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Abstract

We present chemlambda (or the chemical concrete machine),
an artificial chemistry with the following properties: (a) is
Turing complete, (b) has a model of decentralized, distributed
computing associated to it, (¢c) works at the level of individ-
ual (artificial) molecules, subject of reversible, but otherwise
deterministic interactions with a small number of enzymes,
(d) encodes information in the geometrical structure of the
molecules and not in their numbers, (e) all interactions are
purely local in space and time. This is part of a larger project
to create computing, artificial chemistry and artificial life in
a distributed context, using topological and graphical lan-
guages.

Introduction

In this note we want to briefly present chemlambda (or the
chemical concrete machine), an artificial chemistry with the
following properties: (a) is Turing complete, (b) has a model
of decentralized, distributed computing associated to it (Bu-
liga and Kauffman, 2013), (c) works at the level of individ-
ual (artificial) molecules, subject of reversible, but otherwise
deterministic interactions with a small number of enzymes,
(d) encodes information in the geometrical structure of the
molecules and not in their numbers, (e) all interactions are
purely local in space and time.

In some respects chemlambda is closed to the fraglets
(Tschudin, 2003) and metabolic approaches (Tschudin and
Yamamoto, 2004) research line. In others, it resembles to the
CHAM (’chemical abstract machine”) (Berry and Boudol,
1992), which uses a chemical metaphor for modeling asyn-
chronous concurrent computations (in particular a concur-
rent lambda calculus). Algorithmic Chemistry (Fontana and
Buss, 1996) (Fontana and Buss, 1994a) (Fontana and Buss,
1994b) is another classical line of inspiration. Because it
concentrates at the level of individual molecules, it departs
however from the programming model of computation in-
troduced in (Banatre and Le Métayer, 1986) (Banatre et al.,
1988).

Chemlambda appeared as an artificial chemistry version
of a graph rewrite system, called graphic lambda calculus
(GLC) (Buliga, 2013b) (web tutorial). In GLC programs are

certain trivalent graphs, and execution of programs means
the application of graph rewrites, called “moves”, on the re-
spective graph.

In the GLC formalism there is one global move
(GLOBAL FAN-OUT), all the other moves are local (i.e.
they involve a fixed, small number of nodes).

Chemlambda was introduced in order to eliminate this un-
pleasant GLOBAL FAN-OUT. Chemlambda uses only local
moves (Buliga, 2013a) (web tutorial). The moves of chem-
lambda act on trivalent graphs called “molecules” at certain
“reaction sites”, like chemical reactions involving molecules
and enzymes (here enzyme=move).

Later on, a distributed, decentralized model of computa-
tion appeared, called distributed GLC (Buliga and Kauff-
man, 2013), which is based on chemlambda and GLC, also
using the Actor Model by Hewitt (Hewitt, 2010) (Agha,
1986). The Actor Model ingredient is a replacement of prox-
imity relations between (individual) interacting molecules.
Indeed, real chemical interactions happen only between
molecules which are close one to another. But in the chem-
lambda formalism there is no space where these artificial
molecules float, they are just certain trivalent graphs, not
embedded in any way in a space. Computation with chem-
lambda molecules is seen as asynchronous, purely local and
decentralized application of graph rewrites (i.e. moves, or
interaction with enzymes). Proximity relations are then re-
placed by interactions between actors, each actor being in
charge of a molecule, and having a very limited repertoire of
behaviours. (In turn, each behaviour uses one of the graph
rewrites available, either applied between two interacting ac-
tors, or internally, as it is the case of the sequences of moves
which effect a self-multiplication replacing the GLOBAL
FAN-OUT of GLCO).

The key merit of this model is a graphical reformulation
of the well-known lambda calculus, central to logic and to
the design of recursion in computer languages. By refor-
mulating the lambda calculus in terms of graphs, the oper-
ations for the calculus become essentially local operations
of graphical replacement. The graphs themselves contain
all the data that is usually formulated in terms of algebra.


http://chorasimilarity.wordpress.com/graphic-lambda-calculus/
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This means that the global structure of the graph contains
all the information that is usually cut up into bits of alge-
bra. The graph becomes a whole system that instantiates the
computational power of the calculus. This instantiation is
the key reason why this model can propose significant de-
signs in distributed computing. The graph as a whole can
exist in a widely distributed fashion, while the interactions
that constitute its computations are controlled by local nodal
exchanges between actors.

