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Abstract

Integrating information gained by observing others via So-
cial Bayesian Learning can be beneficial for an agent’s per-
formance, but can also enable population wide information
cascades that perpetuate false beliefs through the agent pop-
ulation. We show how agents can influence the observation
network by changing their probability of observing others,
and demonstrate the existence of a population-wide equilib-
rium, where the advantages and disadvantages of the Social
Bayesian update are balanced. We also use the formalism
of relevant information to illustrate how negative information
cascades are characterized by processing increasing amounts
of non-relevant information.

Introduction

Information processing is an important aspect of life. Organ-
isms equipped with sensors obtain and utilize information to
increase their inclusive fitness; thus justifying the existence
of (often costly) sensors in the first place (Polani, 2009).
However, not all information is equally relevant for an or-
ganism – a notion formalised by Polani et al. (2001, 2006),
which we will introduce in more detail later. The basic idea
of relevant informationis to quantify how much informa-
tion at least is needed to obtain a certain performance level.
Once this is established, the next question to ask is, how to
best obtain this specific information?

Previously, we argued (Salge and Polani, 2011) that
agents with common goals and embodiments are likely to
have similar relevant information. Once they obtain this rel-
evant information, they also have to act upon it to reap its
benefits, thus encoding it in their actions. As the state-space
of actions is usually much smaller than the state-space of
the overall environment, this is likely to lead to a higher
“concentration” of relevant information in another agent’s
actions rather than in the environment itself. Thisdigested
information, encoded in actions, concentrates pre-processed
decision-relevant information and provides incentives for
agents to observe each other and modify their own actions
accordingly. However, similar behaviour in a population of
agents can lead to a phenomenon calledherding(Banerjee,

1992) or information cascade(Bikhchandani et al., 1992).
This usually requires an agent population where agents:

• select one of several choices;

• have some private information related to their decision;

• act sequentially and can observe the choices of others, but
not the private internal information of others.

This can then lead to situations such as the example
by Easley and Kleinberg (2010), where an agent wants to
choose between restaurant A and B. His own research sug-
gests that restaurant A is better, but once he gets there, no
one is eating in restaurant A, while restaurant B is filled with
customers. Based on this information it is reasonable to in-
fer that several other agents have private information that
caused them to choose B instead of A. By inferring this ad-
ditional information it becomes rational to choose B instead
of A, even if his own private information suggests otherwise.

The problem here is that others might make similar con-
clusions, and create a chain reaction of inferred private infor-
mation that is based on no or very little private information.
This illustrates two common properties of information cas-
cades; they can be based on very little initial information,
and they can be wrong.

This is somewhat in contrast to the argument presented in
“The Wisdom of Crowds”, where Surowiecki (2005) argues
that agents that aggregate their information can produce very
accurate results. But, as Easley and Kleinberg (2010) point
out, this only applies if they are guessing independently.
Furthermore, recent studies (Kao and Couzin, 2014) exam-
ining several models of group behaviour suggest that small
groups make correct decision, while larger groups are more
likely to converge on an incorrect decision. Also note that
information cascades are also present in other types of multi-
agent scenarios, such as swarm coordination (Wang et al.,
2012), and are potentially subject to similar problems.

Overview
In this paper we examine the interaction between the positive
and negative effects of observing others through the perspec-
tive of the relevant information framework. In particular,we
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show how rational adaptations can lead to a situation where
incorrect information cascades become common, and how
they are characterized by a reduction in the density of rele-
vant information. Furthermore, we demonstrate that in this
environment it is reasonable for agents to randomly discard
part of their sensor intake.

After introducing information theory and relevant infor-
mation in more detail, we present the single agent model
to create a baseline for agent performance and demonstrate
how an agent’s actions encode information. The multi-agent
scenario is then used to motivate the introduction of the
Social Bayesian Update, as it demonstrates the increase in
performance when information from other agents is used
in decision making. The next scenario deals with chang-
ing world states and shows that agent’s performance can
be increased by explicitly modelling the noise in the world,
which basically motivates internal models which cannot ex-
press certainty. This specific form of bounded rational-
ity is interesting in the context of information cascades, as
Acemoglu et al. (2011) previously showed that a lack of in-
ternal certainty makes populations more likely to synchro-
nize. Finally, we will look at models that combine noise and
Social Bayesian Update, which have both been motivated
previously by increased agent performance. In this envi-
ronment, negative information cascades are common but we
show that agents can randomly discard sensor inputs to in-
crease their performance. This is motivated by results from
Gale and Kariv (2003), which demonstrated that sparsity in
the observation graph makes convergence (both negative and
positive) less likely. By moderating their own sensor intake,
agents can change between single-agent behaviour, and pos-
itive “wisdom of the crowds” and negative information cas-
cades.

