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Abstract

Two variants of biologically inspired cell model, namely eu-
karyotic (containing a nucleus) and prokaryotic(without a nu-
cleus) are compared in this research. Experiments are de-
signed to provide an understanding of how the evolved reg-
ulation of protein transport to and from the nucleus of the
eukaryotic type cell gives rise to complex temporal dynamics
that are not achievable in a prokaryoticcell.

A novel system of protein movement based on the process
of nucleocytoplasmic transport observed in the biological eu-
karyotic cell is proposed. Nucleocytoplasmic transport is
considered by biologists to be one of the most important fac-
tors when determining the developmental trajectory of a cell,
as it allows for additional control of transcription factors en-
tering the nucleus, thereby regulating gene activity.

Experiments contrast the ability of both cell models to gener-
ate protein patterns within the cytoplasm. Results demon-
strate that the additional cell complexity of the eukary-
otic does not impede the Gene Regulatory Networks con-
trol. For increasingly difficult tasks requiring precise tem-
poral control the performance of the eukaryotic cell model
outperforms the prokaryoticcell model. In addition, results
demonstrate that the second level of regulation introduced by
the transport process within the eukaryotic cell allows very
precise control of gene activity and provides the EA with a
source of heterochronic control not possible in prokaryotic-
type cells.

Introduction
Cells are the fundamental building blocks of all biologi-
cal life. Two distinct groups of cell exist, eukaryotic and
prokaryotic. Eukaryotic cells are distinguished by the sep-
aration of the cell into compartments, the most pronounced
compartment, the nucleus contains the genome (Figure 1).
The genome is decomposed into genes, which encode the
blueprint for creating the organism. During the process of
development gene expression results in the creation of pro-
teins levels within the cells. Proteins within the cell direct
and dictate the cell fate and define its final role within the
organism.

In order to enable gene expression, specialised proteins
termed Transcription Factors (TF) must bind the gene cis-
regulation sites. In response to TF binding, the gene expres-
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Figure 1: Architecture of the eukaryotic cell model. The
nucleus is composed of the Nucleoplasm, Genome, and Nu-
clear Pore Complex (NPC)

sion rate is regulated, influencing protein levels within the
cell. The presence of a nucleus within eukaryotic cells (Fig-
ure 1) restricts direct entry of transcription factors to the nu-
cleus. Transport across into the nucleus through the Nuclear
Pore Complex (NPC) is enabled by specialised chaperons
proteins binding to TF proteins. The chaperon proteins are
subdivided into two categories importins which enable im-
port to the nucleus, and exportins which enable export from
nucleus to cytoplasm across the NPC. Importins bind spe-
cific sites on the TF, named Nuclear Localisation Sequence
(NLS). Export from the nucleus is enabled by the binding
of exportin to Nuclear Export Sequence (NES) associated
with the TF. This network of interacting genes and proteins
is known as the Gene Regulatory Network (GRN).

Modifications to the relative timing of developmental
events are termed heterochronic. Lee and Hannink (2003)
report that the control of protein entry to the nucleus pro-
vides a powerful mechanism for the temporal regulation of
gene expression. West-Eberhard (2003) highlights the im-
portance of heterochronic control as a source of phenotypic
novelty

“if I could control the time of gene action I could cause
the fertilised snail egg to develop in an elephant”

Heterochronic change is not a developmental process but
rather an evolutionary process (West-Eberhard, 2003). Mod-
ifications to the timing of events are heritable and must be
somehow linked to the genetic encoding.

Artificial developmental systems have been introduced as
a technique aimed at increasing the scalability of Evolu-
tionary Algorithms (EA) (Haddow and Hoye, 2007). These



systems seek to solve the problem of scale by replacing
the linear genotype-phenotype mapping, with a non-linear
mapping. However, developmental mappings have a low
degree of evolvability caused by high degrees of epistatic
interactions at the genotypic level (Van Remortel et al.,
2003). Enhancing the ability of the genome to allow for
heterochronic mutations increases the number of successful
genotypes (Stanley and Miikkulainen, 2003) by offering a
variety of paths to each successful phenotype.

