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Abstract

The evolution of quantitative details (i.e. “parameter values”)
of biological systems is highly under-researched. We use evo-
lutionary algorithms to co-evolve parameters for a generic but
biologically plausible topological differential equation model
of nutrient uptake. In our model, evolving cells compete for
a finite pool of nutrient resources. From our investigations
it emerges that the choice of values is very important for the
properties of the biological system. Our analysis also shows
that clonal populations that are not subject to competition
from other species best grow at a very slow rate. However,
if there is co-evolutionary pressure, that is, if a population of
clones has to compete with other cells, then the fast growth is
essential, so as not to leave resources to the competitor. We
find that this strategy, while favoured evolutionarily, is inef-
ficient from an energetic point of view, that is less growth is
achieved per unit of input nutrient. We conclude, that com-
petition can lead to an evolutionary pressure towards ineffi-
ciency.

Introduction

Much is now known about biological systems at the molec-

ular level. There are countless databases that contain giga-

bytes of detailed information about biochemical networks,

reactions, gene regulation, protein-protein interactions and

much more. As far as biochemical reaction networks are

concerned, most of the available information is about struc-

tural properties of these networks, i.e. which molecules re-

act with which molecule, which protein represses/activates

which gene and so on. At the same time, very little is known

about the quantitative details of these reactions, i.e. how fast

reactions proceed, how strong a gene is repressed or at what

rate genes are expressed.

Recently, a large scale analysis of topological data has

led to important insights into the design principles of living

systems. The discovery of so-called network motifs(Alon,

2007; Kashtan and Alon, 2005; Mangan and Alon, 2003),

i.e. over-represented local connectivity patterns of gene reg-

ulatory networks is but one example. These motifs were

found to be not only statistically over-represented but also

functionally significant(Alon, 2006). While much research

effort has been expended to understand the significance of

these topological features, very little research has been done

to understand quantitative details of biochemical reaction

networks(Chu, 2013).

One of the conditions for being able to gain insight into

the topological design principles of biological systems was

the wealth of empirical available about them. Since there is

not a comparable amount of information available about the

parameter values of biochemical networks, it is only natural

that much less is known about the quantitative design prin-

ciples of natural systems. At the same time, it is likely that

the values of parameters of biological systems contain very

much biologically valuable information. They are a product

of natural evolution and as such have to be assumed to reflect

the adaptive pressures to which the system has been exposed

and as such encode valuable biological information.

In order to understand the principles that guide the evo-

lution of quantitative parameter values, it is not necessary

to know the actual values of biological systems. Instead, a

different approach based on synthetic evolution using evolu-

tionary algorithms can be used. In this article we will take

this approach. To do this we focus on a generic topologi-

cal model of nutrient uptake, i.e. a model that only contains

the structure of the biochemical reactions, but not their nu-

merical parameters. We then use evolutionary algorithms to

evolve parameters for specific conditions. Comparisons of a

large number of runs will then enable us to draw some con-

clusions as to how parameters evolve. The hope is that these

conclusions are valid beyond the specifics of the particular

model we have chosen and provide insight about natural bi-

ological systems as well.

Our model does not describe any specific biological sys-

tem, but it is a biologically plausible generic representa-

tion of nutrient uptake in bacteria and contains topologi-

cal features that are widely used by bacteria. An important

way for bacteria to take up nutrient is by importing nutrient

molecules through specialised openings at the cell surface—

so called porins. These porins are proteins and they tend to

be specific to a particular nutrient type. So, a porin for one

nutrient cannot be used to take up a different type of nutrient.

In bacteria, these porins whose production requires energy
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are only expressed by the cell when the relevant nutrient is

actually present in the environment. A typical way for the

cell to achieve this is to use the nutrient as an activator for

the expression of the porin. Once imported into the cell the

nutrient stimulates the expression of the gene coding for the

porin (indeed, often it represses the repression of the gene,

which amounts to stimulation). This very general scheme of

porin activation is reflected in our model.

