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Abstract

Recent approaches in evolutionary robotics (ER) propose to generate behavioral diversity
in order to evolve desired behaviors more easily. These approaches require the definition of a
behavioral distance which often includes task-specific features and hence a priori knowledge.
Alternative methods, that do not explicitly force selective pressure towards diversity (SPTD)
but still generate it, are known from the field of artificial life such as artificial ecologies (AE).
In this study, we investigate how SPTD is generated without task-specific behavioral features
or other forms of a priori knowledge and detect how methods of generating SPTD can be trans-
ferred from the domain of AE to ER. A promising finding is that in both types of systems,
in systems from ER that generate behavioral diversity and also in the investigated speciation
model, selective pressure is generated towards unpopulated regions of search space. We con-
clude by hypothesizing how knowledge about self-organizing SPTD in AE could be transferred
to the domain of ER.

1 Introduction

Methods of evolutionary computation have been successful as optimization technique for many
years. Also the optimization of behaviors, which can justifiably be called ‘generation of behaviors’,
in the field of ER (Nolfi and Floreano, 2000) has proven to be effective. However, the next step
in this research towards more complex behaviors and tasks seems to be particularly difficult. Such
a complex task could involve, for example, several successive sub-tasks whereas learned earlier
sub-tasks have no utility before later sub-tasks are learned as well. The relative simplicity of
investigated tasks in ER, especially when compared to natural systems, is, for example, discussed
by Nelson et al. (2009).

Evolving robot behaviors becomes even more challenging if the necessary a priori knowledge is
minimized which is necessary to achieve generally applicable approaches. Notably this concerns
the fitness function and how elaborated it is. Nelson et al. (Nelson et al., 2009) define several
fitness function classes such as the behavioral fitness functions which incorporate a lot of a priori
knowledge (fitness function ‘selects for behavioral features of a presupposed solution to a given
task’, i.e. how the task is accomplished) and the aggregate fitness functions which incorporate a
very low degree of a priori knowledge (fitness function measures what the robot has accomplished
and not how it was accomplished). Behavioral fitness functions are applied in ER because otherwise
behaviors of certain complexities cannot be evolved with a reasonable commitment of resources.

An option is to increase the diversity in the population, e.g. by fitness sharing, see (Sareni
and Krähenbühl, 1998). However, these methods include the measurement of a distance between
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Figure 1: Schematic representation of the fitness functions generated by novelty search (Lehman
and Stanley, 2011) and MOBD (Mouret and Doncieux, 2009); circles represent known behaviors,
selective pressure is towards bigger values of F .

genotypes which is computationally intractable for common encodings in ER, such as artificial
neural networks (ANN) (Mouret and Doncieux, 2012).Instead promising recent results suggest to
increase the behavioral diversity during the search or within the current population and measure the
distances between behaviors which can be done efficiently. Examples are novelty search (Lehman
and Stanley, 2011) and the approach by Mouret and Doncieux (Mouret and Doncieux, 2009, 2012).
Novelty search (Lehman and Stanley, 2011) operates without an actual objective function. Instead
selective pressure is generated towards behaviors that have not been seen before in the evolutionary
run. A desired behavior is that that maximizes the behavioral distance to all known behaviors.
For illustration and later use this is shown schematically in Fig. 1a. The circles represent behaviors
that were found during the evolutionary run (graded colors represent different generations) and
their position in search space. Behaviors that are close to known behaviors are undesirable which is
represented by low values of the fitness function F around circles. Consequently selective pressure
towards unpopulated regions in search space is generated which is represented accordingly by steep,
upward slopes around circles. Multi-objective behavior diversity (MOBD, Mouret and Doncieux,
2009) includes the behavioral distance only as a component in the multi-objective fitness function.
In contrast to novelty search it only accounts for the behaviors in the current population. This is
sketched in Fig. 1b.

