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Abstract 

In his seminal paper on morphogenesis (1952), Alan Turing 
demonstrated that different spatio-temporal patterns can arise 
due to instability of the homogeneous state in reaction-diffusion 
systems, but at least two species are necessary to produce even 
the simplest stationary patterns. This paper is aimed to propose 
a novel model of the analog (continuous state) kinetic 
automaton and to show that stationary and dynamic patterns 
can arise in one-component networks of kinetic automata. 
Possible applicability of kinetic networks to modeling of real-
world phenomena is also discussed. 

Introduction 

Pattern formation has been a well-investigated research field 
since the pioneering work of Alan Turing on morphogenesis 
(Turing, 1952). He showed that pattern formation can be 
accomplished by the interaction of two substances that spread 
with different rates. For the interactions of this type, Turing 
introduced the term reaction-diffusion systems, which is now 
generally in use. He demonstrated that a homogeneous steady 
state is unstable in certain such systems, and any small local 
deviation from this steady state is sufficient to trigger the 
onset of pattern formation. This phenomenon, termed 
diffusion-driven instability, has been found to be applicable in 
many biological and chemical systems and was analyzed 
mathematically using a variety of techniques (Murray, 1993). 
 The classical Turing instability leads to the establishment 
of stationary spatial patterns. However, the oscillatory 
analogue of this instability is possible and it was also 
envisaged by Alan Turing. This oscillatory instability 
produces traveling or standing waves and therefore it is often 
called the wave instability (Walgraef, 1997). Turing suggested 
that at least three species are needed for the oscillatory 
instability. The oscillatory instability is much rarer and has 
been found only in some chemical systems (Zhabotinsky et 
al., 1995) and biological phenomena (Meinhardt, 2004). 
 Owing to Turing’s indisputable authority, it is often 
considered as a well-established fact that patterns can arise 
only in multicomponent dynamical systems. Actually, it holds 
mainly for reactive systems with passive transport, or, more 
precisely, chemical continuum media with gradient driven 
diffusion, described by Fick’s Law and explained by Einstein 
in 1905 under the random walk assumption. However, an 
increasing number of natural phenomena, which are called 
sub-diffusion, super-diffusion or anomalous diffusion in 
general (Klafter and Sokolov, 2005), do not fit this relatively 
simple description of diffusion. From the signaling of 

biological cells to the foraging behaviour of animals, the 
overall motion of objects is better described by steps that are 
not independent and can take vastly different time to perform. 
Some systems can be modeled as networks of decision-
making agents reacting to external events or signals and can 
be regarded as reflexive systems with active transport, where 
the direction of motion depends not only on gradients but on 
many other factors, which may lead to “The rich get richer” 
phenomenon. 
 This paper is aimed to propose a novel numerical 
algorithm, called Conservative Rank Transform and an analog 
model of an abstract autonomous agent, called a kinetic 
automaton or a kinon for short; then to show that different 
dynamical patterns found in Turing multi-component systems 
can arise even in one-component kinetic networks, defined as 
reflexive dynamical systems with active transport. 

Background 

The proposed model stems from the cellular automatа (CA) 
framework, conceived in the early 1950's by J. Von Neumann 
(Neumann, 1960) and Stanislaw Ulam (Ulam, 1952) and 
became popular among researchers largely due to John 
Conway’s Game of Life (Gardner, 1970). The popularity of 
CA can be attributed to the enormous potential they hold in 
modeling complex systems and their simplicity, which is 
determined by the regularity of an underlying lattice and a 
fixed number of cell states. Frisch, Hasslacher and Pomeau 
(Frisch et al., 1986) and Wolfram (Wolfram, 1986) 
independently discovered that a simple cellular automaton on 
a 2D triangular lattice can simulate the Navier-Stokes 
equations and proposed an FHP model or Lattice Gas 
Automata (LGA), as these models are usually termed. Closely 
related to CA, Random Boolean Networks (RBN) were 
introduced by Stuart Kauffman as a model of genetic 
regulatory networks (Kauffman, 1969). It has been shown that 
Boolean idealization may capture the dynamics of genetic 
regulatory systems (Kauffman, 1993), but in general, Boolean 
approximation is inappropriate for modeling flow processes, 
e.g., movement of money through an economy, electricity 
over a grid, concentrations of metabolites in cell tissues, etc. 
 To address this issue, Coupled Map Lattices (CML) were 
proposed by Kunihiko Kaneko as a paradigm for the study of 
spatio-temporal complexity such as turbulence, convection, 
flows, population dynamics, etc. (Kaneko, 1985).  CML can 
be viewed as a generalization of CA in terms of continuous 
state space and arbitrary network topology, but despite 
promising universality, CMLs have not become widespread. 



