2001) to calculate the sizes of giant
laterally or strongly connected components (in short, GLCC
or GSCC, respectively) after removing arcs uniformly at ran-
dom with probability1−φ, whereφ is the occupation prob-
ability.

The generating function forP (ki, ko) is

G(x, y) =
∑

ki,ko

P (ki, ko)x
kiyko . (1)

The average degreez := 〈ki〉 = 〈ko〉 is given by

z =
∂G

∂x
(1, 1) =

∂G

∂y
(1, 1). (2)

Let Pi(ki) :=
∑

ko
P (ki, ko) be the in-degree distribution

andPo(ko) :=
∑

ki
P (ki, ko) the out-degree distribution.

Their generating functions are

F0(x) := G(x, 1) andH0(y) := G(1, y), (3)

respectively.
We introduce four excess degree distributions and corre-

sponding generating functions that are necessary for the cal-
culation in what follows.

First, letP0(k) be the probability that the number of the
other arcs arriving at the target node of a randomly chosen
arc isk (Fig. 2 (a)). It is given by

P0(k) :=
1

z

∑

k0

(k + 1)P (k + 1, k0) (4)

and its generating function is

F1,0(x) :=
∑

k

P0(k)x
k =

1

z

∂G

∂x
(x, 1) =

1

z

∂F0

∂x
(x). (5)

Second, letP1(k) be the probability that the number of
arcs arriving at the source node of a randomly chosen arc is
k (Fig. 2 (b)). It is given by

P1(k) :=
1

z

∑

k0

k0P (k, k0) (6)

and its generating function is

F1,1(x) :=
∑

k

P1(k)x
k =

1

z

∂G

∂y
(x, 1). (7)

Third, letQ0(k) be the probability that the number of the
other arcs leaving from the source node of a randomly cho-
sen arc isk (Fig. 2 (c)). It is given by

Q0(k) :=
1

z

∑

ki

(k + 1)P (ki, k + 1) (8)

and its generating function is

H1,0(y) :=
∑

k

Q0(k)y
k =

1

z

∂G

∂y
(1, y) =

1

z

∂H0

∂y
(y). (9)

Finally, let Q1(k) be the probability that the number of
arcs leaving from the target node of a randomly chosen arc
is k (Fig. 2 (d)). It is given by

Q1(k) :=
1

z

∑

ki

kiP (ki, k) (10)

and its generating function is

H1,1(y) :=
∑

k

Q1(k)y
k =

1

z

∂G

∂x
(1, y). (11)
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Figure 2: Four excess degree distributions. See the main text
for details.

Giant Laterally Connected Component
Let u be the average probability that an arc is not connected
to the GLCC via a particular arc with the same target and
v the average probability that an arc is not connected to the
GLCC via a particular arc with the same source. Then, the
average probability that an occupied arc does not belong to
the GLCC is

∑

k,l

P0(k)u
kQ0(l)v

l = F1,0(u)H1,0(v). (12)

Hence, the size of the GLCC is

L = φ(1 − F1,0(u)H1,0(v)). (13)

The values ofu andv are calculated by the following set of
equations:
{

u =
∑

k Q0(k)(1 − φ+ φvk) = (1 − φ) + φH1,0(v)

v =
∑

k P0(k)(1− φ+ φuk) = (1− φ) + φF1,0(u).

(14)
The critical occupation probabilityφL,c for the appear-

ance of GLCC can be obtained from the linear stability anal-
ysis of the trivial solution(u, v) = (1, 1) of (14). It turns out
to be

φL,c =
z

√

(〈k2i 〉 − z) (〈k2o〉 − z)
. (15)

Giant Strongly Connected Component
The calculation of the size of the GSCC is similar to the node
component case (Dorogovtsev et al., 2001; Schwartz et al.,
2002). In (Serrano and De Los Rios, 2007), five notions of
edge components are considered. For our purpose, consid-
eration on the usual three components (in-, out- and strongly
connected) as in the node component case are enough. How-
ever, these are implicit in the following calculation.

Let u be the average probability that an arc is not con-
nected to the GSCC via a particular arc leaving from its tar-
get andv the average probability that an arc is not connected

to the GSCC via a particular arc arriving at its source. Then,
the average probability that an occupied arc does belong to
the GSCC is

∑

k,l

Q1(k)(1−uk)P1(l)(1−vl) = (1−H1,1(u))(1−F1,1(v)).

(16)
Hence, the size of the GSCC is

S = φ(1 −H1,1(u))(1 − F1,1(v)). (17)

The values ofu andv are calculated by the following set of
equations:

{

u =
∑

k Q1(k)(1− φ+ φuk) = (1− φ) + φH1,1(u)

v =
∑

k P1(k)(1 − φ+ φvk) = (1− φ) + φF1,1(v).

(18)
The critical occupation probabilityφS,c for the appear-

ance of GSCC is given by

φS,c =
z

〈kiko〉
, (19)

which is the same as in the node component case
(Schwartz et al., 2002).