For approaches of behavioral diversity a distance between behaviors needs to be defined, which
typically will be task-specific. Hence, this is a process similar to defining an appropriate fitness
function for a given task in standard ER. It is argued that even naive behavioral distance definitions
can improve the evolutionary process, such as definitions based on the final position of the robot
or of movable objects at the end of the evaluation (Mouret and Doncieux, 2009; Lehman and
Stanley, 2008). However, if we follow the analogy to fitness functions, it seems likely that for more
complex tasks the measure of behavioral distance will also need to be more complex. This factual
connection gets even more plausible if we reconsider the above mentioned comment by Nelson
et al. (2009) about behavioral fitness functions (which select for behavioral features). In the design

2



of the behavioral distance measure not only what is accomplished is relevant but also how it is
accomplished. In a simple exploration task this is not really apparent, if the behavioral distance
is defined on the robot’s final position (Mouret and Doncieux, 2009), but it addresses at least the
order of how the maze is explored. In a more complex task such as the locomotion of a biped
robot (Lehman and Stanley, 2011) it gets more apparent as the behavioral distance is defined by
the trajectory of the center of mass (how) instead of just the total offset (what). Hence we state
the hypothesis that also methods based on behavioral distances will run into similar problems as
seen in fitness function design such as having to define ‘task-specific hand-formulated functions
that contain various types of selection metrics’ (Nelson et al., 2009) and consequently having to
involve a high degree of a priori knowledge.

Based on our hypothesis we assume that neither genotypic distances nor behavioral distances are
able to generate sustainable diversity in ER. What could be candidate solutions? Natural evolution
represents a perfect standard for the generation of diversity. Particularly we are interested in
evolutionary radiation which is an increase in taxonomic diversity. A typical example of a radiation
is the Cambrian explosion. It generated a diversity that is comprehensible when looking at the
corresponding phylogenetic tree which gets literally bushy within a comparatively short period of
time. Each branching corresponds to an event of speciation. Hence, to understand diversity we
want to understand speciation and the underlying process that generates SPTD. Our objectives
are 1) to detect how SPTD is generated in a self-organizing system (e.g., speciation) and 2) how
to transfer this knowledge to ER.

Next we summarize the knowledge on how speciation operates. Coyne and Orr (2004) ask: ‘Why
are there species?’ and they comment: ‘we regard it as one of the most important unanswered
questions in evolutionary biology’. Accordingly they do not answer but only discuss the question.
They point to Maynard Smith and Szathmáry (1998) who consider three explanations. One,
species are discrete ‘stable states’ formed by a self-organizing system. However, this option lacks
a mechanism that would explain the origin of species. Two, species fill discrete ecological niches.
Third, reproductive isolation is an inevitable result of evolutionary divergence. The latter two
are dependent on reproductive isolation and are not mutually exclusive (Coyne and Orr, 2004).
A conclusive concept that connects both is that of ‘adaptive peaks’ (Dobzhansky, 1951). Species
are adaptive peaks that are separated by ‘adaptive valleys’ which are genotypes that are unfit for
survival. Whether these adaptive valleys are due to ecological or environmental effects is kept
open. Another aspect is whether asexual or sexual reproduction is considered. While in the case
of asexual reproduction ecological niches seem to be indispensable to create a reproductive barrier,
in the case of sexual reproduction the reproductive barrier might be generated without explicit
ecological niches especially because sexual selection could be effective. To summarize we note
that evolutionary radiation and speciation are yet difficult to understand as also pointed out by
Venditti et al. (2010): ‘Attempts to understand species-radiations [. . . ] should look to the size of
the catalogue of potential causes of speciation shared by a group of closely related organisms rather
than to how those causes combine.’ The conclusion concerning inspirations for new methods to
generate diversity in artificial evolution, especially ER, regrettably has to stay inconclusive for now
due to the limited knowledge about the natural system itself. However, it is the starting point of
the following investigations.