Furthermore, this property of redesigning the relationship
of the local and the global is not restricted just to lambda cal-
culus networks. There are relationships of the same kind that
link this research with topology (knots and lambda calcu-
lus (Kauffman, 1994b), knot automata (Kauffman, 1994a)),
or with topological quantum computing (Chen et al., 2007),
(Kauffman and Lomonaco Jr., 2006).

A quick review of lambda calculus

In this section we give a very quick review of the formalism
and ideas of lambda calculus. First of all the notation

F = xy.f(z,y)

indicates a function f(x,y) of two variables, defined in
some domain and a stipulation (the part after A and before
the function) of the order of application of the operator F' to
these variables. Thus we can write

(Fz)y = f(z,y).

For example, If
F = Avy.y(yz),

then
(Fa)b=b(ba).

Later we will make a notation for the operation of evaluat-
ing such an operator, but for now we just consider the non-
associative algebra structure of such operators. We can work
in reverse as well. Suppose I say that G is an operator de-
fined by the equation

(Gz)y)z = (yz)(y2).

Then we have in the A notation,
G = \zyz.(yx)(yz).

For this analysis, let us suppose that the algebra generated
by the variables z,y, z,--- is a universal non-associative
algebra. This means that the binary operation is non-
associative and there are no further relations instantiated.
However, if we define M by Mx = zx and regard M as
an element of an extension of the original algebra by giving
it the status of M = Az.xx, then M satisfies the special
relation that defines it and furthermore we would like to be
able to say that the definition of the action of M applies

even if we apply M to itself. In that case we would have
MM = M as a consequence of the definition M = \z.zx.
Thus we can start with a universal non-associative algebra
and then add new elements that satisfy special relations. We
can in this freely made situation allow the new elements to
act (compose) upon themselves.

Here is a useful example. Let F' be a given operator. It
can be one of the original variables, or it can be a defined
operator such as we have discussed above. The we define G
as

Gz = F(zx).
That is, we define
G = \z.F(zz).
Now we note that
GG = F(GQ).

Thus any F' in our algebra has a fixed point that is another
element of the algebra. This is the Fixed Point Theorem
of Church and Curry. Along with this fixed point theorem
comes some caution in the use and construction of such
lambda calculi. For suppose we had been dealing with a
logical calculus and F' =~, the negation operator. Then in
our initial calculus we may have assumed that negation does
not have a fixed point, as in classical logic. But we have seen
that if
G = \z. ~ (zx),

then
GG =~ (GG).

Thus the extended algebra can not be expected to continue
to obey classical logical rules. If it is desired to continue
to obey such rules then one must put some controls on the
lambda calculus. Also, if one has a fixed point as in

GG = F(GG),

then there is the possibility of an infinite recursion of the
form

GG = F(GG) = F(F(GG)) = F(F(F(GQ))) =

— F(F(F(F(GG)))) = F(F(F(F(F(GQ))))) =~

Itis good to have a formalism for recursion, but the language
needs to include controls for that so that a computation does
not run without stopping.

One way to handle such control is to replace equality of
evaluation by an evaluation or reduction step. Then one
would have

(Ax.H(z))a — H(a)



where the arrow refers to a reduction step that can be per-
formed. In this case, the step is called beta - reduction. In
the rest of this paper, we show how to adapt such controlled
lambda calculi to operations on graphs where steps of re-
placement from one graph to another correspond to opera-
tions like beta-reduction. The graphs, once they are formu-
lated, have the advantage that the details of labeling in the
algebra have disappeared into graphical connections and so
certain complexities of lambda calculi are handled automat-
ically. We envisage such graphical systems and their evolu-
tions under computational steps such as beta-reduction as a
new and powerful formulation of computation and informa-
tion processing.

