
The Effect of the Environment in the Synthesis of Robotic Controllers:
A Case Study in Multi-Robot Obstacle Avoidance using

Distributed Particle Swarm Optimization
Ezequiel Di Mario, Iñaki Navarro and Alcherio Martinoli

Distributed Intelligent Systems and Algorithms Laboratory,
School of Architecture, Civil and Environmental Engineering,

École Polytechnique Fédérale de Lausanne
{ezequiel.dimario, inaki.navarro, alcherio.martinoli}@epfl.ch

Abstract

The ability to move in complex environments is a fundamen-
tal requirement for robots to be a part of our daily lives. While
in simple environments it is usually straightforward for hu-
man designers to foresee the different conditions a robot will
be exposed to, for more complex environments the human
design of high-performing controllers becomes a challenging
task, especially when the on-board resources of the robots are
limited. In this article, we use a distributed implementation
of Particle Swarm Optimization to design robotic controllers
that are able to navigate around obstacles of different shape
and size. We analyze how the behavior and performance of
the controllers differ based on the environment where learn-
ing takes place, showing that different arenas lead to different
avoidance behaviors. We also test the best controllers in envi-
ronments not encountered during learning, both in simulation
and with real robots, and show that no single learning en-
vironment is able to generate a behavior general and robust
enough to succeed in all testing environments.

Introduction
In simple environments, it is usually straightforward for hu-
man designers to anticipate the different conditions a robot
will be exposed to. Thus, robotic controllers can be designed
manually by simplifying the number of parameters or inputs
used. However, for more complex environments, the human
design of high-performing controllers becomes a challeng-
ing task. This is especially true if the on-board resources of
the robot are limited, as humans may not be aware of how to
exploit limited sensing capabilities.

Machine-learning techniques are an alternative to human
design that can automatically synthesize robotic controllers
in large search spaces, coping with discontinuities and non-
linearities, and find innovative solutions not foreseen by
human designers. In particular, evaluative, on-board tech-
niques can develop specific behaviors adapted to the envi-
ronment where the robots are deployed.

The purpose of this paper is twofold. First, to verify
whether different behaviors arise as a function of the learn-
ing environment in the adaptation of multi-robot obstacle
avoidance. Secondly, to test how the learned behaviors per-
form in environments not encountered during learning, that

is, to evaluate how general are the solutions found in the
learning process. The adaptation technique used is Particle
Swarm Optimization (PSO) (Kennedy and Eberhart, 1995),
which allows a distributed implementation in each robot,
speeding up the adaptation process and adding robustness
to failure of individual robots.

The remainder of this article is organized as follows. Sec-
tion Background introduces some related work on PSO, and
on the influence of the environment in robotic adaptation.
In the Hypotheses and Methods section we propose two hy-
potheses that motivate our research and describe the experi-
mental methodology used to test them. Section Results and
Discussion presents the experimental results obtained and
discusses the validity of the proposed hypotheses. Finally,
we conclude the paper with a summary of our findings and
an outlook for our future work.

Background
The background for this article is divided into two subsec-
tions, one briefly introducing PSO and related work on dis-
tributed implementations and robustness in the presence of
noise, and the second one dealing with environmental com-
plexity and its role in the adaptation of robotic controllers.

Particle Swarm Optimization
PSO is a relatively new metaheuristic originally introduced
by Kennedy and Eberhart (1995), which was inspired by
the movement of flocks of birds and schools of fish. Be-
cause of its simplicity and versatility, PSO has been used in
a wide range of applications such as antenna design, com-
munication networks, finance, power systems, and schedul-
ing. Within the robotics domain, popular topics are robotic
search, path planning, and odor source localization (Poli,
2008).

PSO is well suited for distributed/decentralized imple-
mentation due to its distinct individual and social compo-
nents and its use of the neighborhood concept. Most of
the work on distributed implementation has been focused
on benchmark functions running on computational clusters
(Akat and Gazi, 2008; Rada-Vilela et al., 2011). Implemen-

tations with mobile robots are mostly applied to odor source
localization (Turduev and Atas, 2010; Marques et al., 2006),
and robotic search (Hereford and Siebold, 2007), where the
particles’ position is usually directly matched to the robots’
position in the arena.