This paper presents an Artificial EvoDevo (AED) plat-
form capable modelling evolutionary and developmen-
tal processes within biologically plausible eukaryotic and
prokaryoticcells. The prokaryoticcell model is based on
the work of (Kumar and Bentley, 2003). Experiments com-
pare the ability of the evolved GRNs within the cell models
to control gene expression for a number of static, periodic
and aperiodic objectives. Results demonstrate an increased
evolvability of eukaryotic cells compared to the prokaryotic-
cell model. Analysis of gene activity within the GRN shows
that the transport process is instrumental in increasing evolv-
ability by providing efficient hetrochronic control of gene
activity.

The structure of the paper is as follows: Section 2 pro-
vides a review of the use of developmental processes by
the ALIFE community. Section 3 describes the Artificial
EvoDevo (AED) platform developed, the eukaryotic cell
model and its associated transport process. Section 4 de-
scribes a series of experiments and analyses the GRN dy-
namics of both eukaryotic and prokaryoticcell models. Sec-
tion 5 concludes the paper.

Background and Existing Research
This section provides a review of the use of developmen-
tal processes by the ALIFE community. Much of the re-
search on developmental mappings has been motivated by
the fact that the process of development is seen as a pos-
sible solution to the problem of scale in Evolutionary Al-
gorithms (EA) (Bentley and Kumar, 1999), (Haddow and
Hoye, 2007). By combining EAs with a developmental map-
ping between genotype and phenotype, the linear relation-
ship between both is removed. Introducing developmental
mappings also reduces the causality between genotype and
phenotype spaces, which can reduce evolvability since re-
gions of the search space become unreachable (Roggen and
Federici, 2004).

The process of development is primarily a temporal one,
where development starts from a single point and over time
expands into a series of parallel pathways (Raff, 1996).
Temporally shifting these processes relative to each other
can give rise to phenotypic novelty. These shifts in the tim-
ing of events are termed heterochronic mutations, and must
be heritable between generations. Efforts by the ALIFE
community to identify sources of heterochrony within devel-
opmental encoding are limited. Matos et al. (2009) adapts

the framework proposed by Albrech et al. to quantify the
degree of heterochrony achievable by both grammar based
and cellular ontogenies. At the biologically plausible GRN
level, Banzhaf and Miller (2004) illustrate a possible genetic
mechanism by which heterchrony can be enacted. This is
due to an encoding of time and strength of gene expression
into the strength of interaction between transcription factors
and the genes cis sites. Kumar and Bentley (2003) suggest
that the modification to the diffusion rate of signalling pro-
teins can also provide a degree of heterochrony.

The developmental model proposed by Kumar and Bent-
ley (2003) is the primary source of inspiration for the AED
platform described in this paper. Using a prokaryoticcell
model (Kumar and Bentley, 2003) demonstrate how intri-
cate gene regulatory networks can be evolved to establish
and control protein concentrations within a single cell. Fur-
thermore they demonstrate the ability of the system to evolve
3D multicellular spherical morphologies.

This paper recreates the work of Kumar and extends it by
introducing a eukaryotic type cell within the AED platform.
Experiments contrast the evolved developmental processes
within both cells by comparing the ability of the GRN to
regulate protein concentrations for a variety of increasingly
difficult static, dynamic and aperiodic objectives.

The Artificial EvoDevo (AED) Platform
This section describes the developed Artificial EvoDevo
(AED) platform, the eukaryotic cell model and its associ-
ated transport process. The section is decomposed into the
following subsections - AED architecture and configuration,
development and the cell cycle, protein model and classifi-
cation, protein transport, mechanics of gene expression and
the evolved genome structure.