The Chemlambda formalism

Chemlambda is a graph rewriting system. It consists in
a family of graphs, called “molecules” and a list of graph
rewrites, called “moves”. Every move is local, in the sense
that there is an a priori upper bound on the number of nodes
and arrows which are modified during the move.

A molecule is alocally planar graph made by a finite num-
ber of pieces (arrows, loops, nodes described in Fig. 1).
We may admit also a set of nodes with unspecified va-
lences, called other molecules”. These are the equivalent of
“cores” from (Buliga and Kauffman, 2013) section 3, para-
graph 5. Interaction with cores, i.e. they can be used as
interfaces with external constructs.

) ©)

Figure 1: Basic pieces of chemlambda molecules: (a)
lambda abstraction node, (b) fanout node, (c) application
node, (d) fanin node, (e) arrow, loop and termination node

Each chemlambda move is to be interpreted as the interac-
tion of a chemlambda molecule with an enzyme (which has
the same name as the move), at a certain reaction site (the
place where the move is applied). The moves are reversible.

The list of moves is the following:

- the beta move, Fig. 2 up, is the graphic version of beta
reduction from lambda calculus. It is a local graph rewrite
version of the Wadsworth (Wadsworth, 1971) or Lamping
(Lamping, 1990) beta reduction move, in the sense that
it can be applied whenever is possible, independently of
the fact that the graph, or molecule, represents a lambda
calculus term.

- the FAN-IN move, Fig. 2 down, is a dual of the beta move,
involving a fanin and fanout node. It is as important as

the beta move, being involved into self-multiplication of

molecules.
p
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Figure 2: (up) the beta move, (down) the FAN-IN move
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- the DIST moves, Fig. 3, provide the mechanism of self-
multiplication of molecules, together with the FAN-IN
move
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Figure 3: the DIST moves

- the co-associativity and co-commutativity moves, Fig. 4,
are a very weak description of the fanout node as a fan-
out, in the sense that if we think about the fanout node
as being a gate with one input and two outputs which
are identical with the input, then graphically such a gate
would satisfy the CO-ASSOC and CO-COMM moves.
However, the fanout node is not a gate in this formalism,
because there is nothing which propagates through the ar-
rows of chemlambda molecules.
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Figure 4: the co-associativity and co-commutativity moves
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- the local pruning moves, Fig. 5, are useful in both senses,
either as moves which destroy the “dead” arrows and
nodes, or as moves which enrich the molecule by creat-
ing new arrows or nodes.
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Figure 5: the local pruning moves

Chemlambda and lambda calculus

Lambda calculus combinators can be encoded as chem-
lambda molecules. In (Buliga, 2013a) Theorem 4.2 is given
the encoding of the BCKW system of combinators from
Fig. 6. The proof of the theorem has two parts: (a) the re-
duction relations of the BCKW system can be done in chem-
lambda, (b) the B,C,K,W combinator molecules can repro-
duce, or self-multiply. The conclusion of the theorem is that
chemlambda is Turing universal.

We think it is interesting to explain in detail what this self-
multiplication means in the chemlambda formalism.

Remark, after inspection of the Fig. 6, that every combi-
nator molecules has one arrow which points outwards from
the molecule, let’s call this arrow the exit arrow”. Recall
that we have a fanout node among the basic pieces of chem-
lambda molecules. In order to prove the Turing universality,
we need to be able to transform, by a sequence of chem-
lambda moves, one combinator molecule with the exit arrow
connected to the in arrow of a fanout node, into two copies
of the combinator molecule. We call this self-multiplication.
(In the GLC formalism this self-multiplication is done via
the move GLOBAL FAN-OUT, but chemlambda has only
local moves.)

As an example, in the Fig. 7 we see how the K combina-
tor molecule self-reproduces, after a string of chemlambda
moves.
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Figure 6: B,C,K,W combinators encoded in chemlambda
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Figure 7: Self-reproduction of the K combinator molecule
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Propagators, distributors, multipliers and
guns

The self-multiplication of combinator molecules is done by
a sequence of local moves of chemlambda. The sequence
of moves depends on the combinator molecule. We have
seen that self-multiplication is an important ingredient for
proving Turing universality of chemlambda.

