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Abstract complementary functionalities are realized in biolog&ya-
tems by making use of the two ways of tracing on a directed
Robustness of ecological flow networks under random failure network, namely, lateral and directed.
of arcs is considered with respect to two different function

alities: coherence and circulation. In our previous work, w In this paper, we address robustness of eC(_)IogicaI flow
showed that each functionality is associated with a natural ~ networks with respect to the lateral path and directed path,
path notion: lateral path for the former and directed path fo respectively. Since the natural connectedness notiortiasso

the latter. Robustness of a network is measured in termgof th ated with the directed path is the strong connectedness, we

size of the giant laterally connected arc component and that ., qjqer robustness of the giant strongly connected compo-
of the giant strongly connected arc component, respeytivel

We study how realistic structures of ecological flow netveork nent (GSCC) for the latter. For the former, robustness of
affect the robustness with respect to each functionality. T the giant lateral connected component (GLCC) is of inter-
quantify the impact of realistic network structures, twdl nu est. Thus, we assess robustness of ecological flow networks
models are considered for a given real ecological flow net- in terms of two different functionalities, namely, cohezen

work: one is random networks with the same degree distri- 54 ireylation, both of which are important for the func-
bution and the other is those with the same average degree.

Robustness of the null models is calculated by theoregicall tioning of them(Ulanowicz, 1997).
solving the size of giant components for the configuration Robustness of ecological networks is an intriguing is-
_modelﬁ We shovx(othat reaI]i‘stic nﬁtwork struEtures h?]ve %05' sue in recent studies (Montoya ef al., 2006; Bascdmpte,
Irtugga?ivz(gﬁ%r:;trg nliztl;]lfssti eg; ?gr f.:iﬂfﬁ. 0\2’_ ereas they have 2009). Initially, ropustness_of general co.rr_1plex networks h
been argued qualitatively in terms of critical thresholais f
the existence of the giant component (Albert etlal., 2000;
Introduction Cohen et al., 2001). For ecological networks, their robust-
ness has been measured by the size of secondary extinc-
tions (Solé and Montoya, 2001; Dunne et al., 2002). Here,
we employ a recently proposed idea to measure robust-
ness quantitatively (Schneider et al., 2011; Herrmann et al

Recently, it has been revealed that directed networks have 2011). As a first s_tep, we conS|der_onIy random failure of
richer structures such as directed assortativity (Fostali e arcs. The size of giant components is measured by the num-
2010) and flow hierarchy (Morlés, 2013). ber of arcs involved because laterally connected compenent
In our previous work, we proposed a new path notion in- are defined only on the set of arcs.

volving directedness called lateral path that can be seen as Here, we study the impact of realistic network structures
the dual notion to the usual directed path (Harlna, 2011). on robustness with respect to the two functionalities. Two
Based on category theoretic formulation, we derived the lat Complementary measures of it are proposed by comparing
eral path as a natural path notion associated with the dy_ the robustness of a given real network with that of the two
namic mode of biological networks: a network is a pattern null models: random networks with the same degree dis-
constructed by gluing functions of entities constitutingt  tribution and those with the same average degree. The ro-
network (Haruna. 2012) ThUS, its functiona"ty is coher- bustness of the two null models is calculated by theoreti-
ence, whereas the functionality of the directed path isstran ~ cally solving the percolation problem on the configuration
port. We showed that there is a division of labor with respect Model, random networks with an arbitrary degree distribu-
to the two functionalities within a network for several tgpe  tion (Newman et all, 2001).

of biological networks: gene regulation, neuronal and eco-  This paper is organized as follows. In Section 2, we de-
logical ones|(Haruna, 2012). It was suggested that the two velop a theory to calculate the size of GLCC and GSCC un-

Networks have been usually considered as undirected in the
field of complex networks (Newman, 2003). However, many
real-world networks are directed so that the direction ef in
teraction is important for the functioning of the systems.
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S ° respectively.
f ce o g We introduce four excess degree distributions and corre-
sponding generating functions that are necessary for the ca
[ ] [ ] [ ] [ J

culation in what follows.