Information Theory
Relevant information is based on the formalism of Informa-
tion Theory (Shannon, 1948). IfX is a random variable that
can assume the statesx, where each statex is a member of
the alphabetX , thenP (X) is the probability distribution of
X , andP (X = x) is the probability thatX assumes the
valuex, sometimes shortened top(x). Entropy, or the self-
information of a variable is then defined as

H(X) = −
∑

x∈X

p(x) log p(x). (1)

This is often described as the uncertainty about the outcome
of X , the average expected surprise, or the average infor-
mation gained if one was to observe the state ofX , with-
out having prior knowledge aboutX . Consider two jointly
distributed random variables,X andY ; then we can calcu-
late theconditional entropyof X given a particular outcome
Y = y as

H(X |Y = y) = −
∑

x∈X

p(x|y) log p(x|y). (2)

This can be averaged over all states ofY , resulting in the
conditional entropy ofX givenY ,

H(X |Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log(p(x|y)). (3)

This is the entropy ofX that remains, on average, ifY is
known. SoH(X) andH(X |Y ) are the entropy ofX before
and after we learn the state ofY . Thus, their difference is
the amount of information we can learn, on average, about
X by knowingY . Subtracting one from the other, we get a
value calledmutual information:

I(X ;Y ) = H(X)−H(X |Y ). (4)

The mutual information is symmetrical and measures the
amount of information one random variable contains about
another (and vice versa, by symmetry). Also, note that we
use the binary logarithm for alllog(.) operations, so all in-
formation measurements are inbits.

Relevant Information
Relevant information is the amount of information an agent
needs to obtain to either act optimally, or at a specific perfor-
mance level. Assume that there is an agent that interacts with
the environment by choosing an action in reaction to some
form of sensor input. The environmentR is in the stater,
and the agent chooses an actiona from a set of actionsA.
For simplicity, we assume for now that the agent can per-
ceive the whole environment, so the sensor state is equal to
the state of the environment. Furthermore, assume that the
actions of the agent are connected to some utility function
U(a, r) (for example, survival probability, or fitness) which
determines different pay-offs, depending on the agent’s ac-
tion A = a and the state of the environmentR = r. We
also assume that the states of the worldR are distributed
according to the probability distributionP (R).

A strategyis defined as a conditional probability distribu-
tionP (A|R), which defines for every stater the probability
of choosing different actionsa. We can define a setπu as
the set of all strategies that have the average pay-off level, or
performance, of at leastu as

πu =

{

P (A|R)

∣

∣

∣

∣

∣

∑

a

∑

r

U(a, r)p(a|r)p(r) ≥ u

}

. (5)

As a strategyP (A|R) also implies a distributionP (A) =
P (A|R)P (R), we can compute the mutual information
I(A;R) for each strategy. The relevant information for a
specific performance level is then defined as

RI(u) := min
p(a|r)∈πu

I(A;R), (6)

which is the minimal mutual information over all strategies
that achieve at least the average pay-off ofu. As the mutual
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Figure 1: The probability of observing an agent going to a
specific location, if the treasure is located in position 1 and
there are 10 locations.

information I(A;R) measures the amount of information
the agent has to process to determinea, this can be inter-
preted as the minimal amount of information an agent needs
to obtain to perform at least as well asu. Due to the sym-
metry of mutual information, this can also be interpreted as
the minimal amount of information an agent’s actions have
to contain.

Experiments
Single Agent Model
There are ten locations; exactly one of them contains trea-
sure. The treasure location is modelled by the state of the
variableT . The agent’s task is to determine the location of
the treasure in the least number of turns. Each turn the agent
decides to visit one of the locations, and is then informed if
that location contains the treasure or not.