Many chemlambda molecules don’t encode combinators
or lambda calculus terms, moreover, moves like DIST or
FAN-IN don’t have a clear meaning as seen from the point
of view of lambda calculus. The phenomenon of self-
multiplication is not restricted to combinator molecules.

Let us then explore a bit the chemlambda formalism from
the point of view of phenomena like self-multiplication,
without caring about lambda calculus.

In the Fig. 8 are defined multipliers, propagators and dis-
tributor molecules. A chemlambda molecule with an exit
arrow A — is a multiplier if there is a sequence of chem-



lambda moves, denoted by MU LTy, which produces the
self-multiplication of the molecule. For example, any com-
binator molecule is a multiplier, but there are other multipli-
ers as well.

A chemlambda molecule — A — with distinguished in
and out arrows is a propagator if there is a sequence of
chemlambda moves, denoted by PROP,, with the effect
described in the second row of Fig. 8. The molecule is called
a propagator because it looks like it propagates through the
fanout nodes.

There are two kinds of distributor molecules, described
in the 3rd and 4th rows of Fig. 8. Compare with the DIST
moves from Fig.3, which can be interpreted by saying that
the application node is a distributor of the first kind and the
lambda abstraction node is a distributor of the second kind.
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Figure 8: Definition of self-multipliers, propagators, distrib-
utors

Starting from the mentioned multipliers and distributors,
we can make many other interesting molecules. For exam-
ple, we can make a propagator from a multiplier A and a
distributor of the first kind B, as described in Fig. 9.
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Figure 9: Propagator made from a multiplier and a distribu-
tor of the first kind

In Fig 10 is described a multiplier made from a distributor

of the second kind.
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Figure 10: Multiplier made from a distributor of the second
kind

We can as well make guns, which shoot an endless string
of molecules, like in the Fig. 11. On the first row is described
a gun made from a propagator molecule and a fanout node.
On the second row is described a gun made from a distribu-
tor of the first kind and a fanout node.
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Figure 11: Examples of guns

See also (Buliga, 2013a) Section 3 for other examples
of interesting chemlambda molecules, like zippers, sets and
pairs.

All these constructions show that we can use chemlambda
for building all sorts of synchronous or asynchronous au-
tomata (which are not living on a predefined lattice, instead
they grow their own lattice). Also, we proved the potential
of chemlambda to evolve complex molecules from simple
ones.

The Y combinator and self-multiplication

In this section we come back to lambda calculus, in order to
explain the behaviour of the Y combinator molecule. From



the previous sections we learned that self-multiplication is a
basic ingredient for encoding the BCKW system of combi-
nators in chemlambda. The moves applied to a combinator
molecule represent the reduction of the combinator. Self-
multiplication is needed in order to produce copies of a part
of the combinator molecule, with the purpose of further re-
ducing one of the copies, while having at our disposal the
other copy for further needs.

Seen like this, it seems that self-multiplication is also a
basic ingredient for recursion. In lambda calculus there is
the iconic Y combinator which represents the essence of re-
cursion. In the following we shall see that, however, self-
multiplication is not directly needed in the reduction of the
Y combinator.

A B

Figure 12: the YA combinator molecule and a first beta
move

S

Figure 13: second beta move applied to the YA molecule
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Figure 14: next step of reduction, two DIST moves

The Y combinator has the expression
Y = \y.(Az.y(zz))(Ax.y(xx))

and it has the following property: for any lambda term A
the expression Y A reduces to A(Y A). In particular, if A is
another combinator, then Y A is a fixed-point combinator for
A.

In lambda calculus the string of reductions is the follow-
ing sequence of beta moves:

YA — (\z.A(zz))( Az . A(zx)) —
— A((Az. A(zx))(\x. A(zz))) = A(Y A)

We see that the during the reduction process we needed a
multiplication of the combinator A.

Let us pass to the chemlambda encoding of the Y combi-
nator. With A another combinator molecule, the combinator
molecule which encodes Y A is the one from the left hand
side of the Fig. 12.

After the application of a beta move, it transforms into the
molecule from the right hand side of Fig. 12. Continuing
from the Fig. 12, there is a second beta move which can be
applied, as in Fig. 13.