On the contrary, Lattice Boltzmann Model (LBM), originally 
evolved from LGA and based on a minimal kinetic Boltzmann 
equation (Wolf-Gladrow, 2000), is attracting growing 
popularity. In LBM, representative particles (’parcels of 
fluid’) evolve on a regular grid in accordance with simple 
streaming and collision rules designed to preserve fluid 
dynamics. 
 In the recent years, a lot of research has been directed to the 
continualization of the state space of different models. It was 
shown by Ulam that many deterministic problems in 
mathematics and physics can be converted into equivalent 
random processes and described by probabilities, which are 
real numbers (Ulam, 1952). The superiority of continuous 
values is confirmed by the mathematical theory of computable 
numbers and computable functions. It has been proved that 
simple analog (continuous state) computers can compute 
numbers and functions which are not computable by digital 
computers (Pour-El and Richards, 1989). 
 Despite the shown diversity, almost all existing modeling 
paradigms are derived from the cellular automaton model and 
inherit its restriction to lattice uniformity and a discrete state 
space. In some cases it leads to excessive oversimplification. 
According to Albert Einstein, "Everything should be made as 
simple as possible, but no simpler." The cellular automaton 
paradigm appeared in the very beginning of the computing 
era, when simplicity was compulsory. Modern computer 
technologies, in which even mobile phones outperform the 
former mainframes, pose new challenges to the modeling 
science. A new generation of topology and state space 
invariant modeling paradigms is needed. They will be 
inevitably more structured, but not necessarily much more 
complex. This work is a trial step in this direction. 

Motivation 

To a great extent this work was initiated by the now almost 
forgotten ideas of Konrad Zuse and Gordon Pask. Konrad 
Zuse, a German engineer who was the first to suggest that the 
entire universe is being computed on a computer, possibly a 
cellular automaton called "Rechnender Raum" or Calculating 
Space. In his paper he also gave an outline of a more 
advanced model called a net automaton (Zuse, 1969):  

“Cellular automaton provides an elegant solution when 
each cell contains a complete calculating system, as 
symbolically represented in Figure 73. These single 
calculating systems contain both information-processing 
and information-storing elements. …The net automaton 
represented in Figure 74 is a further development of the 
cellular automaton corresponding to Figure 73. The 
individual cells are responsible here for only 
information processing. Branching lines B connect the 
individual cells and serve both for information 
transmission and for information storage.” 

In his subsequent book on the theory of net automata (Zuse, 
1975), which seems to have never been translated from 
German, Zuse considered mainly topological issues of the net 
automaton, but its internal structure was not elaborated. A 
decade earlier, Gordon Pask, a British cybernetician created a 
number of maverick machines, worked on the electro-
chemical device now known as Pack’s Ear (Cariani, 1993).  
Pask demonstrated that such a device was able to construct its 
own sensors and effectors without having programmed them 
into a preset purpose. Using the same approach, he introduced 
an evolutionary model containing a diffusion network, which 
can be regarded as a precursor of the kinetic networks 
considered further (Pask, 1961):  

“All a mean by a diffusion network is a system of tubes 
and basins, say, over which we can define food 
neighborhoods. A formal representation of a food 
diffusion network is shown in Fig. 1. It is a directed 
graph with nodes. The lines connecting nodes have 
quantities associated with them that represent the food 
impedance, the amount of resistance to the passage of 
food between nodes.” 