The agent’s decision making is modelled with an internal
Bayesian model̂T , whereP (T̂ = t) is the agent-assumed
probability that the treasure is in locationt. Every turn, the
agent chooses to visit the location where it believes the trea-
sure most likely to be. In case of a tie between different
locations, it chooses one of them at random. Initially, the
agent believes all locations to be equally likely. Once it ob-
serves the state of a given location, it updates its internal
model with that knowledge. So, if locationt is found empty,
then it setsP (T̂ = t) = 0, and all other probabilities are
uniformly scaled, so they still sum to one. If the agent finds
the treasure, it is retired from the simulation. For this simple
case the Bayesian model is not strictly necessary, but it will
allow us to smoothly integrate later modifications. Here it
just prevents the agent from revisiting any empty locations,
which is arguably the best possible performance for an agent
without any additional information.

For a world with ten locations it takes on average≈ 5.5
turns to find the location with the treasure. This outper-
forms an agent which randomly visits (and revisits) loca-
tions (10 turns on average to find the treasure), which in-
dicates that the agent is indeed processing information, and
subsequently the agent’s actions should contain relevant in-

formation. Fig. 1 shows the action distribution, gathered by
observing 100,000 actions from different non-social agents
while the treasure is in position 1. Note that none of the
agents act after they found the treasure location, so all ob-
served agents in Fig. 1 are ignorant of where the treasure
is, but they know several location where it is not. This is
enough processed information to imbue the agent’s actions
with relevant information.

To model the information another agent would acquire
from observing one action from one randomly chosen agent,
we assume that all agents are indistinguishable to an ob-
server. If we model their action distribution with a variable
calledA, we can then use that data to compute how much
information aboutT , the treasure location, is encoded inA.
The mutual information in this case computes to≈ 0.042
bit. We can compare those values to the information gained
from observing a random location, which is≈ 0.468 bit. So,
while inspecting a location contains more information, ob-
serving another agent could provide additional information
to enhance an agent’s performance.

Performance is measured as the ratio of discovered trea-
sure vs. turns. So, if an agent finds treasure on average once
every five turns, it then has a performance ratio of0.2. The
single agent has a performance ratio of0.180. This measure-
ment is also identical to the fraction of agent actions that are
looking at the right location. This allows us later to evaluate
the performance of an agent population, as we do not have
to measure the search time, but just measure how many of
the agent’s actions are going to the treasure location.

Multiple Agent Scenario
The last section indicated that the agent’s actions containrel-
evant information about the treasure location. Therefore,we
will now modify the model, so that the agent can integrate
data from observing other agents into their internal belief
model.

In the multi-agent modelsocialagents will be able to ob-
serve the actions taken by other agents, but they will not see
the result of this exploration, i.e. know if the visited location
is empty. When an agent observes another agent’s action
a = A, it will integrate the obtained information into its
own internal modelP (T̂ ) by performing a Naive Bayesian
Update, based on the statistics forP (A|T ) gathered from the
non-social statistics in (Fig. 1). So, its new internal model
after observinga is

P (T̂ |A = a) =
P (A = a|T )

P (A = a)
P (T̂ ). (7)

If an agent finds the treasure, it will be replaced by a new
agent, which is simulated by re-initializing an agent’s inter-
nal model with the uniform distribution.

So, for the multi-agent simulation, all agents start with
uniform internal distribution. Each turn the agents then de-
cide their actions, based on their internal model, in the same



sequential order. When agents observe other agent’s actions,
they update their internal model immediately. When agents
observe a location, they either update their model if that lo-
cation is empty, or are replaced by a new agent (have their
model reset) if the location contains the treasure.

Note that the Naive Bayesian Update (NBU) works with
the assumption that the different sources of information are
independently distributed, which is not true in general. NBU
still provides good approximations if the dependencies are
normally distributed, but in information cascades this is also
not the case, as the spread of information through a popula-
tion is usually self-reinforcing. We still use the NBU, as a
more exact Bayesian Update would be nearly impossible to
produce, as it would require the agent to remember all pre-
vious interactions, and requires statistics on how all other
sources of information interact. NBU on the other hand can
be done the moment some information becomes available,
and the internal belief representation can be represented as a
single probability distribution.

Single Social Agent In the first experiment we examined
10 agents in a world with 10 locations. All data discussed
from here on is the average value for 1,000 simulations, each
running for 1,000 turns. Onlyoneof the agents has the abil-
ity to observe the others. The location of the treasure is fixed,
and determined at random at the beginning of the simulation.
Unsurprisingly, the remaining non-social agents perform ex-
actly as in the single agent simulation. Their distributionof
actions matches the one recorded in Fig. 1.