There are two DIST moves, one of the first kind, the other
of the second kind, which are applied, as in Fig. 14.

Let’s see how we can reduce further this molecule, until
we obtain one which corresponds to A(Y A). We shall use
the fact that a certain molecule, called the bit is a propaga-
tor, as proved in Fig. 15. The bit molecule corresponds to
the expression (xx) which appears repeatedly in the Y com-
binator.

DIST
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Figure 15: the bit is a propagator

We continue from the Fig. 14 and we apply the PROP
move of the bit and then a FAN-IN move, as in the Fig. 16.

The last molecule corresponds to A(Y A), if we interpret
the fanout nodes as real fan-out gates.

Surprisingly, during the reduction there was no need to
use the fact that the combinator molecule A is a multi-
plier! This shows that the Y combinator molecule can be
used as a fixed point combinator with any other chemlambda
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Figure 16: last two moves of the reduction of Y A to A(Y A)

molecule. That is because the Y combinator molecule is a
gun which shoots fanout nodes, Fig. 17.

Figure 17: the Y molecule is a gun

A topological version of chemlambda

In (Buliga and Kauffman, 2013) Section 5 is proposed a
topological version of GLC, called TGLC. We can do the
same with chemlambda. The idea is that we may imag-
ine formalisms which are equivalent with GLC and chem-
lambda, even if visually they seem different.

(o

Figure 18: Topological Fixed Point Combinator

For a topological version of chemlambda we may use
some of the basic nodes of chemlambda together with knot
diagrams crossings. In Fig. 19 we give two possible transla-
tions of crossings into chemlambda: (a) as a pair of a fanout
and application node, corresponding to the proposal made
in (Buliga and Kauffman, 2013) Section 5, or (b) as a pair

of a lambda abstraction node and an application node, as
proposed in (Buliga, 2013b) Section 6. A crossing is a 4
valent vertex. Virtual crossings, i.e. encircled crossings of
graphical lines, may be used for making our graphs globally
planars instead of only locally planar, as previously.
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Figure 19: first row, two possible translations from crossings
to chemlambda, second row a virtual crossing

If we stick to the choice (a) then we obtain a topological
version of chemlambda, that has the form of knot diagrams
equipped with extra lambda nodes and multiplication nodes.

In Fig. 18 we illustrate the basic fixed point combinator

G = \e.F(zz)\v.F(zx)

In this knot diagrammatic convention, the two self-
multiplications that occur at two levels in this expression are
instantiated by the two curls in the graph.

Similarly, in Fig. 20 we illustrate a topological expression
for the Y -combinator.

S

Figure 20: Topological Y - Combinator

Note how the structure of this combinator takes on the hy-
brid nature of tangle diagram infused with curls and lambda
nodes. It is natural to use virtual crossings in graph theory
and in fact there is an extension of knot theory that allows
exactly such virtual crossings in the knot diagrams.

In Fig. 21 we see that, via a CO-COMM move, a curl is a
bit, the molecule which appears in Fig 15.

The fact that alpha reduction is not needed in chemlambda
due to the absence of variables and the presence of direct
connections that effect interactions is part of a link of this
formalism with the formalisms at the knot theoretic and
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Figure 21: a curl is a bit
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topological level. One difference between knot theoretic
considerations and lambda calculus considerations is in the
fact that we do not usually think of a knot diagram as a com-
puting element that undergoes moves and reductions for the
sake of a computation. But this is not always so. For ex-
ample, the skein algorithms such as the bracket polynomial
algorithm can be regarded as a reduction process that pro-
duces two new graphs from each crossing in the knot dia-
gram. This is similar to allowing free beta reduction in the
lambda calculus graphs. What must be done however in the
knot theoretic case is to collect up all the end calculation
results and add them together. This is what is meant by a
formula like
(K) = Ss(K]S).

(See (Kauffman, 1991).) Each S is a pattern of reductions
leading to a specific algebraic value (K|S). The topologi-
cal invariance occurs at the level of the sum of all of these
contributions.

An analogous situation could occur in a stochastic version
of chemlambda, where one would need the average over all
the results of the many branching graph rewrites.
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