A typical feature of bacterial uptake system is that expres-

sion is demand driven and porins are only produced when

they are needed. The evolutionary rationale for this is that

gene expression requires resources that could be invested

otherwise, for example to fuel growth. Moreover, there is

finite space on the cell surface which limits the number of

porins that can be expressed at any one time. It is also com-

monly observed that over- or under-expressing a gene often

decreases the growth of the mutant strains. So, apparently,

for many proteins there is an optimal rate of porin expres-

sion. At the same time, evolution has the ability to tune

the rate of some biochemical reactions, including the rate of

gene expression. It is therefore likely that the particular rates

of gene expression and that of other bio-chemical reactions

are fine-tuned by evolution.

This motivates the research question to be addressed in

this contribution: How do the parameters of generic bacte-

rial uptake systems depend on the adaptive pressures that led

to their emergence. Moreover, given a set of adaptive pres-

sures, is it possible to predict the parameters, or vice versa,

given a set of parameters, is it possible to understand what

adaptive pressures led to them? Finally, can the results ob-

tained from the generic biologically plausible model provide

any insight that is relevant for the real world.

To address these questions, we performed two types of

artificial evolution experiments. Firstly, we evolved parame-

ters (i.e. “solutions”) on their own. We found that this results

in uptake mechanisms that could turn most of the nutrient on

offer into growth using a very low number of porins result-

ing in slow nutrient uptake and growth. We found this to

be the most efficient mode of growth because it allows the

cell to channel most nutrient into growth while minimising

the amount of energy spent on the uptake mechanisms. In a

further set of experiments we then evolved new solutions in

competition with a previously evolved one.

The solutions obtained from these co-evolutions were

different from the solutions evolved without competition.

Rather than taking up nutrients slowly with a low number

of porins, they evolved towards increasingly rapid uptake

of nutrient (although not necessarily rapid growth). While

this allowed them to grow fast it also means, as we will dis-

cuss below, that they grow inefficiently. Specifically, we

found a clear trend that co-evolved solutions are less effi-

cient than the original solutions that evolved without a com-

petitor. However, within the chain of evolved solutions there

was no clear further trend toward inefficiency. Hence, rather

Figure 1: A schematic representation of the model.

than getting more efficient by competition, we found that co-

evolution leads to less efficient solutions, which is a counter-

intuitive at first. We will argue below that this pattern to-

wards inefficiency is universal, in the sense that it does not

depend on the specifics of the particular model, but would

be true for a large class of nutrient uptake systems, includ-

ing those of real organisms.

Furthermore, in our simulations we presented the simu-

lated cells with two different types of nutrients of differing

quality. We also added a structural motif into the model that

would allow the cells to suppress take-up of the less valu-

able nutrient 2 in favour of the other. Indeed, we observed

the evolution of the suppression of nutrient 2 uptake. How-

ever, surprisingly to us, the solutions did not use the motif

offered, but instead came up with a different way of regulat-

ing the uptake of the less efficient nutrient.

The basic model

We present here a generic model of a bacterial up-

take/metabolic system (see figure 1). The idea is that there

are two sources of nutrients N1 and N2. Uptake of these

sources of nutrients requires specific porins, namely P1 and

P2 respectively. Once taken up into the cell the nutrient be-

comes an internal source of energy (E1 and E2) which can

be converted into actual energy (or ATP), which we denote

by E0. We assume that the uptake and conversion of nutrient

follows Hill kinetics(Chu et al., 2011). The internal energy

is converted either into porins (i.e. porin 1 and porin 2 ab-

breviated as P1, P2) or into biomass (bm) which represents

the results of bacterial growth.

We only determined the topology of this model which is

designed such that the expression of porin 1 and 2 is acti-

vated by the presence of nutrient 1 and 2 within the cell (i.e.

E1 and E2 respectively). The model topology does not by

itself specify how strong this activation is. The strength of

the activation depends on the parametrisation, which needs

to be evolved. Indeed, there are many parameters that would

effectively turn off the activation. The same is true for all

other regulatory functions in the model.