Instead of detecting methods to generate speciation, what are prerequisites for evolutionary
radiation, that is, for active speciation? A prerequisite could be the existence of a complex en-
vironment that favors the formation of adaptive peaks and that initiates specialization in the
organisms. Another prerequisite could be the existence of an ecology which creates complexity in
the interaction of different organisms and species. The suitability of providing a complex environ-
ment within applications of ER is limited, notably if a complex environment is not part of the
desired task. On the contrary, a considerable amount of research on the creation of AE in order
to evolve behaviors has been reported. For example, the minimal ecology, that of just two species,
is investigated in studies of coevolution (Floreano and Nolfi, 1997)and AE, possibly with many
species, are popular in the field of artificial life (Ray, 1991).The studies of coevolution have an
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emphasis on the actually evolved behaviors combined with considerations about their utility and
complexity. It turns out that ‘the co-evolutionary process tends to fail into dynamical attractors
in which the same solutions are adopted by both populations over and over’ (Nolfi and Floreano,
1998b). In AE studies the actual behaviors are of less interest, instead the evolutionary process as
a whole is usually investigated in more detail. In addition it is also unclear how these AE would
have to be designed to generate desired behaviors for a given task. Common to both is their high
sensitivity to parameters and the challenge of creating actively progressing evolutionary processes.
However, they are interesting examples of how SPTD is generated in a self-organizing process
without incorporating a priori knowledge about how a certain behavior is accomplished. Summing
up, the prerequisite to generate diversity is a minimum of complexity that provokes the emergence
of adaptive peaks. The trigger could be ecological or environmental features but also effects of
sexual selection. The goal of this study is 1) to detect and measure SPTD which is generated by
a self-organizing process in AE, and 2) to determine how methods from the domain of AE could
be transferred to ER. To the knowledge of the author, published studies on behavioral diversity
tend to focus either on self-organizing diversity without aiming for the solution of a given task
(e.g., Ray (1991)) or on explicitly imposed SPTD while searching for the solution of a particular
task (e.g., Lehman and Stanley (2011)). In the following we investigate a speciation model of
Woehrer et al. (2012) and an extension to it in order to investigate how SPTD is generated in this
self-organizing system. The results are then compared to approaches that explicitly impose SPTD.

2 A model of speciation

One distinguishes several types of speciation, such as allopatric speciation and sympatric specia-
tion. Previously it was thought that speciation happens mostly allopatrically, that is, by spatial
separation of populations which then develop reproductive isolation. More recent results (Coyne
and Orr, 2004) support that sympatric speciation, which is speciation within the same geographic
region, might be more common than expected. Here, sympatric speciation is of more interest be-
cause it is a self-organizing, evolutionary process while allopatric speciation occurs due to external
forces (arguably except for migration). In terms of the application of speciation to increase the
behavioral diversity in ER, sympatric speciation is preferred as it does not need a priori knowledge
while allopatric speciation would need an implementation of a cause.

Woehrer et al. (2012) report an artificial life model of sympatric speciation based on sexual
selection, in particular assortative mating which is a mating pattern where mating between indi-
viduals with similar genotypes or phenotypes is more likely. The model is inspired by the natural
system of finches on the Galápagos Islands. Although an island setting might let allopatric specia-
tion appear as a good and exclusive explanation this does not seem to be the case on the Galápagos
Islands (Woehrer et al., 2012). Woehrer et al. (2012) point to the specialty of the proposed system
that combines natural selection and sexual selection acting on the same trait which is directly
related to so-called ‘magic traits’ (Servedio et al., 2011). Here we reproduce their results, report
an extension of the model, and perform additional measurements in simulations.

The artificial system models a bird population of dynamic size. A bird is modeled by age, beak
size, energy level, and gender. To survive the birds have to forage (implemented as random search)
for seeds. These are modeled by energy, location, uniformly distributed size, and distributed in
discrete space of size 100 units ×100 units (see table 1 for used parameter settings). Selective
pressure is imposed by the limited resource of seeds. Initially of the dry season a number of seeds
is placed in the world which decreases consecutively over a period of 30 or 43 simulated days
(depending on which setting is used) as the birds forage from it. The birds’ search for seeds is
limited by their beak size s because they can only feed on seeds of size [s−1, s+1]. The search costs
energy on each day and fed seeds add energy to the bird’s energy. If a bird runs out of energy during
the dry season it dies. Those that survive may attempt to reproduce. Reproduction is based on
sexual selection and assortative mating (with random mating no speciation was observed (Woehrer
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parameter FAM EAM
max. age 4 years 4 years

max. energy 2.0 2.0
max. energy per seed 2.0 2.0

search energy cost 0.1 0.1
max. num. male mating 5 5
max. num. generations 1000 1000
initial number of birds 400 150
initial beak size mean 5.5 5.5

initial beak size variance 0.5 3.5
beak size interval [1, 10] [1, 10]
dry season length 43 days 30 days

initial number of seeds 5000 6300
feeding square size 10 10

world size 100 100
variance of offspring prop. 0.03 0.01

assortative range ∆ 0.5 [0.01, 10]
seed width W n.a. [0.01, 10]