Despite the seeming disparity, both Zuse’s net automaton and 
Pask’s diffusion network have the central idea that nodes of 
the network are connected reciprocally with lines, having not 
only transport but also processing functions, and thus being 
active. This idea is in sharp contrast with the conventional 
view on network links as passive elements, prevailing until 
now. The main conundrum for the unification of these models 
was a mesh topology, because all of the earlier considered 
computational paradigms require a fixed number of input 
links, so they cannot be applied to a mesh. 
 The origin of this issue is that all the models, except for 
LGA/LBM, are functional, because they are based on 
functions with a single output value. Unlike other models, 
LGA/LBM models are relational, because they are based on 
relations, which are morphisms of a set of input values onto a 
corresponding range of output values. Relations in these 
models are based on equations describing the motion of fluids 
or gases. In order to make the models computationally 
tractable, these equations were calculated for a fixed number 
of inputs and outputs, and the results were implemented as 
lookup tables. Although the attempts to enhance the 
geometrical flexibility of LBM continue, they do not have 
sufficient universality (Ubertini and Succi, 2008). LGA/LBM 
approach seemed to be very promising, but a more universal, 
not restricted to a specific underlying grid or physical reality, 
transformation method was needed. Further investigations 
eventually led to a new transformation technique and a based 
on it model, which can be described as a relationist view on 
interacting systems. 



Relationism is a venerable paradigm which can be traced back 
to Newton’s great rival Leibniz, who argued that all properties 
arise from relations and reality consists of an evolving 
network of relationships. Later this idea was formulated by 
Einstein as Mach’s principle. In modern physics this approach 
is revived by Lee Smolin, one of the leading proponents of 
loop quantum gravity (Smolin, 1997). This approach is also in 
line with the views of Gregory Bateson, a British 
anthropologist and cybernetician, who emphasized that logic 
and quantity are inappropriate devices for describing 
organisms and their interactions (Bateson, 1969): 

“It is impossible, in principle, to explain any pattern by 
invoking a single quantity. But note that a ratio between 
two quantities is already the beginning of pattern. In 
other words, quantity and pattern are of different logical 
type and do not readily fit together in the same thinking. 
(p.53) … We use the same words to talk about logical 
sequences and about sequences of cause and effect... But 
the if-then of logic in the syllogism is very different from 
the if-then of cause and effect… The if-then of causality 
contains time, but the if-then of logic is timeless. It 
follows that logic is incomplete model of causality 
(pp.56-59)”. 

The difference between a system of causal entailments (what 
is happening in the external world) and a system of inferential 
ones (a language in which these events are expressed) was 
also underlined by the founder of relational biology Robert 
Rosen (Rosen, 1991). He defined the relation between them 
via further semantic elements: encoding and decoding, that 
bring the two entailment structures into congruence (Fig.1c). 

 Rosen’s modeling relation is very close to a cybernetic 
perception-action loop (Fig.1d), which has become a 
conceptual schema of a general system, also known as input-
process-output plus storage (IPO+S) model. From this point 
of view, all considered models can be divided into two main 
groups: functional models (CA/RBN/CML) (Fig.1a) and 
relational models (LGA/LBM) (Fig.1b). The main difference 
between them is that in functional models a new state of a cell 
is stored and relayed (fanned out) to all or some of its 
neighbors, so they can be conservative only in special cases 
(Fredkin and Toffoli, 1982). In contrast, relational models 
were created for modeling real physical phenomena, so they 
are conservative by default. Relational models treat a cell as a 
“black box” and its responses are only observable to its 
neighbors but not its internal state. So it can be viewed as a 
reflexive system differentially responding to its links. Its 
response (observable reflex) to a link depends on but is not 
equal to its current state and inputs from other links. 

 It should be noted that the range of functional models is not 
restricted to the listed above. All kinds of artificial neural 
networks, e.g. Spiking Neural Networks (Maass, 1997), and 
many other dynamical networks with continuous states, e.g. 
Compositional Pattern Producing Networks (Stanley, 2007), 
are also functional, because their nodes produce a single 
output value which is relayed only to some of their neighbors, 
thus they are not conservative and reflexive. 

 Rosen’s modeling relation, cybernetic and lattice gas 
models were taken as a blueprint for the kinetic automaton 
model (Fig.1e), which inherits many of their structural and 
semantic elements. 

 

Figure1: Modeling frameworks
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Method 

 The key element of the model, making its properties and 
dynamics different from LBM, is a collision step, which is 
transformed into a 3-step operator: Encoding-Modulation-
Decoding, called Conservative Rank Transform (CRT). In this 
method, not quantities as such but their relative values (ranks) 
are transformed (modulated), and the total quantity does not 
change after transformation. 
 CRT is derived from the simplest of all image processing 
techniques called Intensity Transformations (Gonzalez and 
Woods, 2008). The main goal of intensity transformation is to 
increase intensities of some pixels in an image and/or to 
decrease intensities of others. This is done via an intensity 
transformation function, which is a mapping of an input value 
of a pixel onto its output value (Fig.2). 