Examples

We calculate the sizes of the GLCC and the GSCC as func-
tions of the occupation probabilityφ for three degree distri-
butions: (a) Uncorrelated Poisson distribution (UPD)

P (ki, ko) =
e−2λλki+ko

ki!ko!
, (20)

(b) Uncorrelated exponential distribution (UED)

P (ki, ko) =
(

1− e−1/κ
)2

e−
ki+ko

κ , (21)

and (c) Correlated Poisson distribution (CPD)

P (ki, ko) =
e−λλki

ki!
δki,ko

, (22)

whereλ, κ > 0 are parameters andδki,ko
is the Kronecker

delta. The results are compared with numerical simulations
in Fig. 3, which shows that the agreement between simula-
tion and theory is well.

For critical occupation probabilities, we haveφL,c =
φS,c = 1/λ for UPD, φL,c =

(

e1/κ − 1
)

/2 <
(

e1/κ − 1
)

= φS,c for UED andφL,c = 1/λ > 1/(λ+1) =
φS,c for CPD. Thus, these examples also show that all pos-
sibilitiesφL,c = φS,c, φL,c > φS,c andφL,c < φS,c actually
occur.
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Figure 3: L(φ) andS(φ) for (a) the uncorrelated Poisson
distribution withλ = 3, (b) the uncorrelated exponential
distribution withκ = 4 and (c) the correlated Poisson distri-
bution withλ = 2. Lines are theoretically obtained. For (a)
and (c), (14) and (18) are numerically solved. For (b), we
obtain analytic expressions. Squares and circles are numeri-
cal simulations and averaged over 1000 different random re-
moval sequences on different configuration model networks
with the number of nodes 500 for (a) and (b), and 1000 for
(c).

Two Measures for Impact of Realistic
Structures on Robustness

Robustness
Given a directed network, letL(φ) be the size of the GLCC
and S(φ) the size of the GSCC for occupation probabil-

ity φ. Motivated by the robustness measure proposed in
(Schneider et al., 2011; Herrmann et al., 2011), we define
the robustness of the GLCC and that of the GSCC by

RL =

∫ 1

0

L(φ)dφ andRS =

∫ 1

0

S(φ)dφ, (23)

respectively.
Our robustness measure is similar to link robustness in

(Zeng and Liu, 2012), however, since we measure the size
of a component by the number of arcs belonging to it, it is
different from link robustness. In particular, sinceL(φ) and
S(φ) cannot exceed the diagonal line, we haveRL, RS ≤
0.5.

Gain
Given a directed network, we would like to consider how
much its robustness (of the GLCC or the GSCC) is enhanced
or degraded compared to a reference network. One measure
is the ratio of the robustness of the given network to that of
the reference network (Schneider et al., 2011). We call this
measurerobustness gain. If we denote the robustness of the
given network byRgiven and that of the reference network
byRref , then the robustness gain is defined by

Ggiven/ref := Rgiven/Rref . (24)

We here consider three combinations of given-reference
pairs: (given,ref)=(real, config), (given,ref)=(config, Pois-
son) and (given,ref)=(real,Poisson), where ‘real’ indicates
a real-world network, ‘config’ the configuration model net-
work with the same degree distribution and ‘Poisson’ the
(uncorrelated) Poissonian network with the same average
degree. The robustness gains for the three given-reference
pairs are denoted byGr/c, Gc/p and Gr/p, respectively.
Note thatGr/p = Gr/cGc/p.

Complement Ratio
The other way to measure the effect of realistic structures on
robustness is to evaluate the amount of unrealized robustness
of the reference network (namely,0.5 − R) utilized by the
given network. We define therobustness complement ratio
for the above three combinations of given-reference pairs by

Cgiven/ref :=
Rgiven −Rref

0.5−Rref
, (25)

where(given, ref) = (r, c), (c, p) or (r, p).
Both Ggiven/ref andCgiven/ref are considered for the

lateral connectedness and the strong connectedness in next
section. We writeGL,given/ref andCL,given/ref for the for-
mer andGS,given/ref andCS,given/ref for the latter.

Ecological Flow Networks
In this section, we apply the indexes introduced in
previous section to relatively large 10 networks (with



the number of arcs> 100) among 48 flow networks
collected by R. Ulanowicz. Data are downloaded from
http://www.cbl.umces.edu/˜ulan/ntwk/network.html.
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Figure 4: (a)L(φ) and (b)S(φ) for (vii) Middle Chesa-
peake Bay in Summer network (solid lines), those for the
configuration model network with the same degree distri-
bution (dashed lines) and those for the Poissonian network
with the same average degree (dotted lines).