Table 1: Parameter settings for fixed assortative mating (FAM) and for evolved assortative mating
(EAM); some parameters differ from (Woehrer et al., 2012).

et al., 2012)). Females with beak size sf select only mates with beak size sm within the female’s
beak size interval sm ∈ [sf −∆, sf + ∆] for assortative range fixed to ∆ = 0.5. The offspring has
a beak size averaged over its parents plus Gaussian noise and random gender. For all remaining
details please see (Woehrer et al., 2012) and table 1.

A typical run is shown in Fig. 2a which is a plot of all beak sizes that occur in the population
over 375 generations. The resemblance to a phylogenetic tree is obvious. Also the drift of species,
branching into two species, and the extinction of species can be noticed. Hence the model of
Woehrer et al. (2012) is a simple model of self-organized speciation and can be used as an easy-to-
handle analogy to the studies on behavioral diversity in ER. The interval of allowed beak sizes [1, 10]
is the equivalence to the behavior space and a bird’s beak size would be the 1-d equivalence to
the behavior defined by ANN. The extreme difference between high-dimensional ANN and the
simplistic 1-d beak size interval is not a limiting factor of this analogy because the speciation model
possesses the one qualitative feature that is relevant for this study, namely self-organized generation
of diversity. The assortative mating corresponds to allowing recombination only for ANN that share
a ‘magic trait’ which is defined by sexual selection and could be a behavioral feature. In addition,
this way the emergence of speciation relies crucially on a pre-defined parameter (assortative range
∆). In order to avoid such a pre-defined measure for the above mentioned reasons we can allow the
evolutionary algorithm to vary features of sexual selection. The perfect solution would be to evolve
the full process of sexual selection which is, however, beyond the scope of this paper. Instead we
restrict the following investigations to the evolution of the allowed difference between females’ and
males’ beak size defined by the assortative range ∆ in this particular case of assortative mating.
While this solves the problem of having pre-defined parameters, this would still correspond to a pre-
defined process of sexual selection. That way we are able to investigate whether the evolutionary
process can self-organize towards a higher degree of diversity without being forced to do so by a
parameter setting.

It turns out that the model is very sensitive to settings of the assortative range ∆ which is
typical for such systems as pointed out above (Sec. 1). If ∆ is set too low, species extend over
a narrow interval of beak sizes, feed from a small set of seeds that they are able to eat, and
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become extinct often (data not shown). If ∆ is set too big, no speciation is observed because one
big connected component of birds in ‘beak size space’ emerges. Still we proceed and allow the
assortative range ∆ to be evolved. The extension of the above model is described in the following.
The parameter ∆ that defines sexual selection by setting the beak size range is defined now as an
individual bird property. It is passed on by an average over the parents plus Gaussian noise (see
table 1 for parameters). Furthermore, we introduce an evolved parameter of each individual bird
called ‘seed width’ W to increase the attractiveness of being a specialist. In addition to the beak
size it also determines the interval of seed sizes a bird is able to feed on ([s−W, s+W ], priority is
with the more restrictive interval) and the energy of a seed is scaled by 1/W 2 (for W < 1 a seed’s
energy is increased quadratically in W ). The system shows also speciation without this additional
feature of seed width W but the inclusion of seed width stimulates speciation (data not shown).