The social agent in the simulation performs better; reach-
ing a performance of≈ 0.30. This agent benefits from the
information the other agents gather. As discussed in the “Di-
gested Information” argument, the other agents act as infor-
mation preprocessors for the social agent. Also, note that
the distribution of actions of the social agent is even more
concentrated on the actual treasure location, hence the mu-
tual information between its actions and the treasure loca-
tion, I(A;T ) = 0.220 bits, is higher than the same mutual
information for the non-social agents, which was0.042 bits.

All Social Agents Given the increase in performance for
a single agent, we now assume that the whole population
of agents adopts the social update approach, and we exam-
ine a simulation where all agents integrate the information
gained from other agent’s actions. This turns out to be ex-
tremely beneficial. The performance of the overall popula-
tion, which is also the performance of every separate agent,
is ≈ 0.99. Once the treasure has been located by one agent,
all subsequent actions lead to the treasure, and the mutual
information between actions and treasure location is nearly
maximal,I(A;T ) ≈ log(10).

Basically, the relevant information that the treasure is in
locationt propagates through the agents. It is displayed in
an agent’s actions, then used to update another agent’s in-

ternal model. That agent then uses the information to deter-
mine which action to take, which is going to beA = t.
The agent will then find the treasure and reset its inter-
nal model. But it will perceive others before it has to act
again, biasing its internal model again towards taking action
A = t. This will continue unless environmental informa-
tion conflicts with this information, meaning the agent will
not find the treasure at the location in which it was looking.
In that case, the observed location’s probability to contain
treasure is set to zero, and the agent will look at other lo-
cations. This will initially get the agents to explore all lo-
cations until they find the treasure, after which they will all
copy each other, finding the treasure every turn from that
point onwards. Note, that the treasure does not move when
it is found, however the agent who found the treasure resets
its internal model (simulating its replacement with a new
agent).

As we see, the important information is preserved by con-
tinuously flowing through the agent population. Even when
agents retire and are replaced, the information is not lost.
This looks like a very desirable feature for an agent popula-
tion, and therefore the Social Bayesian Update seems like a
reasonable adaptation.

Changing World State

In this section, we will demonstrate how lack of certainty
can affect this simulation. We will use the single agent
model to motivate the inclusion of noise into our internal
Bayesian belief model.

In the next simulation the locations of the treasure will
change during the simulation to different random loca-
tions. This will happen every turn with probability of
P (change) = 0.01. On average this should change the lo-
cation every 100 turns. The behaviour of the agents is left
unchanged.

First, let’s again take a look at the simulation for a sin-
gle agent. The performance ratio of the agent drops from
0.18 for the static world state simulation, to0.14 for the
simulation where the world state changes. A closer analy-
sis shows that the agent’s original behaviour has problems
dealing with the new scenario. Consider that the agent vis-
its a locationx, and finds it empty. Then the probability for
T = x will be set to zero inT̂ . If the location now changes
to T = x after the agent visitedx, then the agent will first
explore all other locations, finding all of them empty. This,
in itself, is not problematic. But once the agent has looked
at each locations once, all probabilities are assumed to be
zero, given that the agent still assumes there is one, non-
moving treasure location. This is inconsistent with the basic
properties of probabilities and is a result of the incorrectas-
sumption about the immovability of the treasure location. In
this specific implementation the agent now resorts to ran-
dom search. This behaviour has, as we have seen, a lower
performance rate, and therefore lowers the agent’s overall



performance.

Modelling Uncertainty To address this problem we can
change the internal model to correctly reflect probabilities
from the agent’s perspective. The treasure changes its loca-
tion with a probability ofP (change) = 0.01 and relocates
to one of the10 locations randomly. This can be modelled
by assuming that the world is in one of two states. Either,
with P (change) = 0.01, it is in a state where the location
has just changed, soT should be uniformly distributed with
everyt ∈ T having the probabilityP (T = t) = 1/10. The
other state, with a probability of1 − P (change), is the one
where the treasure location remains unchanged, so the agent
should continue to assume the distribution represented by
its internal modelT̂ . These two cases can be combined in
a weighted sum to determine a new internal distributionT̂ ′.
The probability for every statet in this new distribution can
be computed as

P (T̂ ′ = t) = P (change)
1

n
+(1−P (change)) ·P (T̂ = t).