First, let Py (k) be the probability that the number of the
other arcs arriving at the target node of a randomly chosen
arc isk (Fig.[2 (a)). Itis given by

Figure 1: An example of lateral path.

der random removal of arcs in the configuration model. In 1
Section 3, we propose two measure for the impact of realistic Po(k) =~ > (k+1)P(k+ 1, k) (4)
structures on robustness of networks by using the theatetic ko

result obtained in Section 2. In Section 4, the proposed mea-
sures are applied to 10 ecological flow networks. In Section
5, we discuss the results and indicate future directions.

10G 1 0F,

Fio(x ZPO = o (@,1) = S5 2(@). ()

and its generating function is

Random Removal of Arcs in the Configuration
Model

In this section, we consider a percolation problem, random

removal of arcs, in the configuration model with respect to

the lateral connectedness and the strong connectedness.
A lateral pathin a directed network is a path in the net- 1

work such that the direction of arcs involved changes alter- Pi(k) := = > koP(k, ko) (6)

nately (Harung, 2012) (Figl 1). Two arcs are calkgerally :

connectedf they are connected by a lateral path (Haruna,

2011). Lateral connectedness defines an equivalence rela-2nd its generating function is

tion on the set of arcs. Each equivalence class is cédted

Second, letP; (k) be the probability that the number of
arcs arriving at the source node of a randomly chosen arc is
k (Fig.[2 (b)). Itis given by

erally connected component Fia( Z Py(k k= 1 oG (z,1). (7
Since lateral connectedness is defined on the set of arcs, z 81/

here we also consider strong connectedness for arcs. Two

arcs are calledtrongly connected there is a directed path Third, letQo (k) be the probability that the number of the

from one arc to the other arc, and vice versa. other arcs leaving from the source node of a randomly cho-

Let us consider a random directed network with degree sen arc is: (Fig.[2 (c)). It is given by
distribution P(k;, k). P(ki, ko) is the fraction of nodes in
the network with in-degreg; and out-degreg,. We make k) = 1 k
i 0 = + )Pk, k+1 8
use of the generating function formalism_(Callaway et al., Qo(k) z Z( )2 ) ®
2000; Newman et al., 2001) to calculate the sizes of giant
laterally or strongly connected components (in short, GLCC and its generating function is
or GSCC, respectively) after removing arcs uniformly atran
dom with probabilityl — ¢, whereg is the occupation prob- S 10G 10H,
ability. Hio(y ZQO ;a_y(lvy) = dy (y)- (9)
The generating function faP (k;, k,) is

ki

B Plh bk 1 Finally, let Q,(k) be the probability that the number of
- Z (Kis ko) ) @) arcs leaving from the target node of a randomly chosen arc
kisko is k (Fig.[2 (d)). Itis given by

The average degree:= (k;) = (k,) is given by

1
k):i==> k.P(ki k 10
oG, _oa o Qi (k) ; (ki k) (10)
oz oy
. o and its generating function is
Let P;(k;) := > P(ki, k,) be the in-degree distribution
and P, (k ) Z,ﬁ P(k;, ko) the out-degree distribution. 190G
Their generating functions are Hya Z Q1 (k)y* = ~ 9, LY (11)

Fy(x) := G(z,1) andHy(y) := G(1,y), 3)
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Figure 2: Four excess degree distributions. See the méin tex
for details.