Most of the research on optimization in noisy environ-
ments has focused on evolutionary algorithms (Jin and
Branke, 2005). The performance of PSO under noise has
not been studied so extensively. Parsopoulos and Vrahatis
(2001) showed that standard PSO was able to cope with
noisy and continuously changing environments, and even
suggested that noise may help to avoid local minima. Pan
et al. (2006) proposed a hybrid PSO-Optimal Computing
Budget Allocation (OCBA) technique for function optimiza-
tion in noisy environments. Pugh and Martinoli (2009)
showed that PSO could outperform Genetic Algorithms on
benchmark functions and for certain scenarios of limited-
time learning in the presence of noise.

In our previous work (Di Mario and Martinoli, 2012), we
analyzed in simulation how different algorithmic parameters
in a distributed implementation of PSO affect the total evalu-
ation time and the resulting fitness. We proposed guidelines
aiming at reducing the total evaluation time so that it is fea-
sible to implement the adaptation process within the limits
of the robots’ energy autonomy.

Role of the Environment
Regarding complexity, Al-Kazemi and Habib (2006) ana-
lyzed the internal behavior of PSO when the dimension of
the problem is increased. They used different metrics to
conclude that the PSO particles behave in a similar way in-
dependently of the complexity of the problem. Auerbach
and Bongard (2012) studied the relationship between envi-
ronmental and morphological complexity in evolved robots,
showing that many complex environments lead to the evo-
lution of more complex body forms than those of robots
evolved in simple environments.

Nolfi (2005) proposed that the behavior of a robot (and of
any other agent) depends on the interaction between its con-
troller, its body, and the external environment (that can also
consist of other robots). These interactions are non-linear
and affect the behaviors as well as the learning process.

Nolfi and Parisi (1996) evolved neural network controllers
for robotic exploration, switching between two different en-
vironments during the evolution process. They evolved two
different neural networks: with and without the capability to
learn how to behave in the environment where the robot is
placed. Different behaviors resulted from evolution depend-
ing on whether learning was allowed and on the environment
where the robots were tested.

Islam and Murase (2005) evolved a robotic controller for
obstacle avoidance and used tools from chaos theory (return
maps and Lyapunov exponents) to measure the complexity
of the resulting behaviors in the learning environment and

other testing environments.
Nelson et al. (2003) evolved robotic controllers while in-

creasing the complexity of the environments during evo-
lution. They compared the resulting fitness and evolution
process with evolution performed only in the most complex
world.

Berlanga et al. (2002) studied a coevolutive method for
robot navigation where the initial positions of the robots
used for evolving the controllers are also evolved. They
evolved solutions for several environments (in most cases
of similar complexity), and tested their fitness in the arena
where each controller was evolved as well as in the remain-
ing arenas. They did not find significant performance differ-
ences between the controllers, probably due to the similar
complexity of the arenas used for learning.

Hypotheses and Methods

This article discusses how the environment affects the adap-
tation of controllers for multi-robot obstacle avoidance us-
ing a distributed implementation of PSO. Robots navigate
autonomously in the presence of other robots in square are-
nas with obstacles of different size and shape. We look at the
different environments where learning takes place, analyze
the resulting behaviors, and test how the controllers perform
in the environments where they did not previously learn.

Hypotheses

The experiments conducted in this paper are motivated by
the following hypotheses regarding the influence of the en-
vironment in the adaptation of robotic controllers:

Hypothesis 1 Different environments lead to different be-
haviors of the adapted controllers. This might be spe-
cially significant for considerably different environments
(e.g., empty arena vs. very narrow corridor).

Hypothesis 2 Some learning environments may generate
more robust controllers that perform better in situations not
encountered during learning. This leads to the problem of
choosing the correct environment (or set of environments)
for the adaptation process in order to make the resulting
controller robust to variations in the environment.

Fitness Function

We use a metric of performance based on the work of Flore-
ano and Mondada (1996), which is present in several stud-
ies on learning obstacle avoidance (e.g., Lund and Miglino
(1996), Pugh and Martinoli (2009), Palacios-Leyva et al.
(2013), and our own previous work Di Mario and Martinoli
(2012)). The fitness function consists of three factors, all
normalized to the interval [0, 1]:

f = fv · (1−
√

ft) · (1− fi) (1)

fv =
1

Neval

Neval

∑
k=1

max{vl,k + vr,k,0}
2

(2)

ft =
1

Neval

Neval

∑
k=1

|vl,k − vr,k|
2

(3)

fi =
1

Neval

Neval

∑
k=1

imax,k (4)

where {vl,k,vr,k} are the normalized speeds of the left and
right wheels at time step k, imax,k is the normalized proximity
sensor activation value of the most active sensor at time step
k, and Neval is the number of time steps in the evaluation
period. This function rewards robots that move forwards
quickly (fv), turn as little as possible (ft), and stay away
from obstacles (fi).