The developmental algorithm within the AED platform
captures the concepts of genes, proteins and cells. Similar
to its biological counterpart, development proceeds along a
time-line, where as a result of the GRN activity protein lev-
els are established within the cell.

AED Architecture and Configuration
The AED comprises two main components (Figure 2)
the Genetic Algorithm (GA) and developmental algorithm.
Evolved genomes are supplied by the Genetic Algorithm
(GA) to the developmental algorithm. The genome is then
developed by placing it inside a user selected cell type (eu-
karyotic or prokaryotic) and returns a fitness to the GA.

The user configures the AED via a configuration file (Ta-
ble 1). In order to start the developmental process, mater-
nal proteins are placed inside the cell. The biological coun-
terpart of this process is fertilisation of the embryo. Seed-
ing involves placing a single TF inside the cytoplasm. In
the reported experiments this has been arbitrarily chosen as
protein 0 with a concentration of 0.5. Eukaryotic type cells
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Figure 2: Architecture of the AED platform

are also seeded with importins (IM) and exportins (EX) type
proteins at a concentration of 0.5.

Development and The Cell Cycle
Having seeded the cell with maternal proteins evolved
genomes are developed by executing a cell cycle Figure 3.
The developmental process is executed for a user defined
number of steps (Table 1a), by iterating the cell cycle shown
in Figure 3. At the end of development, protein levels within
the cell cytoplasm are used to determine the genotype fit-
ness. The calculated fitness value is subsequently fed back
to the GA (Figure 2), where the corresponding genome is
then subject to evolutionary control.

Create Cell,
Add Evolved Genome to Cell
Add Maternal Proteins

Bind TF proteins to genes
to determine Gene Activity

Generate new proteins
proportional to Gene Activity,
Add new proteins to cell cytoplasm

Import TF Protein from Cytoplasm

Export TF Protein from Nucleoplasm

Update Protein Levels
within  Cell Compartments

Eukaryotic Cell
T

F

Development
Complete

False

Figure 3: AED Cell Development Cycle

Protein Model and Classification
The AED eukaryotic cell model contains three proteins
classes (Table 2) while the prokaryoticmodel contains only

steps 200 Defines the # Development Steps
ntf 3 Number of TF’s
nim 3 Number of Importins
nex 3 Number of Exportins

(a) Developmental Algorithm Configuration

runs 50 Number of GA runs
gens 4000 Number of generations per run
psize 100 Population size
pmut 0.1 Mutation Rate
tsize 20 Tournament Size
pxo 0.6 Probability of crossover
obj Sin Objective
tps 2 Number of test proteins

(b) Genetic Algorithm Configuration

Table 1: Typical Configuration Parameters used by the AED
platform. The settings listed are typical for the experiments
reported in this paper.

a single TF type protein. Details of the three protein classes
are listed in Table 2. Proteins are distinguished by a protein
code derived from the gene code (Figure 4). There is a di-
rect mapping between gene code and protein code, ie. gene
code 1 maps to protein code 1 etc. The relationship between
protein IDs and protein class (TF, IM, EX) is determined by
the user setting of nim, nex and ntf in the configuration
file listed in Table 1a.

Protein Class Description ID Range
Transcription Factor (TF) regulates gene activity 0→ ntf − 1
Importin (IM) enables TF import ntf → ntf + nim− 1
Exportin (EX) enables TF export ntf + nim→ ntf + nim+ nex− 1

Table 2: Protein Class Names and their corresponding func-
tion. The ID range of the protein types are calculated based
on the user configuration of Table 1

Protein Transport
In eukaryotic cells TF type proteins must be first transported
into the nucleus in order to regulate the rate of gene ex-
pression. TF proteins within the AED model include ad-
ditional evolved NLS and NES regions, (Figure 4). Binding
of IM/EX type proteins to these sites enables transport of
the TF between compartments. During the transport phase
of the cell cycle (Figure 3), each TF is selected and the pro-
portion of protein exported Cex(tf) and imported Cim(tf) is
described by (1 and 2) respectively.