Giant Laterally Connected Component

Letu be the average probability that an arc is not connected
to the GLCC via a particular arc with the same target and
v the average probability that an arc is not connected to the
GLCC via a particular arc with the same source. Then, the
average probability that an occupied arc does not belong to
the GLCC is

Z Po on ’U = F170(U)H170(’U). (12)
Hence, the size of the GLCC is
L =¢(1 — Fi0(u)Hyo(v)). (13)

The values of: andv are calculated by the following set of
equations:

u= 3, Qo(k)(1 — ¢+ ') = (1 -
v=3 Po(k)(1 — ¢+ gu) = (1 -

¢) + ¢H1(v)
¢) + ¢F10(u).
(14)
The critical occupation probability;, . for the appear-
ance of GLCC can be obtained from the linear stability anal-
ysis of the trivial solutior(u, v) = (1, 1) of (I4). It turns out

to be
z

VED) —2) (k2) = =)
Giant Strongly Connected Component

The calculation of the size of the GSCC is similar to the node
component case (Dorogovtsev et al., 2001; Schwartz et al.,
2002). In (Serrano and De Los Rios, 2007), five notions of
edge components are considered. For our purpose, consid-
eration on the usual three components (in-, out- and styong|

¢L.,c = (15)

connected) as in the node component case are enough. How-$s,c

ever, these are implicit in the following calculation.

Let u be the average probability that an arc is not con-
nected to the GSCC via a particular arc leaving from its tar-
get andv the average probability that an arc is not connected

to the GSCC via a particular arc arriving at its source. Then,
the average probability that an occupied arc does belong to
the GSCCis

ZQI Pi()(1=v") = (1=Hy 1 (u) (1= Fi 1 (v)).
(16)

Hence, the size of the GSCC is
S = ¢(1 — Hll(u))(l — Flyl(l})). (17)

The values of: andv are calculated by the following set of
equations:

¢) + ¢pHy1(u)
¢) + ¢F11(v).
(18)
The critical occupation probabilitys . for the appear-
ance of GSCC is given by

u=732,Quk)(1— ¢+ ¢u*) = (1~
v=3 Pik)(1 =+ ¢vF) = (1

¢S,c = (19)

<kik0> ’

which is the same as in the node component case
(Schwartz et all, 2002).

Examples

We calculate the sizes of the GLCC and the GSCC as func-
tions of the occupation probability for three degree distri-
butions: (a) Uncorrelated Poisson distribution (UPD)

P(ki, ko) = 76_2,A:,+k (20)
(b) Uncorrelated exponential distribution (UED)
Pk, ko) = (1 — e*l/“)Q e (1)
and (c) Correlated Poisson distribution (CPD)
P(ki, ko) = #51@1,1@(,, (22)

where), x > 0 are parameters any, ;_ is the Kronecker
delta. The results are compared with numerical simulations
in Fig.[3, which shows that the agreement between simula-
tion and theory is well.

For critical occupation probabilities, we havg, .
1/X for UPD, ¢r . (et/r—1) /2
(e'/r —1) = ¢g.forUED andg, . = 1/A > 1/(A+1)
¢s,c for CPD. Thus, these examples also show that all pos-
sibilities ¢ c = ¢s.c, r.c > ds,cander . < ¢g,. actually
occur.

= = <
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Figure 3: L(¢) and S(¢) for (a) the uncorrelated Poisson
distribution with A = 3, (b) the uncorrelated exponential
distribution withx = 4 and (c) the correlated Poisson distri-
bution with A = 2. Lines are theoretically obtained. For (a)
and (c), [I%) and{18) are numerically solved. For (b), we
obtain analytic expressions. Squares and circles are fumer
cal simulations and averaged over 1000 different random re-
moval sequences on different configuration model networks
with the number of nodes 500 for (a) and (b), and 1000 for

().

Two Measures for Impact of Realistic
Structures on Robustness
Robustness

Given a directed network, l€t(¢) be the size of the GLCC
and S(¢) the size of the GSCC for occupation probabil-

ity ¢. Motivated by the robustness measure proposed in
(Schneider et all, 2011; Herrmann et al., 2011), we define
the robustness of the GLCC and that of the GSCC by

1 1
Ry = /O L(¢)d¢ andRs = /0 S(@)dp,  (23)

respectively.