An important feature of the model is that the expression

of nutrient and the production of biomass require energy.
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Hence, the (a priori unspecified) parameter values for the

expression rates of porins and the growth rate decide to what

extent the resources (i.e. nutrient) is used to fuel growth

and to what extent it is used to maintain the cellular uptake

machine, i.e. how much is allocated to porin production.

It appears that there is an optimal allocation of resource

to growth and the uptake mechanism. If the cell allocates

no energy to uptake but all to growth, it will not be able to

use any of the nutrients and hence it will not grow at all. On

the other hand, if the cell allocates all of its nutrients into

uptake, but none into growth, then it will be rich in nutri-

ents, but never grow and hence never divide. In-between

these two extremes there is one (or possibly several) optimal

allocation. While it is clear from this argument that such

an optimum exists, we do not know where it is and what it

depends on.

Another important feature of the model is that the total

number of porins in the system is limited. Porins in bacteria

are located at the cell surface. They build openings there

and selectively let molecules in and out of the cell. In real

cells there is limited space on the surface to accommodate

porins. This limitation is represented in our model by the

term L (see below). It is a repressing term that reduces the

expression of porins 1 and 2 as a (Hill-repressor) function of

the sum of the concentration of both.

Finally, the model also features a repressor motif. The

molecule R is expressed when there is porin 1 available in

the cell and its sole purpose in the model is to repress the

expression of porin 2. This sort of regulatory motif whereby

a repressor is activated by some part of the system and re-

presses another part of the system is commonly found in

gene regulatory networks. The idea of introducing this mo-

tif is to enable the cell to evolve a repression mechanism for

nutrient 2 when the (better) nutrient 1 is available.

The topology of the model can be summarised by these

chemical equations:

Ni → ǫPi
Ei, kNi

pi
Ni

Ni +KNi

Ei → E0, kEi
Ei

P1 + E0 → P1, kP1

E
hP1

1

E
hP1

1
+K

hP1

P1

E0L

P2 + E0 → P2, kP2

E
hP2

2

E
hP2

2
+K

hP2

P2

KhR

R

RhR +KhR

R

E0L

P0 → kP0

Pi

Pi +KPi

r + E0 → R, kRE0

E1

E1 +KR

{Pi, Ei, R} → ∅, d{Pi,Ei}

E0 → bm, kC (1)

where L is the space-limit which represents the fact that

there is limited space at the surface of cells to accommodate

porins, given by

KL

(P1 + P2) +KL

The quality factor ǫPi
determines the quality of a nutrient

and we set it to 1 for P1 and 0.5 for P2. This means that one

unit of nutrient 2 gives only 1/2 unit of biomass. Uptake and

gene expression are assumed to follow Hill kinetics. While

this is an approximation, in reality it has been found that

Hill kinetics is a good description of the reactions described

here. It is also widely used to model them and is a fairly

simple approach. In all simulations reported here we keep

the Hill exponent fixed at a value of 2, which is biologically

plausible.

Evolving the system

In this article we evolve parameters for the topological

model described by equation 1. Concretely this means that

we evolve values for the kinetic parameters determining the

system, including the Hill-constants (i.e. KNi
and dynamic

constants such as kPi
. Note that we do not evolve the decay

rate d which we keep fixed at 0.1, the Hill exponents (i.e.

hx = 2), the relative value of ǫPi
(which we keep fixed at 1

and 0.5 respectively) and KL which determines how much

space there is for the porins in the cell. This latter parameter

we set to 1. All other parameters are evolved and we allow

them to take values between 0 and 15. In all simulations

reported here the model is implemented as a system of dif-

ferential equations. As a solver we use the general purpose

numeric differential equation solver of the Maple computer

algebra system version 16 for Linux.

The model was implemented as a co-evolutionary system,

that is we have two different solutions compete for the same

nutrient pool of Ni. This represents two different species

of bacteria co-existing in the same environment. In practice

this means that we used two sets of differential equations

with two sets of the variables Ei, Pi, R, bm representing two

different cell-types. Each set had their own kinetic param-

eters, yet their dynamics depended on one another via the

shared nutrient pool. Of the two competing solutions, we

ever only evolved one of those solutions, while keeping the

other one fixed. Initially, we use as the fixed solution an

“unfit standard solution” with all parameters set to 1. This

solution supports no growth beyond the start-up allocation

which is equivalent to 1 unit of biomass. Co-evolution is

achieved by using previously evolved solutions as fixed so-

lutions (i.e. “incumbents”) in further evolutionary runs. In

all simulations we set as the initial condition all variables to

zero except for Pi = 0.001, E0 = 1. This means that any

solution can support a maximum of 1 unit of biomass even

if it does not take up a single unit of nutrient.