Experimental Platform

Our experimental platform is the Khepera III, a differential
wheeled robot with a diameter of 12 cm. It is equipped
with nine infra-red sensors for short range obstacle detec-
tion, which in our case are the only external inputs for the
controllers, and two wheel encoders, which are used to mea-
sure the wheel speeds for the fitness calculations.

Since the response of the Khepera III proximity sensors
is not a linear function of the distance to the obstacles, the
proximity values are inverted and normalized using mea-
surements of the real robot sensor’s response as a function of
distance. This inversion and normalization results in a prox-
imity value of 1 when touching an obstacle, and a value of
0 when the distance to the obstacle is equal to or larger than
10 cm.

Simulations are performed in Webots (Michel, 2004), a
realistic physics-based submicroscopic simulator that mod-
els dynamical effects such as friction and inertia. In this con-
text, by submicroscopic we mean that it provides a higher
level of detail than usual microscopic models, faithfully re-
producing intra-robot modules (e.g., individual sensors and
actuators).

Controller Architecture

The controller architecture used is a recurrent artificial neu-
ral network of two units with sigmoidal activation functions
s(·). The outputs of the units determine the wheel speeds
{vl,t ,vr,t}, as shown in Equation 5. Each neuron has 12 in-
put connections: the 9 normalized infrared sensors values
{i1, · · · , i9}, a connection to a constant bias speed, a recur-
rent connection from its own output, and a lateral connec-
tion from the other neuron’s output, resulting in 24 weight
parameters in total {w0, · · · ,w23}.

vl,t = s(w0 +
9

∑
k=1

ik ·wk +w10 · vl,t−1 +w11 · vr,t−1)

vr,t = s(w12 +
9

∑
k=1

ik ·wk+12 +w22 · vl,t−1 +w23 · vr,t−1)

(5)

Environments
We conduct experiments in four different environments,
shown in Figure 1. The first one is an empty square arena
of 2m x 2m, where the walls and the other robots are the
only obstacles. The second and third environments are based
on the same bounded arena, where cylindrical obstacles of
two sizes are added in different numbers. The second en-
vironment has 20 medium-sized obstacles (diameter 10cm),
while the third has 40 small-sized obstacles (diameter 2cm).
The fourth environment is the same size as the empty arena
with an inner wall of 1.5m creating a continuous corridor of
25cm width.

In simulation, the cylindrical obstacles are randomly
repositioned before each fitness evaluation, meaning that the
second and third environments are dynamic. In real-robot
experiments, the obstacles are kept in fixed positions, the
variation between runs is provided by the randomized initial
pose of the robots. The third environment was not tested
with real robots given the difficulty of keeping such thin
cylinders vertical during collisions, but it should be noted
that this kind of obstacles can occur in real environments,
for example in the case of a chair or table with very thin
legs.

All experiments are conducted with 4 robots. The method
for initializing the robots’ pose for each fitness evaluation
is different between simulation and experiments with real
robots. In simulation, the initial positions are set randomly
with a uniform probability distribution, verifying that they
do not overlap with obstacles or other robots. For the exper-
iments with real robots, in the empty arena a random speed
is applied to each wheel for three seconds to randomize the
robots’ pose. In the two arenas with obstacles and in the
corridor one, the robots are manually repositioned to avoid
disturbing the location of the obstacles, and then the robots
turn in place with a random speed for two seconds to ran-
domize their orientation.

Adaptation Algorithm
The optimization problem to be solved by the adaptation
algorithm is to choose the set of weights {w0, · · · ,w23} of
the artificial neural network controller such that the fitness
function f as defined in Equation 1 is maximized. The cho-
sen algorithm is the distributed, noise-resistant variation of
PSO introduced by Pugh and Martinoli (2009), which oper-
ates by re-evaluating personal best positions and aggregat-
ing them with the previous evaluations (in our case a regular

(a) (b) (c)

(d) (e) (f)

Figure 1: Different environments used in the adaptation and evaluation of the controllers. (a) Empty arena in simulation. (b)
Medium-sized obstacles arena in simulation. (c) Small-sized obstacles arena in simulation. (d) Corridor arena in simulation.
(e) Real medium-sized obstacles arena. (f) Real corridor arena.

