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Extended Abstract

Introduction Collective Motion (CM) is observed in a va-

riety of animal groups such as bird flocks and fish schools.

In a recent study, Cavagna et al. (2010) found that the corre-

lation lengths of speed and velocity fluctuations in starling

flocks are not set by a specific interaction range, but are in-

stead scale-free, proportional to the group size. So far, this

observation has been justified by hypothesizing that flocks

evolved to follow critical dynamics near a phase transition,

where scale-free correlations are known to emerge. Critical-

ity could provide an evolutionary advantage by allowing the

flock to optimally respond to an external perturbation such

as a predator attack. However, a criticality-based explana-

tion may only be required in cases where interactions are

based exclusively on relative orientations, as often assumed

in CM models, following the seminal work by Vicsek et al.

(1995). In this paper, we show that an alternative, more par-

simonious, mechanism can produce scale-free correlations

when considering interactions based on relative positions.

AE simulations We consider an active elasticity (AE)

model (Ferrante et al., 2013), whereN self-propelled agents

are moving in 2D, with neighbors permanently linked by

spring-like linear forces. Given the position ~xi and orien-

tation θi of each agent i, the AE model is defined as:

~̇xi = v0 n̂i + α
(

~Fi · n̂i

)

n̂i, (1)

θ̇i = β
(

~Fi · n̂
⊥
i

)

+Dθ ξθ. (2)

Here, v0 is the preferred self-propulsion speed, α and

β are the speed and angular force coupling coefficients,

and n̂i and n̂⊥i are unit vectors pointing parallel and per-

pendicular to the heading of agent i, respectively. The

sum of elastic forces over agent i is given by: ~Fi =
∑

j∈Si
(−k/lij) (‖~rij‖ − lij) (~rij/ ‖~rij‖), where Si is the

set of all j neighbors linked to agent i, the spring constants

k/lij and natural lengths lij characterize the interactions be-

tween them, and ~rij = ~xj − ~xi are their relative positions.

Noise is introduced by adding Dθ ξθ in Eq. (2), where Dθ is

the noise strength and ξθ a random variable with standard,

zero-centered normal distribution of variance 1.

Simulations were carried out by integrating Eqs. (1) and

(2) numerically. They were set up as a minimal AE-based

version of the starling experiments by Cavagna et al. (2010).

Parameters lij = 1, v0 = 10, k = 100, α = 2, and β = 3
were chosen to roughly mimic the experimental dynamics.

The noise level was set to be high (Dθ = 0.628) but far

from any critical point (here at D∗
θ ≈ 1.1, where the system

transitions to a disordered, non-flocking state). We focus on

the correlations that develop as the group turns due to strong

local perturbations. This is continuously occurring in natural

flocks as individuals at the edge of the group change their

heading directions based on external stimuli. We mimic such

situation by initializing all agents with θ = 0, except for one

(the informed agent), which is forced to head towards θ =
π/3 during the whole run, while its speed is determined by

Eq. (1). This corresponds roughly the natural flock turning

dynamics described in (Attanasi et al., 2013).

Figure 1 displays snapshots of the AE simulations. At

t = 0.5 (a), the top-right corner of the hexagon is turn-

ing towards θ = π/3, as imposed by the informed agent,

while the rest continues heading to the right, still unper-

turbed. In the subsequent t = 1.0 (b), 1.5 (d), and 2.0 (e)

snapshots, the whole group starts to acquire the π/3 orien-

tation, as the local perturbation spreads out through the sys-

tem. Despite the turning and imposed noise, the degree of

agent alignment remains high, with polarization order pa-

rameter ψ = ‖
∑N

i=1
~vi‖/(Nv0) ranging between 0.90 and

0.96 (ψ = 1 indicates full alignment), which is consistent

with the starling experiments. All panels display the in-

formed agent detached from the hexagon, above and to the

left of its top-right corner, since its virtual springs sustain

large forces as they induce group turning, and are therefore

very stretched.

Correlation function analysis We focus on the speed

fluctuations sj = ‖~vj‖ −
1

N

∑N
i=1

‖~vi‖ and velocity fluctu-

ations ~uj = ~vj −
1

N

∑N
i=1

~vi. As in (Cavagna et al., 2010),

we compute the correlation function for the latter using

C~u(r) = K

∑N
i,j=1

~ui · ~uj δ(r − rij)
∑N

i,j=1
δ(r − rij)

, (3)
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Figure 1: Simulation snapshots at t = 0.5 (a), 1.0 (b), 1.5 (d), and 2.0 (e). Red crosses indicate where the hexagon’s center was

at t = 0. Correlation lengths of the velocity (c) and speed fluctuations (f) as a function of group sizes at two different times.

and the correlation function Cs(r) for the speed fluctuations

using an equivalent expression, but where ~ui is replaced by

si and the dot product by multiplication. Here, rij is the

distance between agents i and j, δ(·) is a smoothed Dirac

delta function, and K is a normalizing constant defined so

that C~u(0) = 1. Both functions must cross zero since si and

~ui have zero mean. We thus define as correlation lengths the

first zero-crossing points of C~u(r) and Cs(r).

We performed the simulations and analysis for hexagonal

groups containing N = 91, 397, 817, 1519, 2437, 3571,

and 4681 agents, a range slightly larger than in the star-

ling experiments. Correlation functions were computed at

t = 1.9 and 2.4 (two somewhat arbitrary instants, chosen

slightly after the perturbation crosses our largest hexagon)

in order to examine the typical correlation lengths and their

degree of variation. Panels (c) and (f) display the correlation

lengths of the velocity and speed fluctuations, respectively,

as a function of the linear size of the group, defined here as

the distance between opposing vertices of the undeformed

hexagon. While we observed significant variations through-

out the dynamics, both quantities are shown to be large and

proportional to the group size, as in Cavagna et al. (2010).

Discussion and conclusion The results above show that

the scale-free correlations observed in starling experiments

are not necessarily due to a critical regime, but can be a nat-

ural consequence of position-based interactions among in-

dividuals. Our work also provides a bio-inspired algorithm

that can produce coherent, group-level collective motion for

robot swarms or other artificial flocks. By implementing the

AE model, highly correlated motion dynamics that always

span a significant and approximately constant fraction of the

group, regardless of its size, can be achieved.
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