During each evolutionary run only one of the solutions is

evolved, while the other one is kept fixed at user-defined pa-
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rameters. Co-evolution was achieved in a sequential man-

ner, that is, one solution was evolved against a fixed so-

lution. The evolved solution was then subsequently used

as the fixed incumbent in a further evolutionary run. Co-

evolutionary chains were obtained as follows;

1. Evolve a first solution against an un-evolved base solution

(all parameters set to 1).

2. Once the first solution is obtained, evolve a second solu-

tion against the first solution (which is kept fixed).

3. Create a third solution by evolving against the second so-

lution (which is now also kept fixed).

4. Continue in this manner until no more solutions evolve.

To evolve the system we used a genetic algorithm with

elitism. Individual solutions were represented as an array of

real numbers in the range [0, 15]. The population size was

set to 50. The initial population consisted of random param-

eters within the range [0, 15] sampled from a uniform distri-

bution. As a fitness function we chose the biomass after 500

units of time. We found that 500 time units was large com-

pared to the transient periods of the system, i.e. increasing

this time did not change the results of the evolution.

As a selection algorithm we chose a fitness proportional

selection. However, in every generation the best solution

and a mutated version of it was allowed to proceed to the

next population. The mutation and crossover rate was set to

0.8. Mutation was done by changing a random parameter by

up to ten percent of its current value. If a mutation resulted

in a value lower than 0.00001 or greater than 15 then the pa-

rameter was set to 0.00001 and 15 respectively. The amount

of available nutrient was set to 10 for both nutrient types.

The GA was implemented in Perl, but the fitness function

was evaluated using Maple. Both the relevant Maple script

and the Perl source code are available from the authors upon

request.

We performed two different types of experiments. Firstly,

we performed a simple evolution without competition (i.e.

with the standard unit solution as competitor). Subsequently,

we used the results of those evolutionary simulations to initi-

ate a co-evolutionary chain, as described above. In practice

we found that after a number of iterations no more fit so-

lutions were found, in the sense that the total biomass pro-

duced for the evolving solution did not substantially exceed

1, i.e. evolution could not find solutions to outperform the

incumbent. In this situation it was helpful to evolve a new

solution by seeding the new evolutionary solution with the

incumbent parameters, rather than starting from a random

solution. However, even in this case, the co-evolutionary

potential was limited.

Individual evolutionary runs were stopped either after

5000 generations or when a plateau of high fitness with no

apparent further increases over time was reached, whatever

happened first. The presence of such plateaus was deter-

mined by visual inspection. In practice, it turned out to be

a clear-cut case. A typical evolution would show rapid in-

creases of the fitness at first, followed by fitness stagnation.

Results

Unconstrained evolution

We evolved a number of solutions without competitor. Fig-

ure 2 illustrates three typical results obtained from uncon-

strained evolution. It shows the amount of biomass over time

obtained by simulating in Maple the best solution of the fi-

nal population in the GA. It is part of the set-up that there

is a limited amount of nutrient of 20 units divided across

two types of nutrients. Since the second nutrient gives only

half the growth of the first, at best the available resource can

be converted into a biomass of 15 units under ideal condi-

tions; the solutions also get a start-up energy equivalent to 1

biomass. Hence, in total the maximum they can reach is 16

biomass units.

It is apparent from figure 2 that most solutions evolved

come close to the maximum attainable biomass, although

there is some variation. Occasionally, we have also observed

that solutions got stuck on a local minimum and did not dis-

cover the second nutrient source. This resulted in cells that

would not take up any of the nutrient 2 and achieve only a

level of about 10 units of biomass (data not shown). This in-

dicates that the solutions were able to channel most nutrients

into growth rather than using them for enzyme production.