Cex(tf) = TFnuc ∗ f(TFnuc ∗WTF +

n∑
i

(Exi ∗NESi)) (1)

Cim(tf) = TFcyt ∗ f(TFcyt ∗WTF +

n∑
i

(Imi ∗NLSi)) (2)



where f is defined as the sigmoid function, with TFnuc
and TFcyt being the concentrations of the selected TF in the
nucleus and cytoplasm compartments respectively. WTF is
an evolved bias for the selected TF.

0.1 -0.8 0.1

0.2 -0.9 0.3

Import Control (NLS)

Export Control (NES)

Protein Code

4

Figure 4: The evolved NLS and NES sequences associated
with each TF

Mechanics of Gene Expression
Upon entering the nucleus the rate of gene expression (GE)
is regulated by the binding of TF protein to the cis-regulatory
sites of individual genes. For each gene encoded on the
genome the expression rate GEn is described as (3).

GEn = SRn ∗ f(
n∑

i=0

In ∗ TFn − THn) (3)

where SRn is the evolved max synthesis rate for the gene,
THn and In are the evolved gene threshold and interaction
levels respectively. All protein produced during the gene
expression phase is placed within the cytoplasm and any ex-
isting protein concentration (Cn−1) is updated (4).

Cn = Cn−1 − (Cn−1 ∗DR) +GEn (4)

where DR is the evolved decay rate for this protein.

The Evolved Genome Structure
The role of the GA is to provide candidate configurations
(genomes) to the developmental algorithm. Following the
development process these configurations are assigned a fit-
ness. The GA is a derivative of the standard generational
GA with elitism, gaussian mutation, uniform crossover and
tournament selection. All parameters for the GA and devel-
opment algorithms are user selectable via the configuration
file (Table 1). The genome is subdivided into two chromo-
somes, with each chromosome subsequently decomposed
into genes. The genes contained on the first chromosome
exclusively encode the protein information for all 3 protein
classes (TF, IM, EX). Genes on the second chromosome en-
code the transport specific information (NLS/NES) for each
of the TF proteins (Figure 4). Figure 5 illustrates the struc-
ture of the genes contained on each chromosome.

Experiments and Results
This section describes a series of experiments and analyses
of the GRN dynamics of both the eukaryotic and prokary-
oticcell models. The experiments compares the abilities of
the GRNs within eukaryotic and prokaryoticcell models to

double[] importWeights
double[] exportWeights
double importBias
double exportBias
double imThreahold
double exThreahold

TransportDataGeneData

double[] cisSites
double threshold
double decayRate
double synthRate

Figure 5: UML diagram of genes encoded on the 2 chromo-
some within eukaryotic cells.

evolve and follow defined protein patterns during their de-
velopment. The objectives selected for the comparison are
divided into three categories in order of increasing difficulty,
namely static, periodic and aperiodic (Table 3). By contrast-
ing the fitness achieved for the three classes of objective,
allows a preliminary assessment of the contribution of trans-
port within eukaryotic cell types.

Objective Name Class
Lin Static
Sin, Rect, Perodic
Gauss, SinOff, GaussOff, AmpGauss Aperodic

Table 3: Objective Names and their corresponding classifi-
cation

The simplest static objectives determine the fitness at the
end of the developmental cycle, ignoring the concentration
profile of the protein during the developmental cycle. For
the static objective the fitness function is similar to that used
by Kumar (5).

Fitness =

M−1∑
j=0

(Cj − (1 + j)/M)2 (5)

where M is the total number of transcription factor proteins
under test and Cj is the concentration of protein j at the end
of development.