For the following presentation and analysis of our results we define a technical concept of species
in this simple model. In order to do so we interpret the distribution of a population’s beak sizes as
a graph whereas each bird’s beak size represents a node and two such nodes are connected to each
other if they are within each others individual assortative range of sexual selection defined by ∆.
A species is defined by the graph-theoretic concept of connected components: a subset of nodes
and for each pair of such nodes there is a path connecting both. With this definition we are able
to implement an automatic classifier that determines where and how many species exist in a given
configuration.

3 Results

In the following we investigate whether speciation is observed, we investigate the distribution of
beak sizes over time to find what is beneficial for speciation in this extended model, the distri-
bution of branch lengths, and the dynamics of species. With this extended model we obtain for
different random initializations results (for parameters see Tab. 1) that are characterized by three
classes: showing speciation (see Fig. 2b), intermediate (see Fig. 2c), and not showing speciation
(see Fig. 2d). Following our connected-component definition, species within limited beak-size in-
tervals and clear separation are noticed in Fig. 2b. In Fig. 2c species are not clearly separated at
all times. For example, at t ≈ 600 one species spans almost over the whole beak-size interval. In
Fig. 2d, a single species covers the whole interval. Hence this system does not reliably self-organize
towards diversity, at least for the tested parameters.

For the following investigations we classify occurrent configurations. It turns out that four
configurations are frequent: only species in the left part of the beak size interval (s < 4.5, called
left, frequency: 3.24%), only species in the right part (s > 6.5, called right, frequency: 3.14%),
species distributed over the whole interval (called all-over, frequency: 88.37%), and species in
the two outer parts but not in the middle (called symmetrical, frequency: 5.24%). Concerning
the evolved assortative range ∆, the all-over configuration is distinguishable from the three other
configurations. In Fig. 3a the distributions of all occurring assortative ranges over a number
of evolutionary runs are compared. The mean for all-over configurations is 1.9 and bigger than
those of the others (about 1.3). With bigger assortative range a species spans over big intervals
more easily. Consequently big assortative ranges counter diversity in terms of speciation. The
populations that spread over the whole interval are bigger than those showing diversity (mean of
about 200 birds compared to about 100) because they exploit the energy provided by seeds fully.
Consequently they are less prone to fluctuations and have a smaller risk of extinction. At the
same time they make sure to exploit seeds of all sizes. Hence the low-diversity solution actually
seems to be the evolutionary more robust approach which raises the question of how speciation
could be stimulated additionally (an optional target of an investigation which is beyond this paper
would be the tradeoff between a generalist’s advantages and costs due to seed width W ). In turn
it is possible to force the system into speciation by forcing bi- or multi-modal distributions of seed
sizes (Woehrer et al., 2012). However, this is tweaking the environment which is not a good option
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Figure 2: Beak sizes s over generations t for fixed and evolved assortative mating; for parameters
see Tab. 1; sub-figures b-d differ only in random initialization.
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Figure 3: Distribution of the assortative range ∆ for different configurations and the distribution
of branch lengths in the phylogenetic tree with fitted Weibull distribution; birth and death rate
of species over beak size for different configurations; averaged movement of species and implied
potentials over beak size for different configurations.

for our application in ER.
Generally, populations with big assortative ranges seem to be more stable and there is also a ten-

dency of spreading over the whole interval with increasing time. We are able to support this claim
by investigating the distribution of branch lengths in the phylogenetic trees. The branch length
is the time period between split-ups of species and/or their extinction. Based on an automatic
check for connected components, species and the corresponding branch lengths are determined in
the implementation of the model. The distribution of branch lengths based on independent evo-
lutionary runs (4.4 × 105 samples) is shown in Fig. 3b (squares). In the analysis of this data we
follow Venditti et al. (Venditti et al., 2010) who discuss and interpret different branch length dis-
tributions of phylogenetic trees. While they apply their methods to natural systems we found that
they can also be applied to this artificial system. The best fit we found is the Weibull distribution
(ca/bx(a−1) exp(−(x/b)a), a = 0.32, b = 0.065, c = 29× 103) which Venditti et al. (2010) interpret
in the following way: “the Weibull density can accommodate the probability of speciation changing
according to the amount of divergence from the ancestral species. This model will fit the data if,
for example, species are either more or less likely to speciate the older they get.” This supports
our finding that old species tend to speciate less as they tend to span the whole interval.