Figure 2: Basic intensity transformation functions 

There is an advanced image processing technique, called Rank 
Transformation (Zabih and Woodfill, 1993), which changes 
the intensity of a pixel in relation to its neighborhood. CRT 
can be outlined as a quantity conserving synthesis of Intensity 
and Rank Transformations and is carried out in 3 steps: 

 1. Encoding. The first part of this step, called gathering, is 
just adding the values of all inputs and storage. The second 
one, scaling, is the conversion of absolute input values into 
ratios with a unit sum. In the simplest case it can be ordinary 
weighting, but in general, it may be a more sophisticated 
procedure. It should be emphasized that output values must be 
in the [0,1] range with a unit sum, so they can be regarded as 
density ratios, probabilities or ranks. 

 2. Modulation. This is the core step of the method 
congruent to a collision step in LBM. It modulates (maps) 
input ratios onto their output values via a kinetic function 
(map), which is a normalized version of the intensity 
transformation functions in image processing. Modulation of 

input ratios is performed on a one-by-one basis, so in a 
general case, the sum of modulated ratios changes after this 
step. But this does not contradict to the name of the method. 
Modulation only changes the proportions between input 
values. A kinetic map can be any smooth or piecewise curve 
whose domain and range are defined in the [0,1] interval. 

 3. Decoding. This step consists of the rescaling of 
modulated ratios to the volume of storage and scattering them 
among corresponding outputs and storage. 

 To illustrate how the method works, a simple numerical 
example is considered in Figure 3. During an encoding step, a 
set of input values {0.2, 0.4, 1.4}, denoted by I, is weighted to 
the sum of the set. The weights can be regarded as ranks with 
a unit sum and are denoted by R. On a modulation step, the 
ranks are modulated via a parabolic kinetic map. The sum of 
the modulated ranks, denoted by R’, increases from 1.0 to 1.6. 
During a decoding step for obtaining output values, denoted 
by O, each modulated rank is multiplied by a rescaling factor 
which is the ratio of the sum of inputs to the sum of 
modulated ranks (2.0/1.6=1.72). Resultant outputs have the 
same sum as inputs but different values.  

Figure 3: Conservative Rank Transform (CRT) 

In a nutshell, this method is a quantity conserving relation or a 
morphism of a set of input values onto a range of 
corresponding output values.   

Model 
The overall schema of the kinetic automaton in detail looks as 
follows (Fig.4):

 

Figure 4: The kinetic automaton state-transition structure 
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This diagram uses the graphical notation of state-transition 
structures introduced by Carl Adam Petri and known as Petri 
nets (Petri, 1982). States in the kinetic automaton model can 
be thought of as internal buffers for storing intermediate 
results and are depicted by round shapes, while transitions 
have square forms. Input (I) and output (O) state buffers of a 
kinon are represented by real valued vectors of dimension N, 
where N is the number of neighbors which is fixed for 
structured and variable for unstructured networks.  Rank 
buffers (R and R’) have an additional dimension 
corresponding to storage. The only buffer in a kinon having a 
scalar value is storage. It stores the overall quantity during 
modulation and a quantity remaining in a kinon (its state) 
during propagation. The sum of output storage values of all 
kinons of the network can be related to the internal (potential) 
energy of the network and the sum of output buffers of all 
kinons to its external (kinetic) energy. The total energy in the 
network is always the same, whereas internal and external 
energies interchangeably fluctuate. 
 In the diagram, a propagation block, operating with 
absolute values, and storage, holding an absolute (raw) value, 
are painted in blue (fluid) color. A modulation block operates 
with relative (abstract) values, so it is painted in white. 
Encoding and decoding blocks are proxies which manipulate 
with both types of values, so they are divided into two sub-
blocks and painted in different colors.  
  In Rosen’s modeling relation (Rosen, 1991) (Fig.1c), the 
relation of equivalence is the following:  

1 = 2 + 3 + 4, 
where: 1-Natural system, 2-Encoding, 3-Formal system, 4-
Decoding. 
 If we denote divided blocks in Fig.4 as 2N, 2F, 4N, 4F and 
storage as S, then the following relation of equivalence 
between the absolute (Natural) and the relational (Formal) 
parts of the model holds: 

1 + 2N + S + 4N = 2F + 3 + 4F. 
This relation corresponds to Zuse’s net automaton, where the 
left part designates branching lines responsible both for 
transmission and storage,  and the right part is related to the 
nodes responsible for only information processing. It indicates 
the dualism of the model, because it represents both a cellular 
and a net automaton in Zuse’s terms. 
 It is easy to notice the similarity of the kinetic cycle to the 

Carnot cycle and the engines performing it (Fig. 5). 