This high level of conversion was made possible by a very

low assumed degradation rate of enzymes that allowed the

solutions to grow at a slow rate.

The figure shows that the time required for achieving the

maximal growth varies somewhat from solution to solution.

The three example solution shown in figure 2 are representa-

tive for the range observed in all unconstrained evolutionary

runs, Generally, we observed that these evolved solutions

take up nutrient over a time period of 20 to 150 time units.

There is a wide variation between the solutions that we ob-

tained.

Co-evolution

Co-evolution changes the nature of the solution obtained in

very specific ways. The system as a whole offers a finite

amount of resources and both solutions need to compete for

the same two pots of nutrients. Hence, competition is not a

zero sum game.

At the beginning of a co-evolutionary run the competi-

tor will have random parameters and not be able to compete

well against the incumbent. However, as new solutions are

discovered the competitor evolves to outperform the incum-

bent. One way to do this is to consume the available nu-

trients faster than the incumbent. Ideally, the new solution

has used up all of the nutrients before the incumbent can

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems
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Figure 2: Three solutions of simple evolutions where the

competitor is the maximally unfit solution.

do this preventing the latter from growing. Indeed, through-

out all co-evolutionary runs we performed, this speed strat-

egy emerged as one important way for solutions to under-

mine their competitors’ abilities to grow. Co-evolution led

to a sequence of increasingly fast solutions until a limit was

reached and no more increases were possible. Note, how-

ever, that increased speed does not necessarily mean an in-

creased growth-rate. Indeed, we observed a number of cases

where growth was slower (i.e. occurred later) in the new

competitor than in the incumbent but its nutrient uptake was

still faster.

Figure 3 shows a typical co-evolutionary interaction. The

first solution, which has been evolved against the unfit set

of parameters, takes up nutrients slowly. This particular so-

lution requires more than 100 time units to reach the final

biomass. In contrast, the second solution is much faster and

reaches its final biomass within 15 time units. Interestingly,

the third solution, which is evolved against the second one,

grows slower. Yet, a closer inspection shows that, while it

produces biomass slower, its nutrient uptake is faster than

that of the second solution. Hence, it leaves no nutrient to

the second.

In all evolutionary experiments we performed we never

found a case where a solution evolved to co-exist with its

competitors, in the sense that both the incumbent and the

competitor were able to take-up nutrient and grow. Instead,

in all cases we considered, one solution came to dominate

the other. However, there are cases where we observed the

dominated solution to have some minimal growth, i.e. less

than 1 biomass unit above the start-up energy.

Connected to this minimal growth of the dominated com-

petitor we observed an interesting phenomenon. Figure 4

shows two simulations of a solution that we had obtained

as a third solution during one of our co-evolutionary chains.

Note that the graph does not show the evolution experiment,

but an evaluation of the solution obtained from one of the
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Figure 3: Three co-evolutionary solutions. The three curves

show the growth of the solutions as a function of time. The

curve labelled ”First” is the original solution evolved against

unfit parameters. The line ”Second Round” was evolved in

competition with the first and similarly the ”Third Round”

was evolved against the second. Time is shown in log scale

to improve readability.

evolution experiments. The difference between the two runs

in figure 4 is the competitor with which the evolved third

solution competes. In one curve it is the standard unfit solu-

tion (which does not consume any nutrient) and in the other

it is the second solution, i.e. the solution against which the

third solution was evolved. In this particular case the second

solution takes up a small amount of nutrient when compet-

ing against the third solution and grows roughly by 0.6 (data

not shown) above its initial endowment. On the other hand

the unfit solution, where all parameters are set to 1, does not

take up any nutrient in competition with the third solution.