1: Intialize particles
2: for Ni iterations do
3: for

⌈
Np/Nrob

⌉
particles do

4: Update particle position
5: Evaluate particle
6: Re-evaluate personal best
7: Aggregate with previous best
8: Share personal best
9: end for

10: end for

Figure 2: Noise-resistant PSO algorithm

average performed at each iteration of the algorithm). The
pseudocode for the algorithm is shown in Figure 2.

The position of each particle is a 24-dimensional real-
valued vector that represents the weights of the artificial neu-
ral network. The velocity of particle i in dimension j (shown
in Equation 6) depends on three components: the velocity at
the previous step weighted by an inertia coefficient wI , a ran-
domized attraction to its personal best x∗i, j weighted by wP,
and a randomized attraction to the neighborhood’s best x∗i′, j
weighted by wN . rand() is a random number drawn from a
uniform distribution between 0 and 1. The position of each

particle is updated according to Equation 7.

vi, j := wI · vi, j +wP · rand() · (x∗i, j − xi, j)

+wN · rand() · (x∗i′, j − xi, j) (6)
xi, j := xi, j + vi, j (7)

The algorithm is implemented in a distributed fashion,
which reduces the total evaluation time required by a fac-
tor equal to the number of robots. Even if the learning in
this paper is performed only in simulation, the algorithm
can easily be executed completely on-board with very low
requirements in terms of computation and communication.

Each robot evaluates in parallel a possible candidate so-
lution and shares the solution with its neighbors in order to
create the next pool of candidate solutions. The neighbor-
hood presents a ring topology with one neighbor on each
side. Particles’ positions and velocities are initialized ran-
domly with a uniform distribution in the [−20,20] interval,
and their maximum velocity is also limited to that interval.

The PSO algorithmic parameters are set following the
guidelines for limited-time adaptation we presented in our
previous work (Di Mario and Martinoli, 2012) and are
shown in Table 1.

Results and Discussion
The results of this article are presented as follows. First,
we perform the learning in simulation in the four environ-
ments previously mentioned. Then, the best controller from
each learning environment is tested in every environment in
simulation. Finally, the four controllers from each learning

Table 1: PSO parameter values
Parameter Value
Number of robots Nrob 4
Population size Np 24
Iterations Ni 200
Evaluation span te 40 s
Re-evaluations Nre 1
Personal weight wP 2.0
Neighborhood weight wN 2.0
Dimension D 24
Inertia wI 0.8
Vmax 20

environment are also tested with real robots in three of the
four environments.

Learning in Simulation with PSO
Since PSO is a stochastic optimization method and the per-
formance measurements are noisy, each PSO optimization
run may converge to a different solution. Therefore, for sta-
tistical significance, we performed in simulation 100 PSO
adaptation runs for each learning environment. Figure 3
shows the progress of the PSO learning at each iteration for
the four environments. Vertical bars show the standard devi-
ation among the 100 PSO runs.

The highest performance corresponds to the empty arena
since it is the easiest environment with just the bounding
walls and the other robots acting as obstacles. The fitness in
both environments with cylindrical obstacles is very similar
for the whole learning process. The slowest learning rate oc-
curs for the narrow corridor, indicating that this environment
is more challenging for the learning algorithm. By the end
of the adaptation process the performance is slightly lower
than in the arenas with cylindrical obstacles.

It should be noted that the learning environment has a sig-
nificant impact in the variation between runs, as the stan-
dard deviation is lowest in the empty arena and it increases
markedly for the more complex environments.

Trajectories can be a useful tool to identify the behavior of
the robots, as we have seen in our previous work (Di Mario
et al., 2011). Figure 4 shows the resulting trajectories of
the best learned behaviors in simulation for each environ-
ment where adaptation took place. It can be seen how in
the empty arena and in the medium-sized obstacles arena
the robot trajectories are straight until they find an obstacle
(wall, cylindrical obstacle, or other robot), performing then
a sharp turn and continuing straight afterwards.