 Figure 5: The Carnot cycle engines 

This is not a coincidence, because the model was elaborated 
with having the Carnot cycle as well as Kauffman’s work-
constraint cycle (Kauffman, 2000) in mind. The work-
constraint cycle links the ideas of ‘work’ and ‘constraint’, 
defining work as “the constrained release of energy into 
relatively few degrees of freedom”. A system performs the 
work-constraint cycle if it is able to use its work to regenerate 
at least some of the constraints that make work possible. In 
Kauffman’s words, “Work begets constraints beget work”. 
The kinetic automaton was conceived as an abstract 
autonomous agent doing its own thermodynamical cycle. 
Work in it is related to the kinetic exchange among automata 
(interaction) that generates new constraints (relation) inside 
automata, which in their turn, generate new interaction. 
Hence, the work-constraint cycle can be put as the interaction-
relation cycle: interaction begets relation begets interaction. 

 The Carnot heat-engine cycle is totally reversible. 

Therefore, all the processes that comprise it can be reversed, 

in which case it becomes the Carnot refrigeration cycle.  The 

similarity between the kinetic automaton and the Carnot cycle 

may lead to the conclusion that the kinetic automaton is also 

reversible, but it is not true. As it was mentioned earlier, the 

staple feature of the CRT method is its invariance to the 

number of inputs and outputs achieved due to decoding. 

Before scattering, we need to rescale the sum of modulated 

ratios to the volume of storage, which is an irreversible 

operation. In Boolean algebra, where states are binary and the 

number of different combinations is finite, reversibility is 

possible in special cases (Toffoli, 1980). In real valued 

algebra it is impossible in principle to split the sum without 

prior knowledge of components or their ratios, because the 

number of possible combinations giving the same result is 

infinite even for two components.  

 Therefore, this method is in line with both the conservation 
law and the second law of thermodynamics, which is held to 
be accountable for the irreversibility of time. It sounds 
discouraging for the model supposed to generate dynamical 
patterns. However, despite the second law, Life itself, which 
is the most improbable and fascinating of all dynamical 
patterns in the Universe, exists due to the phenomenon of self-
organization or “order for free” (Kauffman, 1995). It will be 
shown further that in most cases the dynamics of kinetic 
automata networks converges to the total equilibrium or 
exhibits chaotic behaviour, but in some cases, even subtle 
changes of the kinetic map can lead to the appearance of 
stable or periodic patterns from an almost homogeneous state. 
 The kinetic automaton model can be regarded as a 
generalized Lattice Boltzmann model, which is not restricted 
to the Boltzmann equation and a regular grid, but the 
differences are more than that. Contrary to all considered 
above models, not quantities as such but their relative values 
are transformed, which makes the model relational in both 
Rosen’s semantic and Mach’s relativistic sense. 

Results 

The topological universality of the model allows any network 
structure, but for the ease of the visualization of generated 
patterns, the Cartesian grid was chosen as the underlying 
network. It makes the conversion of the system’s current state 

21 

` 

4 

 
3 

 Entropy 

 

T
e
m

p
er

at
u
re

 

 

Power stroke 
  

Ex
h

au
st
 

  Ig
n

it
io

n
 

  

Compression 
  

b) Internal combustion engine 

  
a) The Carnot heat engine  

c) Steam power plant engine  

  

Turbine 
  

Pump 
  

C
o

n
d

en
se

r 
  B

o
ile

r 
  

Decoder 
  

Encoder 
  

Tr
an

sc
ei

ve
r 

  M
o

d
u

la
to

r 
  

d) The kinetic automaton  

  



to an image quite straightforward and computationally 
efficient. 
 The elementary one-dimensional case will be considered 
first for better understanding of the basic principles governing 
the dynamics of the model. A one-dimensional kinetic 
network consists of N kinons connected in a ring. In all 
experiments shown below, the total quantity available in the 
network is equal to N/2. This is equivalent to the average 
value 0.5 in a uniform state, which is visualized as a grey 
color in a greyscale image. Corresponding kinetic maps are 
shown in the left of the images. All shown kinetic maps are 
defined by splines with a variable number of control points 
and interpolation order and both axes have [0,1] range. 