Despite these shortcomings in the sustainability of the evolution of species we are able to
investigate the dynamics of speciation in this system. Our aim is to detect and measure how
SPTD is generated without explicitly forcing it. The evolution of species in space and time based
on the above connected-component definition can be interpreted as a discrete birth–death process
combined with drifting motion. For the above defined four classes of configurations the birth and
death rate depending on the beak size were measured, see Fig. 3c and d (qualitative, no errors
shown). The birth rate is bigger by about an order of magnitude because in our implementation
the merger of species was not classified as death; only actual extinction was classified as death.
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Interestingly the birth rate for the all-over configuration is almost homogeneous while the other
configurations have a dip at s ≈ 3 and s ≈ 8. This is most likely because species in the all-over
configuration are in average almost evenly distributed while in the other configurations species are
more likely to be positioned at s ≈ 3 and/or s ≈ 8. Once this ‘niche’ is covered, a birth at the
same position is not possible. The death rates of all configurations have peaks at the bounds which
is explained by the smaller number of available seeds once birds cover also seed sizes that do not
occur (< 1 or > 10). Interestingly beak sizes keeping a distance to the bounds support survival for
all configurations.

In the following we want to measure the dynamics of species, that is, the average movement of
species in beak size space in certain configurations. A measurement of how the species drift for the
four configurations is shown in Fig. 3e. ∆x gives the average displacement of a species from one
to the next generation for 1.9× 107 samples. Positive values ∆x > 0 describe the drift of a species
towards bigger beak sizes and negative values ∆x < 0 describe drift towards smaller beak sizes.
For the configurations left, right, and all-over the average motion of species indicates spreading and
species keep moving towards the bounds even when already approaching them which means they
move into regions of high death rates (Fig. 3d). The configuration symmetrical is different because
it has a stabilizing effect at s ≈ 4 and s ≈ 6.5 which are maxima. This is, however, a direct effect
of the classification and due to situations when an all-over configuration turns into a symmetrical
configuration. Still it is valid data within our classification scheme. To draw a direct connection
to applications in ER we determine the potentials that are implied by the average movement of
species (for example, similar to gravitational potentials) which is here merely an integration over
the average movement. Fig. 3f shows the 4 potentials of the 4 configurations (normalized to similar
scales). These potentials are important findings for this study because they are emergent fitness
functions with selective pressure towards bigger values in the same way as in the above schematic
representations of the fitness functions for novelty search and MOBD (see Fig. 1). Similarly also
here currently populated regions in beak-size space are less desirable and there is pressure towards
unpopulated regions. For example, the potential for configuration left has a minimum at s = 3
which corresponds to the typically populated position in this configuration as determined by low
birth and death rates around s = 3 (Fig. 3c and d) and an average motion of ∆x = 0 (Fig. 3e).
These potentials are the confirmation that this self-organizing system certainly generates SPTD.
While, for example, in novelty search that pressure is explicitly enforced by pushing towards
behavioral diversity, here the selective pressure is a feature of the ecological system. Unpopulated
regions in beak-size space correspond to big resources of energy in the form of seeds no one forages
for. Birds that manage to push into these regions compete with few fellows, gather plenty of
energy, and increase their fitness for survival. This analogy shows on the one hand that approaches
based on behavioral distance should not just be considered as engineered abstractions but rather
as bio-inspired approaches that have a direct connection to ecological features of speciation. On
the other hand it shows an option of how to generate a self-organizing SPTD as discussed in the
following.