The trajectory learned in the arena with small-sized obsta-
cles is curvilinear when there are no obstacles within range.
When the robot detects an obstacle, it makes a sharp turn to
later continue its curvilinear movement. The small obstacles
are thinner than the distance between two contiguous infra-
red sensors, so sometimes the robots are not able to detect

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

F
itn

es
s

env 1
env 2
env 3
env 4

Figure 3: Best fitness found at each iteration for 100 PSO
optimization runs. Bars represent the standard deviation
across runs. Fitness in empty arena in blue (env 1). Fit-
ness in arena with 20 medium cylindrical obstacles in red
(env 2). Fitness in arena with 40 small cylindrical obstacles
in black (env 3). Fitness in corridor arena in green (env 4).

them. Curvilinear movements may help in avoiding getting
stuck in front of the small obstacles, and thus the behavior
learned with PSO does not involve moving in straight lines
as in the other cases.

In the corridor arena, the robot moves along the corridor,
turning 90 degrees to head into the following sub-corridor,
and thus exploring the whole arena.

As we conjectured in Hypothesis 1, the different environ-
ments cause the robots to learn different behaviors. In the
next section we will show how the learned controllers be-
have in the other environments that were not encountered
during learning.

Testing in Simulation
In the previous section, we obtained four different con-
trollers corresponding to each environment where learning
took place. In this section, we test the controllers in all envi-
ronments to see how they perform in situations not encoun-
tered while learning, i.e., to see how general and robust are
the obtained behaviors.

Figure 5a shows the boxplot of the fitness of 20 evaluation
runs performed in simulation for each controller and testing
environment. Since all experiments are conducted with 4
robots, this results in 80 fitness measurements per controller
and environment. For the sake of brevity, we use T to de-
note testing environment, L for learning environment, and
we number the environments from one to four in the fol-
lowing order: empty arena, arena with 20 medium cylindri-
cal obstacles, arena with 40 small cylindrical obstacles and

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X
Y

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(d)

Figure 4: Trajectories of one of the four robots during a sin-
gle experiment in simulation for the controllers learned in
the four environments under study. (a) Empty arena. (b)
Medium sized obstacles arena. (c) Small sized obstacles
arena. (d) Corridor arena.

corridor arena. Thus, T 1L4 for instance should be read as:
test performed in the empty environment with the controller
learned in the corridor environment.

As expected, for each environment, the controller learned
in the testing environment has the highest performance.
However, for the simplest environment (T 1), there is no sig-
nificant difference between the performance of controllers
L1, L2, and L4. Regarding Hypothesis 2 concerning the
generality of the learned behaviors, controller L4 seems to
be the most robust, as it significantly outperforms all other
controllers in the corridor and still performs almost as good
as L1 in T 1 and reasonable well in T 2, although it performs
poorly in T 3.

Further insight on the performances can be obtained by
analyzing the trajectories described by the robots in the dif-
ferent environments. Out of the 16 evaluation conditions,
we show the ones we consider most interesting in Figure 6.

The behavior of controller L1 is similar to that of con-
troller L2 in all testing environments (for example, com-
pare the trajectories from Figure 6a and Figure 4b), since
they employ similar avoidance strategies: moving in straight
lines and making sharp turns near obstacles. This result
becomes evident when considering that the medium-sized
cylindrical obstacles are very similar in shape and size to

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y
(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(d)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(e)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X
Y

(f)

Figure 6: Trajectories of one of the four robots during a sin-
gle experiment in simulation for different learned controllers
(LX) and testing environments (TX). (a) T2L1. (b) T1L3.
(c) T2L3. (d) T4L3. (e) T1L4. (f) T1L4*.

the Khepera III robot. However, maybe due to the higher
obstacle density of Environment 2, controller L2 is more ro-
bust in the sense that it performs better in environments 3
and 4.

The curvilinear behavior of controller L3, which enables it
to avoid very thin obstacles, is also observed with the larger
obstacles of Environment 2 (Figure 6c), and results in fully
circular trajectories in the empty environment (Figure 6b).
However, this controller as well as controllers L1 and L2
were not able to move along the corridor, doing instead short
straight movements alternated with sharp turns (Figure 6d).