 It is obvious that an identity map always produces a 
dynamical steady state where nothing changes. However, it 
seems counterintuitive that an identity map is only one of 
many others with the same behaviour (Fig. 6a). 

Figure 6: 1D patterns triggered by near equilibrium states 

Generally, the dynamics of the model slowly converges to the 
total equilibrium or produces chaotic behaviour. However, 
some kinetic maps, in accordance with Turing’s idea,  do 
generate a non-uniform steady state (Fig. 6b) or give rise to 
travelling waves (Fig. 6c) behaving like solitons and only 
slightly changing after collisions. Even more, generated 
standing and travelling waves can coexist (Fig. 6d).  

 Now we change initial settings to the opposite extreme, 
where only one kinon has a storage which is equal to the total 
quantity of the network, so it can be termed as a singularity. 
Remarkably, the dynamics remains almost the same (Fig.7). 

Figure 7:  1D patterns triggered by singularity 

It is not surprising that configurations, where the storage of all 
kinons in the network is randomly set in the [0,1] range, 
behave similarly.  Except for a totally uniform state, which 
cannot be changed by any kinetic map, the dynamics can be 
very sensitive to the tuning of the kinetic map in some cases 
and almost indifferent in others. It means that under certain 

conditions there exists a phase transition, which typically 
refers to a very narrow transition domain from one 
macroscopic state of the system to another. It is characterized 
by a sudden change in some order parameter φ(μ) that 
depends on some control parameter μ (e.g., temperature, 
density,  probability, etc.) that can be continuously varied 
(Solé, 2011). Although relevant order and control parameters 
of the model are yet to be identified and studied, but 
experiments with a very simple kinetic map shown in Figure 8 
revealed the existence of a narrow range of parameter k when 
a nearly uniform initial configuration converges to a 
dynamical ordered or chaotic pattern (II: 1.5<k<2) rather than 
a uniform (I: k<1.5) or non-uniform stable (III: k>2) state. 
Picture in the bottom of Figure 8 shows the change of 
dynamics under  periodic increases of parameter k. The most 
dramatic change occurs at k=1.6 when a nearly uniform state 
triggers spontainiosly into an ordered periodic pattern.  

Figure 8: One-dimensional phase transitions 

The long history of cellular automata research demonstrates 
that it is very difficult to produce round shapes on a square 
grid, but in kinetic automata it goes without any effort. In the 
simplest 2D configuration with a singularity and a negative 
kinetic map after several initial steps, an expanding wave 
quickly changes its form from a diamond to an ideal circle. 
The boundary slowly dissolves into a halo and the system 
converges to the total equilibrium in the long run (Fig. 9) 

Figure 9: Kinetic “Big Bang” 

It was shown in Figure 8 that some changes of a kinetic map 
can induce a sharp phase transition. If we rerun the previous 
experiment and, after about 150 steps, when a full-fledged 
circle is formed, change the kinetic map parameter k=1.0 for 
k~4.0, an expanding circular wave splits into four sectors 
which begin travelling in opposite diagonal directions (Fig. 
10). In all shown experiments, a kinetic map is the same for 
all kinons in the network and is changed manually, but there 
are many ways to subject kinetic map parameters to the 
current state of a kinon and/or its inputs, which can make its 
dynamics even more complicated and unpredictable. 

Figure10: Kinetic fission 
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If we choose a parabolic kinetic map shown in Figure 3 and 
start from a singularity again, then fascinating kaleidoscopic 
ornaments will change non-repetitively for a long time. The 
picture will be even more fascinating with four evenly spaced 
singularities (Fig. 11). 