(8)
To model the uncertainty, this formula is applied to the
agent’s internal model each turn after it has completed its
action. Note, that this leaves the ordering of probabilities
from the most likely to the least likely event intact, unlessthe
probability of change is1.0. Therefore, the single agent be-
haviour with modelled uncertainty performs just as well as
the agent without for a non-changing treasure location. But,
applying the above uncertainty model to a single agent in a
world where the treasure location does change, increases its
performance from0.148 (for the agent without uncertainty)
to 0.180.

The performance increases because by modelling uncer-
tainty, the agent retains some information about the order
in which it explored the previous locations in its internal
model. The location that was visited first and found empty
subsequently had uncertainty applied to it nine times, once
the agent cleared the last, tenth location. It therefore hasthe
largest probability to contain the treasure, and will be the
first location to be visited again. This actually reflects the
fact that this location is most likely to contain the treasure,
since it is unclear when the treasure changed location.

This also shows why modelling the uncertainty works bet-
ter than simply resetting the probabilities after all locations
were visited and found empty. This would reset the inter-
nal model and prevent the agent from having to use random
search, but it would not preserve the information about the
ordering of the previous search, which could be used to the
agent’s advantage.

Uncertainty and Social Bayesian Update
In this section, we examine a population where all agents
model the change uncertainty and also perform the social
Bayesian Update. As a result, the agent’s performance drops

to 0.1, which is equivalent to chance. Closer analysis shows
that the whole agent population is always exploring the same
location, and the 0.1 average performance is simply the re-
sult of the treasure randomly moving to this location from
time to time. The agent population here is subject to an in-
formation cascade that synchronizes the whole population.
But compared to the all-social agent population with inter-
nal certainty, the agents cannot reliably check that a certain
location is wrong, so after the initial agent breaks the sym-
metry, the repeated exposure to other agent’s social signals
will always override their own internal uncertain beliefs.So,
while the Social Bayesian Update is beneficial for agents in
some cases, it turns out that it can be harmful, specifically
when combined with a more accurate model of uncertainty.
This is similar to how bounded rationality, i.e. the inability
to internally represent certainty, facilitates convergence in
social Bayesian network learning (Acemoglu et al., 2011).
The difference here is that the lack of internal certainty isnot
caused by a limitation of the agent, such as cost of internal
representation, but motivated by an increase in performance
resulting from a more exact modelling of the noise present
in the environment.

Partial Observability

One way to reduce the probability for convergence is the
reduction of network connectivity (Gale and Kariv, 2003).
Currently, the agents live in a neighbourhood of a fully con-
nected graph, being able to observe all other agents. The
next simulation has changing treasure locations and an all
social, internally uncertain agent population. Unlike thepre-
vious models, only a fraction of the other agents’ actions
can be observed. Every time an agent takes an action, each
other agent has a probability ofpo to observe this action and
update its internal model. Whether an agent can observe a
specific action is determined for each observing agent sep-
arately. This creates several simulations interpolating be-
tween two previously studied cases. Ifpo = 0, then the
model would be identical to the non-social agent simulation,
and if po = 1, then it would be identical to one in which all
agents could observe each other, which leads to a feedback
loop and very bad performance ratios.

Changing Observation Probability for all Agents Vary-
ing the parameterpo for all agents results in performance
ratios as depicted in Fig. 2. As expected, the extremal points
are characteristically similar in performance to the non-
social and all-social models. In the case where no agents
observe each other, the agents find the treasure on average
0.18 times per turn. The performance ratio increases as the
chance to observe other agents increases, up to≈ 30 % ob-
servation probability, where all agents have a performance
ratio of ≈ 0.32. Increasing the observation probability
further however, lowers the performance down to approxi-
mately 0.1 at an observation probability of50 % and above.
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Figure 2: Average performance of an agent population, and
the mutual information between its actions and the treasure
location, depending on the probability to observe the actions
of other agents.

The second graph (dotted red) in Fig. 2 is the mutual in-
formation between the agent’s actionsA, and the treasure
locationT . We see thatI(A;T ) has the same value as for a
non-social agent when the observation probability is zero,it
then rises to a peak of≈ 0.45 bits for an observation prob-
ability of 30 %. The mutual information then decreases for
larger observation chances, down to zero mutual information
for values above60 %.