Our robustness measure is similar to link robustness in
(Zeng and Liuj 2012), however, since we measure the size
of a component by the number of arcs belonging to it, it is
different from link robustness. In particular, sinfép) and
S(¢) cannot exceed the diagonal line, we ha¥g, Rg <
0.5.

Gain

Given a directed network, we would like to consider how
much its robustness (of the GLCC or the GSCC) is enhanced
or degraded compared to a reference network. One measure
is the ratio of the robustness of the given network to that of
the reference network (Schneider etlal., 2011). We call this
measura@obustness gainlf we denote the robustness of the
given network byR .., and that of the reference network

by R..s, then the robustness gain is defined by

Ggiven/ref = Rgiven/Rref- (24)

We here consider three combinations of given-reference
pairs: (given,ref)=(real, config), (given,ref)=(configis*

son) and (given,ref)=(real,Poisson), where ‘real’ intksa

a real-world network, ‘config’ the configuration model net-
work with the same degree distribution and ‘Poisson’ the
(uncorrelated) Poissonian network with the same average
degree. The robustness gains for the three given-reference
pairs are denoted by, ,.,G./, and G respectively.
Note thatG, , = G,./.G/p-

c/p r/p

Complement Ratio

The other way to measure the effect of realistic structunes o
robustness is to evaluate the amount of unrealized robssstne
of the reference network (namely,5 — R) utilized by the
given network. We define th®bustness complement ratio
for the above three combinations of given-reference pgirs b

Rgiven - Rref

Zgiven — Tref 25
05— Rpep (25)

Cgiven/ref =
where(given, ref) = (r,¢), (¢,p) or (r,p).

Both Ggiven/rer aNd Cyipen/rey are considered for the
lateral connectedness and the strong connectedness in next
section. We WIit€' 1, iven /ref @NACT given/res fOr the for-
mer andG s given/ref @NACS given/rep fOr the latter.

Ecological Flow Networks

In this section, we apply the indexes introduced in
previous section to relatively large 10 networks (with



the number of arcs> 100) among 48 flow networks

collected by R. Ulanowicz.
http://www.cbl.umces.edu/~ulan/ntwk/network.

(a)

Data are downloaded from
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Figure 4: (a)L(¢) and (b).S(¢) for (vii) Middle Chesa-

peake Bay in Summer network (solid lines), those for the
configuration model network with the same degree distri-
bution (dashed lines) and those for the Poissonian network 45y (viii) Mondego Estuary - Zostrea Sit&V(= 43, A =
with the same average degree (dotted lines).

Data

Here, we list the 10 ecological flow networks we analyze. In
the following, N is the number of nodes antlis the number

of arcs included in the largest weakly connected component. We plot L(¢) (Fig.[ (a)) andS(¢) (Fig.[4 (b)) for (vii)

z = (k;) = (k,) is the average degree. The number associ- Middle Chesapeake Bay in Summer network, the configu-
ated to each network is the web number in the original data ration model network with the same degree distribution and
source. In every network, each arc indicates the existence the Poissonian network with the same average degree, as a
of carbon flow from its source to target. (i) Chesapeake Bay typical exampleL(¢) andS(¢) for real ecological flow net-
Mesohaline Network §y = 26,4 = 122,z = 3.4, Web
34). (ii) Everglades Graminoids Wet Seasd £ 66, A =
793, z = 12.0, Web 40). (iii) Final Narragansett Bay Model
(N =32, A =158,z = 4.9, Web 42). (iv) Florida Bay Wet
Season{ = 125, A = 1938,z = 15.5, Web 38). (v) Lake
Michigan Control Network Vv = 34, A = 172,z = 5.1,
Web 47). (vi) Lower Chesapeake Bay in Summar &

29, A = 115,z

4.0, Web 46).