Figure 11: Kinetic kaleidoscope 

Some kinetic maps can produce dynamic patterns which 
converge to a stable non-uniform state in conformity with the 
Turing two-factor sytems, but unlike Turing patterns, these 
states can be very intricate (Fig. 12):  

Figure 12: Kinetic “Still Life” 

In most case studies starting from a nearly homogeneous state, 
a uniform grey square is usually observed, but now and then 
the uniformity breaks out in spots, which then turn to the 
chaotic or non-uniform stable state (Fig. 13)   

Figure13: Chaotic and stable kinetic patterns 

It seems that it is more than enough for such a relatively 
simple model and it is highly unlikely to expect more, but in 
fact, its creativity is endless. In rare cases, one can observe 
almost improbable life-like phenomena, which can move, 
grow, merge, split and dissolve like Conway’s Game of Life 
dynamical patterns: gliders, puffer trains, avalanches, etc. 
(Fig. 14) 

Figure 14: Kinetic Game of Life 

Discussion 

These examples, which are an infinitely small portion of all 
possible patterns, prove the main thesis of this paper that even 
one-component kinetic networks can generate stationary and 
dynamic patterns similar to multi-component Turing systems. 
Unlike Turing systems, they are triggered by a single 
instability, tentatively called kinetic instability, which is an 

instance of a general self-organized instability (Solé et al. 
2002).  Multi-component kinetic networks are also possible 
and can be implemented by layering of all values in kinon 
buffers into vectors of any dimension. Apart from the same or 
different kinetic maps governing the dynamics of each layer 
there can be additional coupling among layers (‘kinetic 
chemistry’) which can be also implemented via a kinetic map. 
The state and dynamics of three-component kinetic networks 
can be readily visualized by color images. 
 Although the CRT method, described above and used as a 
computational kernel in all shown experiments, proved to be 
elegant and expressive, it is only one of many other possible 
transformation methods. The main requirement of the model 
is quantity conservation during the mapping of multiple input 
values and storage onto their output (feedback) values. 
 Closer examination revealed many unusual phenomena not 
found in Turing systems.  In all case studies starting from a 
singularity, the initial diamond expanding wave, determined 
by the underlying square grid, quickly converges to a circle. 
One of the possible explanations can be done with the use of 
the concept of Brillouin zones. Léon Brillouin, a French 
physicist who studied wave propagation in periodic structures 
(Brillouin, 1946), introduced the concept of zones named after 
him. Physically, Brillouin zone boundaries represent Bragg 
planes which reflect waves having particular wave vectors, so 
that they cause constructive interference. The constriction of 
the first two Brillouin zones on a square grid and the final 10

th
 

Brillouin zone is shown in Figure 15.  

 

Figure 15: Brillouin zones 

The most enigmatic phenomenon observed is an almost 
instantaneous fission of the expanded wave into four sectors 
after the change of the kinetic map (Fig.10). There is no 
acceptable explanation for it so far, but without a doubt, it is a 
self-organized phenomenon, because it requires a large-scale 
correlation.  
 Some generated patterns (Fig.11 and 12) demonstrate 
striking similarities with real-world phenomena, e.g., periodic 
patterns obtained by a Swiss medical doctor and natural 
scientist Hans Jenny, who coined the term Cymatics, the study 
of wave phenomena and vibrations (Jenny, 2001). Jenny 
pioneered the use of piezoelectric crystals hooked up to 
amplifiers and frequency generators to make the resultant 
nodal fields visible by spreading a fine powder of lycopodium 
spores, as well as many other materials (Fig. 16). The shapes, 
figures and patterns appeared to be primarily a function of 
frequency, amplitude, inherent properties of the materials and 
the size of the plate.  

Figure 16: Cymatic patterns 



Conclusion 

The presented results convincingly show the fidelity of the 
model and demonstrate high potential for future research. 
According to Stephen Wolfram, “In continuous cellular 
automata it takes only extremely simple rules to generate 
behaviour of considerable complexity” (Wolfram, 2002). It 
was shown here that relational approach dramatically 
increases the complexity of the behaviour of the kinetic 
automaton model. Remarkably, the proposed model 
structurally coincides with the recently suggested Bayesian 
model of perception (Friston et al., 2012), although these 
models are based on different assumptions and approaches. 
This confirms the universality and wide applicability of the 
model. It was demonstrated that kinetic automata possess 
innate tunability, which makes them a candidate toy model 
and a playground for studies in self-organization in general 
and guided self-organization (Prokopenko, 2014) in particular. 
The analog nature of the model enables its direct 
implementation with analog circuits, so the advent of 
memristive technologies (Adamatzky and Chua, 2014) and the 
revival of analog computing (Mills, 2008) may lead the way 
for kinetic automata to tunable kinetic media. 
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