Changing Observation Probability for one Agent If the
observation probability is understood as the result of an
agent’s effort invested in observing others, then it could be
treated as a behavioural parameter that the agent, or at least
the process that governs the adaptation of agents, could con-
trol. This could be realized by deliberately degrading the
agent’s sensors to save resources in case of an adaptation
process on the agent’s population, or by simply discarding
some of the sensor input at random if this is realized as an
agent strategy. In this context, it would make sense to ask
if an individual agent could perform better than the rest of
the population by unilaterally changing its probability toob-
serve others.

Given that the actions of the remaining population pro-
vide a high degree of mutual information, it might be useful
to obtain more of this information than others do. On the
other hand, there were indications that taking in too much
information from other agents might override the informa-
tion from the non-agent environment, and thereby degrade
the agent’s performance. So deliberately lowering the social
information intake might also improve the agent’s perfor-
mance compared to the rest of the population.

In the next simulation we will look at one agent that can
change its observation probability independently from the
rest of the population. The observation probability for an
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Figure 3: Performance of a single agent, and the mutual in-
formation between this agent’s actions and the treasure lo-
cation, depending on the probability to observe the other
agents in the population. All other agents observe each other
with a probability of 30%.

agent determines how well it can see others, not how well
it can be seen. That means that whenever this agent could
observe another agent’s action, its own observation proba-
bility would be used to determine whether this agent could
actually sense what action the other agent took.

All other agents in the simulation have a fixed observa-
tion probability of 30 %, since this was the value that led
to the best performance for the overall population, and also
encoded the most information.

In Fig. 3 we see the resulting performance ratio and mu-
tual informationI(A;T ) for varying po for the one agent
that can change its observation probability. Overall, the
graph looks very similar to the previous graph in Fig. 2
where all agents could change their observation probability.
The performance for one agent is still optimal at≈ 30%.
Scaling down the observation probability to zero obviously
leads to the same performance as the non-social agent. In-
creasing observation probability further also results in low-
ering the performance to approximately 0.1.

This is particularly interesting because, for this specific
simulation, it creates something akin to a game theoretic
equilibrium at the 30 % point. All other factors being equal,
even if all agents could change their own observation proba-
bility at will, none of them could change it away from 30 %
without also decreasing their performance.

Relevant Information Analysis
So far, we have computed the mutual information between
the agent’s actions and the environment as a measure of how
much information their collective actions provide about the
state of the environment to an observer. We will now com-
pare this mutual information to the actual relevant infor-
mation for different performance levels. This will demon-



strate that higher observation probabilities are characterized
by processing information that is not necessary, indicating
the perpetuation of false beliefs in the agent population.

RI(u) for the Treasure Hunter Model The relevant in-
formation for the treasure hunter model is determined by
the distribution of the treasure, encoded inT , and a specific
agent’s action distribution, encoded inA. Both random vari-
ables are defined over the same alphabet, which corresponds
to all possible locations in the world.

As relevant information is a property of the environment,
and not of a specific agent, it therefore considers all possible
strategiesp(a|t), regardless of how any specific agent would
acquire the information needed to actually implement this
strategy. To determine the value forRI(u) we have to an-
swer the question, which joint distribution ofA andT hav-
ing at least a performance level ofu has the lowest mutual
information?

For our specific example of a world with ten locations we
can compute the relevant information function as

RI(u) = log(10) +

(

u log(u) + (1− u) log

(

1− u

9

))

.

(9)
Note that this function computes the minimal mutual in-

formation for being on a specific performance levelu, not
for having a strategy that at least has the performance level
u. However, looking at the actual function, which can be
seen in Fig. 4, it becomes clear that the function is, for val-
ues ofu over 0.1, strictly increasing. Therefore, the minimal
mutual information for a specific performance level above
0.1 is also the actual relevant information needed to perform
at least that well. The previous distinction is necessary, be-
cause in this case it is necessary to process information to
have a performance level lower than 0.1. A performance of
0.1 can be achieved with a random strategy, and therefore
has no relevant information. Eq.(9) reflects this, as it is zero
for u = 0.1. For values ofu lower than 0.1 the function
in Eq.(9) computes values higher than zero, which would be
the information necessary to actually performat this level.
One would have to actively avoid the treasure. But by previ-
ous definition relevant information should return the infor-
mation needed to at least attain a specific level, and since
random performs better, and has no relevant information, all
performance levels belowu = 0.1 have zero relevant infor-
mation.