Controller L4 was the only one able to move smoothly
along the corridor in Environment 4, performing well in all
environments except T 3. The behavior learned can be ob-

T1L1 T1L2 T1L3 T1L4 T2L1 T2L2 T2L3 T2L4 T3L1 T3L2 T3L3 T3L4 T4L1 T4L2 T4L3 T4L4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

(a)
T1L1 T1L2 T1L3 T1L4 T2L1 T2L2 T2L3 T2L4 T4L1 T4L2 T4L3 T4L4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

(b)

Figure 5: Boxplot showing the fitness of the four learned controllers (L1-L4). (a) Evaluated in the four testing environments
(T1-T4) in simulation. (b) Evaluated in three testing environments (T1, T2 and T4) with real robots. The box represents the
upper and lower quartiles, the line across the middle marks the median, and the crosses show outliers.

served when tested in the empty environment (T 1L4) in Fig-
ure 6e. The robot moved straight performing a 90 degree
sharp turn when finding an obstacle. This exact 90 degree
turn was learned in the corridor environment to perform the
transition from one sub-corridor to another.

As mentioned previously, we run 100 PSO runs for each
environment, and controller L4 is the best-performing one
from the 100 runs in the corridor environment, but we no-
ticed that not all the resulting controllers have the same be-
havior. A different controller resulting from the corridor
environment is shown for the empty arena (T 1L4∗) in Fig-
ure 6f. The robot learned a wall-following behavior, per-
forming a curvilinear movement in the absence of obstacles.

However, when testing this controller in the corridor
(T 4L4∗) the trajectory looks exactly the same as the one
from T 4L4. Thus, it is interesting to notice that this behavior
could only be observed when testing in other environments
than the learning one, which shows the importance of using
varied environments to observe the whole range of behaviors
of a given controller.

Testing with Real Robots

In order to validate the results obtained in simulation, we
tested the same controllers with real robots in environments
1, 2, and 4. We did 20 evaluation runs with 4 robots, leading
to 80 fitness measurements per case. The resulting fitness is
shown in Figure 5b.

As in simulation, the performance of controllers L1 and
L2 was similar. Again, controller L4 seemed to be the most
robust, outperforming all other controllers in the corridor
and performing similarly to the best controllers in the other

two environments.
Controller L3 suffered a noticeable performance drop

when going from simulation to reality due to an unmod-
eled effect: the Khepera III motors’ were not able to work
smoothly at low speeds, and thus the inner wheel in the cir-
cular movements in open spaces was practically stopped, re-
sulting in circles with a very small radius.

Finally, controller L4 was also able to move along the
corridor as in simulation, although the behavior was not as
smooth and turns midway through the corridor were more
frequent than in simulation (probably due to inaccuracies in
the sensor model and the increased noise in real environ-
ments). Thus, the real-world performance was much lower.

Conclusion
In this paper, we studied the effect of the environment on the
multi-robot learning of an obstacle avoidance behavior. We
showed that the same controller architecture, fitness func-
tion, and learning algorithm implemented in different en-
vironments lead to different avoidance behaviors, such as
moving in straight lines with sharp turns, curvilinear move-
ments, and wall-following around obstacles. We then tested
the learned controllers in environments not encountered dur-
ing learning, both in simulation and with real robots, which
allowed us to see the full range of behaviors of each con-
troller. Finally, we saw that no single learning environment
was able to generate a behavior general enough to succeed
in all testing environments.

As future work, we intend to study the interplay between
architectural complexity and capability of generalization. In
other words, we would like to know how to design a learn-

ing environment, or maybe a set of environments if required,
that lead to general and robust avoidance behaviors while
maintaining the architecture complexity low. It would also
be interesting to study the interplay between a certain fit-
ness function and the required architecture complexity. This
work is part of our ongoing effort to develop distributed,
noise-resistant adaptation techniques that can optimize high-
performing robotic controllers quickly and robustly.

Acknowledgement
This research was supported by the Swiss National Science
Foundation through the National Center of Competence in
Research Robotics.

References
Akat, S. B. and Gazi, V. (2008). Decentralized asynchronous par-

ticle swarm optimization. In IEEE Swarm Intelligence Sym-
posium.

Al-Kazemi, B. and Habib, S. (2006). Complexity analysis of
problem-dimension using PSO. In WSEAS International
Conference on Evolutionary Computing, pages 45–52.