In contrast both periodic and aperiodic objectives assess
the fitness over the entire developmental time. Periodic ob-
jectives are designed to mimic their biological equivalent,
termed circadian rhythms, where two proteins oscillate in
lockstep. The aperiodic objectives, represent another bio-
logically plausible objective as they place a precise temporal
dependence on gene expression. In all test cases the number
of proteins tested against the fitness function can be spec-
ified, up to the maximum number of transcription factors.
Thus the fitness function for dynamic and aperiodic objec-
tives is defined as (6).

Fitness =

M−1∑
j=0

n∑
i=0

(Oji − Cji)2 (6)



where Cji is the concentration of protein j at time i, and
Oji is the objective concentration.

For each of the seven objectives tested the AED platform,
was typically configured as per Table 1.

Comparison of Eukaryotic and prokaryoticCell
Dynamics
Results for each of the seven objectives (Table 3) are listed
in Table 4. These results illustrate that both cell configura-
tions can solve static and dynamic tasks with a high degree
of accuracy. For the aperiodic objectives the eukaryotic type
cells configurations show a considerable improvement over
the prokaryoticcells. This improvement has its origins in the
ability of the eukaryotic cell to limit the target protein activ-
ity to the specific times during the development. In contrast,
the prokaryoticcells tends to have a continuous level of pro-
tein present at all times. Figure 7 illustrates the phenotype
(protein levels within the cytoplasm) associated with each of
the aperiodic objectives.

Fitness Results

Objective Nucleus Best Mean

Lin T 0.0 0.092
F 0.0 0.041

Sin T 0.046 199.7
F 0.058 250.95

SinOff T 1.05 1288.71
F 20.67 1415.8

RectSin T 0.802 142.2
F 1.31 131.13

Gauss T 0.60 601.6
F 4.765 785.39

GaussOff T 0.855 590.25
F 9.529 722.57

GaussAmp T 0.581 391.78
F 3.83 432.05

Table 4: Results for Objectives, the presence of a nucleus
indicating a eukaryotic type cell is shown by the Boolean
[T]rue.

Results Analysis: Gene Activity
The section illustrates how the process of transport within
the eukaryotic cell is instrumental in generating the protein
profiles associated with the aperiodic genome solutions. The
level of gene activity for each of the individuals developed
in Figure 7 is plotted in Figure 8. Because the gene ID cor-
responds to the proteins ID any variation in gene activity
results in a corresponding change in its protein level.

Gene activity for the prokaryoticcell configuration (Fig-
ure 8 b, d, f) shows continuous activity over the entire de-
velopment time, which is penalised by the aperiodic objec-
tives. The close coupling between the genes and proteins in
the prokaryoticcell makes it difficult to generate the isolated
the gene activity required for the aperiodic objectives. This

coupling arises as a consequence of the genome and proteins
being contained in the same cell compartment.

In contrast the eukaryotic cell achieves very specific re-
gions of gene activity for genes 0 and 1 with relative ease
(Figure 8 a, c, e). The regions of activity for genes 0 and 1
are very localised to the required times for peak protein ac-
tivity within the cytoplasm. Inspecting the gene activity for
the IM genes, (IDs {3, 4, 5}) and EX genes (IDs {6, 7, 8})
shows very broad and intense levels of activity, indicating
that the process of transport is very heavily involved in the
generation of the target protein profile.

The dynamics of the Gauss profile in Figure 8 e deserve
special mention, as there is little or no activity on Gene 0
around the peak presence of protein 0 in the cytoplasm. Fig-
ure 6 illustrates that the protein profile is generated as a re-
sult of exporting the stored protein 0 from the nucleus at the
appropriate time, Figure 6.
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Figure 6: Protein 0 Dynamics for GaussOff Objective, il-
lustrates the accumulation of Protein 0 in the nucleus prior
to time step 20, while there is no gene activity around peak
evaluation time, the cytoplasm protein profile for protein 0
is generated by exporting proteins from nucleus during this
time.