Hence, one would assume that the growth of the third so-

lution when competing with the second is lower than when

competing with the standard solution. However, in reality,

the third solution leads to a higher biomass in combination

with the second solution than against the standard unfit so-

lution. This is shown in figure 4. Increased nutrient uptake

requires a higher level of investment into the metabolic ma-

chinery compared to the

Upon closer inspection this effect can be related to the

usage of the second (less efficient) nutrient. In competition

with the standard unfit solution the third solution does not

use up all of the less efficient nutrient, but in competition

with the second solution it does. This hints at the expla-

nation for the observed effect. When competing with the

standard unfit parameters the third solution has more nutri-

ent 1 available. This additional nutrient leads to a higher

production of porin 1 than when competing with the second

solution. Note that there is a limit to the total number of

porins for nutrient 1 and 2. Hence, if there is more porin

for nutrient 1 produced then this means that less porin for

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems
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Figure 4: Comparing the third solution when evaluated

against the unfit solution and against the second solution.

Surprisingly, it does better against the (evolved) second so-

lution than it does against the unfit standard solution.

nutrient 2 can be produced. Indeed, in the competition with

the standard solution the porin for nutrient 2 is lower and

tends to zero before all of the nutrient 2 can be taken up. In

competition with solution two, on the other hand, the overall

amount of porin 1 is lower which allows more porin 2 to be

produced. The effect of this is that sufficient amounts of the

porin can be produced to take up all of the available nutrient

2. Altogether, this leads to higher growth.

Based on this, one would expect that less biomass is pro-

duced by solution three in competition with the second so-

lution than with the unfit parameters when the limit on the

total number of porins is removed. To check this, we per-

formed simulations where we removed the limitation (i.e.

removed the factor L from equation 1). A comparison of so-

lution three under these two different conditions then shows

that indeed it develops more biomass when paired with the

unfit solution than when with solution two (data not shown).

A comment on switching

In real bacteria there is a phenomenon called “diauxic

growth.” When bacteria are presented with two nutrient

sources of different quality then they take up the good qual-

ity source first. Only when this one is exhausted will they

take up the secondary source. From an adaptation point of

view it is quite straightforward to make sense of this. Those

cells that take up the good quality nutrient faster will be

able to produce more offspring (because they have the better

quality nutrient) and hence out-compete the others while at

the same time leave less for their competitors. By the same

reasoning, we expected to observe the emergence of diauxic

growth in our artificial evolution experiments. Hence, we

included a simplified mechanism to allow cells to suppress

production of porin 2 when porin 1 is present in the cell. We

specified that the regulator R has a suppressing effect on the

expression of porin 2, but requires porin 1 to be expressed

itself. Given the right parameters, it should then be possible

for diauxic growth to emerge.

In our simulations we found that the evolved solutions

universally favoured porin 1 over porin 2, but they did not

use a switching mechanism based on the regulator R. In-

stead the cells evolved other mechanisms to ensure that nu-

trient 1 is always taken up before nutrient 2.
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Figure 5: A second round solution and the amount of exter-

nal nutrient available. Nutrient one is exhausted after around

2.5 time units. Only then the consumption of nutrient 2

starts. The control mechanism relies on limited space for

porins. See main text for details.

We observed a small number of solutions that did not take

up nutrient 2 at all. Amongst those solutions that did take

up nutrient 2 a subset did not have any apparent regula-

tion mechanisms, but simply took up nutrient 2 at a slow

rate compared to nutrient 1, i.e. produced porin 2 at a low

rate. This is only a mechanism in the most trivial sense.

A more advanced, true mechanisms that frequently evolved

was based on the limit on the total number of porins via the

factor L in equation 1. The idea is as follows: If the porins

for nutrient 1 are expressed at a higher rate than those for

porin 2, then this leads to a higher rate of uptake of nutrient

1, further stimulating expression of porin 1. Since there is

limited space, once a certain amount of porin is expressed,

further expression of any type of porin is suppressed. Alto-

gether, this allows porin 1 to increase its advantage and to

crowd out porin 2 which is expressed at a low rate only. Yet,

once nutrient 1 runs out, porin 1 is no longer produced and

then porin 2 can be expressed.

While this mechanism effectively repressed porin 2, it

limits by design the speed with which porin 2 can be ex-

pressed and hence it limits the uptake speed of nutrient 2.