Data
Here, we list the 10 ecological flow networks we analyze. In
the following,N is the number of nodes andA is the number
of arcs included in the largest weakly connected component.
z = 〈ki〉 = 〈ko〉 is the average degree. The number associ-
ated to each network is the web number in the original data
source. In every network, each arc indicates the existence
of carbon flow from its source to target. (i) Chesapeake Bay
Mesohaline Network (N = 26, A = 122, z = 3.4, Web
34). (ii) Everglades Graminoids Wet Season (N = 66, A =
793, z = 12.0, Web 40). (iii) Final Narragansett Bay Model
(N = 32, A = 158, z = 4.9, Web 42). (iv) Florida Bay Wet
Season (N = 125, A = 1938, z = 15.5, Web 38). (v) Lake
Michigan Control Network (N = 34, A = 172, z = 5.1,
Web 47). (vi) Lower Chesapeake Bay in Summer (N =
29, A = 115, z = 4.0, Web 46). (vii) Middle Chesa-
peake Bay in Summer (N = 32, A = 149, z = 4.7, Web
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Figure 5: Robustness of (a) the GLCC and (b) the GSCC for
the 10 ecological flow networks. Real: original networks,
Config: the configuration model networks with the same de-
gree distribution and Poisson: the Poissonian networks with
the same average degree.

45). (viii) Mondego Estuary - Zostrea Site (N = 43, A =
348, z = 8.1, Web 41). (ix) St Marks River (Florida) Es-
tuary (N = 51, A = 270, z = 5.3, Web 43). (x) Upper
Chesapeake Bay in Summer (N = 33, A = 158, z = 4.8,
Web 44).

Results

We plot L(φ) (Fig. 4 (a)) andS(φ) (Fig. 4 (b)) for (vii)
Middle Chesapeake Bay in Summer network, the configu-
ration model network with the same degree distribution and
the Poissonian network with the same average degree, as a
typical example.L(φ) andS(φ) for real ecological flow net-
works are calculated by averaging the size of the largest con-
nected components over 1000 random removal sequences of
arcs.

The robustness values for all 10 networks are shown in
Fig. 5. One can see opposite tendency on how realistic
structures influence robustness between the GLCC and the
GSCC.RL tends to increase as more realistic structures are
imposed on one hand,RS tends to decrease on the other
hand. However, sinceRL is close to 0.5 already for the

http://www.cbl.umces.edu/~ulan/ntwk/network.html
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Figure 6: Robustness gain of the 10 ecological flow
networks for (a) the GLCC and (b) the GSCC. Three
given and reference network pairs are considered. r/c:
(given,ref)=(real,config), c/p: (given,ref)=(config,Poisson)
and r/p: (given,ref)=(real,Poisson). See the main text for
details.

Poissonian network in most cases, the robustness gain for
the GLCC is almost unity in all three given-reference pairs
as seen in Fig. 6 (a). ForRS , one can see that the realistic
degree distributions are the dominant factor for the degrada-
tion of robustness in most cases from Fig. 6 (b).

The tendency that realistic structures have positive impact
on robustness of the GLCC can be captured more clearly by
the robustness complement ratio as shown in Fig. 7. One can
also see that the realistic degree distributions are the domi-
nant factor to enhance the robustness of the GLCC in most
cases.

Discussions
Whether realistic structures of ecological networks have
positive impact on their robustness or stability or not
is controversial (Allesina and Tang, 2012). The answer
to this question generally depends on the types of eco-
logical interaction and dynamic processes of interest
(Thébault and Fontaine, 2010; Allesina and Tang, 2012). In
this paper, we focused on robustness of ecological flow net-
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Figure 7: Robustness complement ratio of the 10
ecological flow networks for the GLCC. Three
given-reference network pairs are considered. r/c:
(given,ref)=(real,config), c/p: (given,ref)=(config,Poisson)
and r/p: (given,ref)=(real,Poisson). Data that have negative
values are omitted.CS has negative values except one case
(data not shown). See the main text for details.

works under random failure of arcs with respect to the two
different functionalities, namely, coherence and circulation.
The former is captured by the robustness of the GLCC and
the latter by that of the GSCC. We found that they exhibit
opposite tendency for constraints by the realistic network
structures: the realistic network structures enhance the ro-
bustness of the GLCC on one hand, they degrade that of the
GSCC on the other hand. In both case, it is suggested that
the realistic degree distributions are one of the most impor-
tant factors.

The former result seems to be consistent with the food-
web stabilizing factor proposed in (Gross et al., 2009): “(i)
species at high trophic levels feed on multiple prey species
and (ii) species at intermediate trophic levels are fed upon
by multiple predator species”, because such patterns in a
network could contribute to make multiple lateral paths be-
tween arcs. Whereas, the latter result could provide a quanti-
tative support for the ‘autocatalytic view’ on ecological flow
networks proposed by R. Ulanowicz (Ulanowicz, 1997).

Our result in this paper suggests that complex networks
can be both robust and fragile in a different sense from that
in (Albert et al., 2000): under the same attack strategy, ro-
bust for one functionality and fragile for another functional-
ity.

It is of interest whether the same tendency can be seen or
not for the other various attack strategies (Holme and Kim,
2002) and for the other kinds of directed biological networks
such as gene regulation and brain. Research results on these
issues will be reported elsewhere near future.
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