Results Analysis : Transport as a source of
Heterochrony
This section investigates how mutations to the transport
chromosome affect the quality of the aperiodic solutions.
Selecting the best eukaryotic individuals from the gaussOff
and ampGauss objectives illustrated in Figures 7 c, e the
activity of the transport specific genes (ID 3-8) is reduced
(’knocked out’), according (7) -

GeneActivity = KO ∗ SR ∗ sigmoid(activity)
where KO ε A = {0.9, 0.8, 0.5, 0.1} (7)

Figure 9 illustrates the full spectrum of heterochronic mu-
tations are possible. For the ampGauss objective the level



of protein 0 (Figure 9c), increases its level and duration in
the cytoplasm in response knock out. The level of protein
1 remains relatively unaffected but its onset is delayed in
response to knock out (Figure 9d) .

For the GaussOff objective (Figure 9a) the level of protein
0 is reduced in response to increasing knock out while the
onset of protein 1 occurs earlier in the development (Figure
9b).

In addition to reducing the activity level the transport
specific genes, the NLS/NES interaction levels could also
have targeted to give similar results. From an evolutionary
perspective, mutations to the transport chromosome have a
causal relationship to the generated phenotype allowing the
conclusion that the addition of the transport process, which
is in effect a second level of regulation tends to provide a
smoothing of the phenotype landscape.
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Figure 9: Heterochronic Mutations to the best eukary-
otic cell individuals from the GaussOff and AmpGauss ob-
jectives, realised by reducing the activity of Importin and
Exportin genes.

Discussion and Conclusions
The regulated entry of transcription factors to the nucleus of
eukaryotic type cells has been shown to have a major influ-
ence on the direction of biological development. This paper
has reported a biologically inspired eukaryotic cell model
that captures the concept of regulated protein transport to
and from the cell nucleus. Tests on the evolvability of the
GRN indicate that the addition of this level of complexity
does not prevent the cell successfully generating GRN dy-
namics. Indeed, it serves to improve the GRNs ability to

evolve aperiodic objectives. Analysis of the gene activity
within the eukaryotic cell shows that it relies heavily on the
transport of TF to and from the nucleus to control gene ac-
tivity. In particular it is observed that for aperiodic tasks TF
protein is only present in the cytoplasm at the required de-
velopment time intervals. In contrast, while the prokaryotic-
cell model fared well for static and periodic tasks, its per-
formance suffered significantly for aperiodic objectives. An
examination of the gene activity within the prokaryoticcell
model has shown continuous levels of gene activity during
development time. In contrast, the eukaryotic cell isolates
its gene activity to very specific regions of the development
time. The high levels of activity for the IM/EX genes in-
dicates their importance in generating the protein dynam-
ics. The eukaryotic cell model demonstrates the potential
for heterchronic mutations to arise by scaling the activity of
transport specific genes. Moreover a high degree of corre-
lation between the level of disruption to these genes and the
resulting change in protein profile has been observed.
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(b) Gauss Objective- prokaryotic cell
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(c) GaussOff Objective - eukaryotic cell
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(d) GaussOff Objective - prokaryotic cell
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(e) AmpGauss Objective - eukaryotic cell
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Figure 7: Protein profiles generated by the best Individuals as reported in 4 - Aperiodic objectives only, contrasted against the
Objective. The AED configuration of Table 1 configures proteins IDs (0,1) to be used in the fitness calculation.
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(b) Gauss objective, prokaryoticCell Configuration
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(c) ampGauss objective, eukaryotic Cell Configuration
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(d) ampGauss objective, prokaryoticCell Configuration
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(e) GaussOff objective, eukaryotic Cell Configuration
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(f) GaussOff objective, prokaryoticCell Configuration

Figure 8: Gene Activity for best evolved individuals for aperiodic objectives. The top section of each plot maps the gene activity
to a colour intensity, while the bottom section shows the corresponding protein profile in the cytoplasm. For subplots (a,c,e) the
configuration listed in Table 1 configures the import proteins IDs range from 3-5, and export proteins IDs range from 6-8