The data points plotted in Fig. 4 are taken from the two
previous simulations, those where all agents changed their
observation probability, and those where only one agent
changed its observation probability and all other agents had
an observation probability of 30 %. Each point is the combi-
nation of the mutual informationI(A;T ) and the achieved
performance ratio for a specific percentage of observation
probability. Different observation probabilities resultin
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Figure 4: Relevant Information trade-off curve (black line)
and points indicating the mutual information and perfor-
mance for different observation probabilities.

different strategies, i.e. different conditional probabilities
P (A|T ).

The data points gathered here are, as expected, all above
or on the RI trade-off curve. The pattern of values are very
similar for both simulations. For an observation probability
of 0.0 the data point is located at a performance of 0.18, and
actually on the trade-off curve. As the observation prob-
ability increases, so does the performance. The strategies
remain on the trade-off curve at the lower percentages of ob-
servation probability, and since the trade-off curve is strictly
increasing, so does the encoded relevant information.

As the observation probability increases we see that the
resulting data points leave the trade-off curve, which means
the resulting strategies encode more mutual information
about the environment than is necessary. The strategies re-
sulting from further increases in observation probabilityare
located in the upper loop where they gravitate towards a
point of no mutual information and a performance of 0.1.
This indicates that they also encode more information about
the environment than necessary.

Comparison of the mutual information in the actual strate-
gies to the actual relevant information illustrates how ob-
serving more and more agents leads to processed informa-
tion which might not necessarily be relevant. The strategies
with low observation probability are located on the relevant
information trade-off curve, meaning they are efficient in
the sense that they do not process non-relevant information.
Those strategies which are subject to the information cas-
cade on the other hand do display a lot of information about
the environment in their actions which is non-relevant. At
the same time, as seen here, their performance diminishes as
well. Fortunately for the agent population, the point where
agents display the most relevant information about the envi-
ronment is also close to the point where the agent performs
best, so it would be possible for an agent population, which



could adjust their observation probability, to stabilize at a
point which benefits all agents the most.

Conclusion
Our results indicate that a noisy internal representation
seems to be an important factor for the convergence of infor-
mation cascades, specifically those where the agents perpet-
uate information that leads to wrong internal beliefs, since
the agent cannot, with certainty, reject certain social infor-
mation. In general, the problem arises in scenarios where
signals gained from other agents overpower the agent’s pri-
vate observations and are not as independently generated as
the naive Bayesian update models it. On the other hand,
the information from other agents is also helpful, and can
improve an agent’s performance in our model. The interest-
ing observation here is that both things can be influenced by
how many other agents an agent randomly observes. Too
little, and the agent loses the social information, too much,
and the agent population will converge, but possibly on the
wrong belief.

Our relevant information analysis also shows how the
quality of the information suffers when more and more
agents observe each other. For very low observation proba-
bilities, all the information processed is relevant and agents
only display relevant information in their actions. When the
agents observe more, their performance gets better still, but
we see that they start to pass on information that is incor-
rect and perpetuate it, sometimes leading to false conver-
gences. As the “good” relevant information is still improv-
ing, this unnecessary information seems acceptable, but if
we increase the observation chance even further, then we see
that the performance suffers and the information provided by
the agents is mostly wrong.

In our model however, there exists a point where agents
both perform optimally and provide the most information,
so a population of agents could adapt to a strategy where
they discard a certain percentage of their observations, and
perform well. In this case, the agents would basically de-
termine the observation network of the model themselves.
The exact parameter of how many of one’s observations one
should discard is, of course, model dependent. For example,
if the number of agents increases, then it likely takes more
observations for total convergence, but a lower observation
probability could be sufficient to provide enough social in-
formation to overpower the agent’s internal beliefs. This is
interesting if this is seen as a model for fads and fashions. If
an agent, adapted to a population with a specific degree of
connectivity, adapts to discard a certain percentage of social
information, and is then transplanted to another population,
with different parameters, it might become much more sus-
ceptible to false self-perpetuating beliefs. The same is true
for a population of agents that manages to change their envi-
ronment in a way that radically changes how much they can
observe others.
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