(vii) Middle Chesa-

peake Bay in SummemN = 32, A = 149,z = 4.7, Web
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Figure 5: Robustness of (a) the GLCC and (b) the GSCC for
the 10 ecological flow networks. Real: original networks,
Config: the configuration model networks with the same de-
gree distribution and Poisson: the Poissonian networks wit
the same average degree.

348,z = 8.1, Web 41). (ix) St Marks River (Florida) Es-
tuary (N = 51, A = 270,z = 5.3, Web 43). (x) Upper
Chesapeake Bay in Summe¥ (= 33, A = 158,z = 4.8,
Web 44).

Results

works are calculated by averaging the size of the largest con
nected components over 1000 random removal sequences of
arcs.

The robustness values for all 10 networks are shown in
Fig.[H. One can see opposite tendency on how realistic
structures influence robustness between the GLCC and the
GSCC.R;, tends to increase as more realistic structures are
imposed on one hand?g tends to decrease on the other
hand. However, sincé, is close to 0.5 already for the
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Figure 6: Robustness gain of the 10 ecological flow
networks for (a) the GLCC and (b) the GSCC. Three
given and reference network pairs are considered. r/c:
(given,ref)=(real,config), c/p: (given,ref)=(config,Bson)
and r/p: (given,ref)=(real,Poisson). See the main text for
details.

Poissonian network in most cases, the robustness gain for

the GLCC is almost unity in all three given-reference pairs
as seen in Fid.16 (a). Fdts, one can see that the realistic
degree distributions are the dominant factor for the deggrad
tion of robustness in most cases from [Eg. 6 (b).

The tendency that realistic structures have positive impac

1 T T T T T T T
08 | .
06 | ) : .
g
04 |
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Ecological Flow Networks
Figure 7: Robustness complement ratio of the 10
ecological flow networks for the GLCC. Three

given-reference network pairs are considered. ric:
(given,ref)=(real,config), c/p: (given,ref)=(config,Bedn)
and r/p: (given,ref)=(real,Poisson). Data that have negat
values are omittedC's has negative values except one case

(data not shown). See the main text for details.

works under random failure of arcs with respect to the two
different functionalities, namely, coherence and cirtiata

The former is captured by the robustness of the GLCC and
the latter by that of the GSCC. We found that they exhibit
opposite tendency for constraints by the realistic network
structures: the realistic network structures enhancedhe r
bustness of the GLCC on one hand, they degrade that of the
GSCC on the other hand. In both case, it is suggested that
the realistic degree distributions are one of the most impor
tant factors.

The former result seems to be consistent with the food-
web stabilizing factor proposed in (Gross etlal., 2009)) “(i
species at high trophic levels feed on multiple prey species
and (ii) species at intermediate trophic levels are fed upon
by multiple predator species”, because such patterns in a
network could contribute to make multiple lateral paths be-

on robustness of the GLCC can be captured more clearly by tween arcs. Whereas, the latter result could provide a guant
the robustness complementratio as shown infFig. 7. One can tative support for the ‘autocatalytic view' on ecologicanl

also see that the realistic degree distributions are the-dom

nant factor to enhance the robustness of the GLCC in most

cases.

Discussions

Whether realistic structures of ecological networks have
positive impact on their robustness or stability or not
is controversial [(Allesina and Tang, 2012). The answer
to this question generally depends on the types of eco-
logical interaction and dynamic processes of interest
(Thébault and Fontaine, 2010; Allesina and Tang, 2012). In
this paper, we focused on robustness of ecological flow net-

networks proposed by R. Ulanowicz (Ulanowicz, 1997).

Our result in this paper suggests that complex networks
can be both robust and fragile in a different sense from that
in (Albert et al.[ 2000): under the same attack strategy, ro-
bust for one functionality and fragile for another functdn
ity.

It is of interest whether the same tendency can be seen or
not for the other various attack strategies (Holme and Kim,
2002) and for the other kinds of directed biological netvgork
such as gene regulation and brain. Research results on these
issues will be reported elsewhere near future.
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