4 Discussion and Conclusion

In this paper we have detected self-organizing generation of SPTD in an AE and we have moti-
vated the need for methods that generate diversity, particularly behavioral diversity in the field
of ER. Standard methods to increase the diversity in a population but also recent methods based
on behavioral distances include a considerable amount of a priori knowledge because they (tend
to) include behavioral features in the definition of the behavioral distance that measure how the
robot accomplishes a task. Mouret and Doncieux (2012) discuss the analogy between fitness func-
tion design and behavioral distance measure design: “More importantly, novelty search critically
depends on a good behavior characterization to create a gradient. Researchers in ER used to craft
fitness function to create a perfect fitness gradient; novelty search users have to craft the behav-
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ior distance to create a similar gradient. This last option may be easier for some problems but
eventually some distances will be hard to define.” Hence, even with methods not relying on fitness
functions the former problem of including a priori knowledge about the task persists. Mouret and
Doncieux (Mouret and Doncieux, 2012) discuss how the ideal setting for ER might look like: “In an
ideal ER setup, ER researchers would only define a high-level fitness function and let the generic
evolutionary process do the rest. This goal could be achieved with a generic behavioral distance
function that could be used with most ER tasks while still improving the evolutionary process.”
Whether such a generic measure of behavioral distances can be found is unknown. Instead we
study diversity in natural evolution that is generated in a self-organizing process and our focus is
on diversity by speciation. Due to limited biological knowledge about why species exist it is also
difficult to determine prerequisites for the generation of diversity in artificial systems. Therefore
we investigated the simple speciation model by Woehrer et al. (2012) and extended it to allow
the evolution of features that define the process of sexual selection based on assortative mating.
Our findings indicate that self-organizing speciation is achievable but the system is sensitive to
parameter settings as known from other AE.

It seems difficult to provoke evolutionary dynamics that favor diversity over uniform solutions
without imposing diversity by predefined environmental features (e.g., multi-modal distributions
of seeds, see (Woehrer et al., 2012)). In fact it seems questionable whether sustainable generation
of diversity is possible without stimulating influences from a dynamic environment or a complex
ecology with intensive inter-species interaction. A beneficial finding is the analogy between meth-
ods based on behavioral distances in ER and the investigated self-organizing ecology in terms of
the selective pressure that is generated. In both systems selective pressure is generated towards
unpopulated regions of the search space (cf. Figs. 1 and 3f). Hence we follow that both systems
relate to each other and that there might be a way of transferring the methods of generating
selective pressure in AE to ER.

In the speciation model this selective pressure is an ecological feature because unpopulated
regions of search space hold plenty of seeds which increase the fitness for survival once they are
foraged. While this is easily implemented in this speciation model by defining a beak-size search
space, it is unknown how distributing seeds in search space transfers as analogy to the behavior
space of ER. This triggers an important research question: How to define AE in the context of
ER that generate SPTD without explicitly addressing particular task-specific behavioral features
and without including a priori knowledge. This could be done by a data structure that covers
the full behavior space and keeps track of which regions of this abstract space have been visited
(following the analogy: regions where most of the seeds have been eaten up). However, this
would be most likely intractable and probably also task-specific. Solutions for this dimensionality
reduction problem based on heuristics would possibly have similar difficulties as, for example,
function approximation in reinforcement learning (Sutton and Barto, 1998). Presumably any
method that maps behaviors from the actual behavior space into a smaller feature space will suffer
from being either task-specific or of limited benefit although very simple mappings were shown to
be beneficial in simple tasks (Mouret and Doncieux, 2009; Lehman and Stanley, 2008). Seemingly
the statistics about the frequencies of behaviors is embedded into the environment in natural
systems similarly to the concept of stigmergy in swarm intelligence. A candidate solution would
be to evolve behaviors in an embodied system which allows for embedding behavioral statistics
in the environment. Fortunately, an embodied approach is feasible in ER (Bredeche et al., 2012;
Stradner et al., 2012).

Furthermore we have reported measurements (Figs. 3c-f) that allow for modeling speciation
as a discrete birth–death process combined with a spatial feature determined by drifting motion
towards unpopulated regions. That way speciation truly is linked “to rare stochastic events that
cause reproductive isolation” (Venditti et al., 2010). In addition we have shown that the analysis
of branch length distributions by Venditti et al. (2010) is also applicable in artificial systems and
might prove to be instrumental in classifying artificial systems of speciation. In future work we
plan to continue investigations of how to integrate AE into behavior space that is not task-specific
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and that generates SPTD in complex tasks for ER. In addition it might be desirable to investigate
also models of speciation that evolve themselves features of sexual selection that generate diversity.
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