The ideal scenario for a bacterial cell would be to take up

nutrient 1 rapidly, then switch and take up nutrient 2 rapidly.

However, the simple regulatory mechanism via L relies on

the production of porin 2 to be slower than that of porin 1

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



and therefore does not allow efficient repression of nutrient

2 uptake while nutrient 1 is still present and rapid uptake of

nutrient 2.

This begs the question as to why the system does not ac-

cept the repressor R for the regulation of nutrient 2. The

repression topology we used is a common gene regulatory

motif in biology to control the expression of genes. Yet still,

in none of the simulations that we performed it was used to

regulate the expression of porin 2. We suspect that this sim-

ple regulatory motif is not effective in the regulation of porin

expression. We conjecture that the underlying reason for the

failure to evolve has to do with the difficulty of removing the

repressor once nutrient 1 has run out. Further investigations

are required to understand why this regulatory system is not

effective.

The effects of competition

From the above analysis of the solutions it becomes clear

that co-evolutionary pressure changes the nature of the so-

lutions. The first solution, that is evolved against an unfit

competitor tends to take up nutrient over a long time. Sub-

sequent co-evolved solutions tend to take up nutrients, es-

pecially nutrient 1, over a much shorter time. The question

is now why in the absence of competition solutions tend to

evolve towards slow uptake. One possible explanation could

be that there simply are more solutions (i.e. combinations of

parameters) that take up nutrient slowly than there are solu-

tions that take them up fast. Hence, in the absence of co-

evolutionary pressure, evolution is more likely to discover

slow solutions than fast ones.

Another interpretation, that does not necessarily preclude

the first explanation, is that there is a functional significance

to the slow speed with which nutrient is taken up. To un-

derstand whether this is the case, we considered the growth

efficiency of solutions. To do this we defined a simple mea-

sure of efficiency given by the biomass divided by the total

nutrient usage. According to this measure, a solution is more

efficient if it requires less nutrient to grow to a given size.

In order to gain an insight into the nature of the solution

we plotted the efficiency over time; see figure 6. A clear

pattern emerged. The first solution that evolved against the

unfit standard solution was always more efficient than sub-

sequent solutions. For subsequent solutions, however, there

is no clear trend towards further inefficiency. So, the fourth

solution may or may not be less efficient than the third so-

lution from the same co-evolutionary chain. Figure 6 shows

the efficiency of three consecutively evolved solutions as an

example.

There are again two ways to interpret this finding. One

could assume that this trend towards inefficiency is merely

an artefact of the particular modelling choices made, or that

it is a more general phenomenon that is relevant for a large

class of systems including real systems. We believe the latter

is the case. Within our model, nutrient can only be converted
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Figure 6: Comparing the efficiency of solutions during sub-

sequent rounds. Efficiency is the amount of growth achieved

for each unit of nutrient consumed.

into either biomass or into porins. The latter are necessary

in order to take up nutrient. As long as there is no time-

constraint on the system, it is sufficient for solutions to pro-

duce a small number of porins. It will take a long time to

absorb all the available nutrient, but the investment into the

metabolic machinery is low, so altogether the cell can grow

efficiently. The major limiting factor here is the decay of

nutrient which requires a certain production rate of porins to

replace lost ones and keep the uptake stream constant. Up to

that limit, slow growth is more efficient.

However, if a cell needs to compete with another one

for resources, fast uptake is required, because otherwise the

competitor takes up all the nutrient and nothing is left for the

cell. Hence, competing cells need to take up nutrient rapidly.

This is, however, inefficient. Uptake can only be achieved by

a large number of porins concentrated into a small amount of

time which entails a corresponding energy investment. Once

the nutrient is used up, the porins no longer fulfil a function,

and there is no return on their investment. Altogether, this

results in an inefficient use of resources. Hence, fast nutri-

ent uptake is inefficient independently of the specifics of the

model assumptions, simply because it requires diversion of

resources into porins.