Auerbach, J. E. and Bongard, J. C. (2012). On the relation-
ship between environmental and morphological complexity
in evolved robots. In Genetic and Evolutionary Computation
Conference, pages 521–528. ACM Press.

Berlanga, A., Sanchis, A., Isasi, P., and Molina, J. M. (2002). Neu-
ral network controller against environment: A coevolutive ap-
proach to generalize robot navigation behavior. Journal of
Intelligent and Robotics Systems, 33(2):139–166.

Di Mario, E. and Martinoli, A. (2012). Distributed Parti-
cle Swarm Optimization for Limited Time Adaptation
in Autonomous Robots. In International Symposium
on Distributed Autonomous Robotic Systems 2012,
Springer Tracts in Advanced Robotics 2014 (to appear).
Available at http://infoscience.epfl.ch/record/182403.

Di Mario, E., Mermoud, G., Mastrangeli, M., and Martinoli, A.
(2011). A trajectory-based calibration method for stochastic
motion models. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4341–4347.

Floreano, D. and Mondada, F. (1996). Evolution of homing navi-
gation in a real mobile robot. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 26(3):396–407.

Hereford, J. and Siebold, M. (2007). Using the particle swarm op-
timization algorithm for robotic search applications. In IEEE
Swarm Intelligence Symposium, pages 53–59.

Islam, M. M. and Murase, K. (2005). Chaotic dynamics of a
behavior-based miniature mobile robot: effects of environ-
ment and control structure. Neural Networks, 18(2):123 –
144.

Jin, Y. and Branke, J. (2005). Evolutionary Optimization in Uncer-
tain Environments - A Survey. IEEE Transactions on Evolu-
tionary Computation, 9(3):303–317.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization.
In IEEE International Conference on Neural Networks, pages
1942 – 1948 vol.4.

Lund, H. and Miglino, O. (1996). From simulated to real robots.
In IEEE International Conference on Evolutionary Computa-
tion, pages 362–365.

Marques, L., Nunes, U., and Almeida, A. T. (2006). Particle
swarm-based olfactory guided search. Autonomous Robots,
20(3):277–287.

Michel, O. (2004). Webots: Professional Mobile Robot Simula-
tion. Advanced Robotic Systems, 1(1):39–42.

Nelson, A., Grant, E., Barlow, G., and White, M. (2003). Evolu-
tion of complex autonomous robot behaviors using compet-
itive fitness. In International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, pages 145–150.

Nolfi, S. (2005). Behaviour as a complex adaptive system: On the
role of self-organization in the development of individual and
collective behaviour. ComPlexUs, 2(3-4):195–203.

Nolfi, S. and Parisi, D. (1996). Learning to adapt to changing en-
vironments in evolving neural networks. Adaptive Behavior,
5:75–98.

Palacios-Leyva, R. E., Cruz-Alvarez, R., Montes-Gonzalez, F.,
and Rascon-Perez, L. (2013). Combination of reinforcement
learning with evolution for automatically obtaining robot
neural controllers. In IEEE International Conference on Evo-
lutionary Computation, pages 119–126.

Pan, H., Wang, L., and Liu, B. (2006). Particle swarm optimiza-
tion for function optimization in noisy environment. Applied
Mathematics and Computation, 181(2):908–919.

Parsopoulos, K. E. and Vrahatis, M. N. (2001). Particle Swarm Op-
timizer in Noisy and Continuously Changing Environments.
In Hamza, M. H., editor, Artificial Intelligence and Soft Com-
puting, pages 289–294. IASTED/ACTA Press.

Poli, R. (2008). Analysis of the publications on the applications of
particle swarm optimisation. Journal of Artificial Evolution
and Applications, 2008(2):1–10.

Pugh, J. and Martinoli, A. (2009). Distributed scalable multi-robot
learning using particle swarm optimization. Swarm Intelli-
gence, 3(3):203–222.

Rada-Vilela, J., Zhang, M., and Seah, W. (2011). Random Asyn-
chronous PSO. The 5th International Conference on Automa-
tion, Robotics and Applications, pages 220–225.

Turduev, M. and Atas, Y. (2010). Cooperative Chemical
Concentration Map Building Using Decentralized Asyn-
chronous Particle Swarm Optimization Based Search by Mo-
bile Robots. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 4175–4180.