Discussion and Conclusion

The current model makes a number of assumptions and sim-

plifications. For example, the “infinite population” assump-

tion implicit in the use of differential equations is of limited

relevance for biological systems which are known to exhibit

substantial noise at the molecular level. A deeper analysis

of the system presented here would have to take into account

stochastic fluctuations originating from the discrete nature of

biochemistry. Yet, simulating such discrete systems is much

more difficult than solving differential equations. Hence, for

a first analysis differential equations provide a good trade-
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off between feasibility and accuracy.

By using our model we found that taking up nutrients

slowly is most efficient, but not necessarily the best strat-

egy. Yet, in the absence of competitors the slowest possible

growth is the most efficient one. In the hypothetical case of

a continuous system with no protein breakdown an infinitely

slow take-up rate corresponding to an infinitely slow expres-

sion rate of porin would be ideal. In more realistic models

that include decay of components, there is an optimal rate of

porin creation rate which depends on the rate of porin break-

down. The conclusion is that a group of clonal cells does

best when growing very slowly, because then it expends the

least amount of energy on maintaining the uptake machine.

Only in competition with other cells will faster uptake rates

be beneficial.

Not included in the above picture is the cost and the speed

of computation. If we allow dynamically changing environ-

ments in the model then the picture changes. Environmen-

tal changes need to be sensed by the cell which then has to

make internal adjustments based on the sensed changes. In

the simplest case this is simply the presence and absence of

nutrients. It can be shown that the speed with which these

adjustment can be made depends directly on the breakdown

rate and the speed of uptake. It has been shown recently(Chu

et al., 2011) that slow uptake entails a limited ability to ad-

just to external conditions. On the other hand, faster uptake

and growth is required to “compute” changes in the external

environment effectively. Doing so comes at a cost in terms

of additional nutrient that needs to be expended. Moreover,

a hypothetical cell with no breakdown of components is not

able to switch to a new state, simply because it is not able

to forget its previous state. Say, at some point there are only

porins of the first type in the system and these porins occupy

all of the available surface, so that no more porins can be

created. If then the nutrient of the first type is used up, the

cell cannot express any other porins. As such it would miss

out on growth opportunities. Similarly, if it can break down

porins only slowly, then it will only be able to react slowly

to changes in the environment. The conclusion from this is

that extremely slow growth is only realistic for populations

that live in constant environments that do not require any

regulation.

So, in many ways the assumptions that we made in this

contribution are somewhat unrealistic with respect to real

biological system. Yet still, we think that the conclusions

we reached are relevant. While ultra-slow speed will not

be achievable in real systems, it is still likely the case that

slower growing cells would be more efficient that faster

growing ones simply because they will have lower rates of

resource wastage. Yet, when in competition with other cells,

then the slowest growth rate is no longer feasible and the cell

has to invest a high amount of resource for growth. While

the details of the evolutionary dynamics will be more com-

plicated in real cells, and the particular trade-offs will be

more involved, the underlying fact that competition requires

fast growth and that fast growth is inefficient is likely of very

wide general applicability and relevant for our artificial cells

and real biological cells alike.

Biological systems are commonly thought of as being op-

timal. The reasoning is that intense competition between

cells will drive biosystems over time to fine-tune their inter-

nal processes to a point where resource usage and allocation

is most “efficient.” There are a number of well known prob-

lems of this optimality assumption. The best known one

is that in evolving systems non-optimal, even slightly detri-

mental traits may piggy-back on advantageous traits and es-

tablish themselves in that way. Or, even in very simple fit-

ness landscapes, constant mutational pressure will push the

population away from any theoretical optimum generating

a quasi-species(Eigen and Schuster, 1979). As a result of

these and other similar effects biological systems cannot be

assumed to be tuned perfectly to an optimum.

Our experiments show an additional biological driver to-

wards inefficiency based on competitive co-evolution. Our

results contradict the intuition that competition leads to ef-

ficiency. Under some circumstances biological systems are

driven away from their most optimal mode of operation. One

can now speculate whether or not the same effect applies

in other competitive systems, such as in economics where

it is routinely argued that competition to the most efficient

allocation/use of resources. At least with respect to bacte-

rial growth, our experiments seem to indicate that this is not

necessarily so, but competition could lead to less efficient

solutions rather than more efficient ones.
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