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Abstract

We propose a simple taxonomy of probabilistic graphical et®dor the semi-supervised
learning problem. We give some broad classes of algoritomesch of the families and point to
specific realizations in the literature. Finally, we shed-extetailed light on the family of meth-
ods using input-dependent regularization (or conditi@miglr distributions) and show parallels
to the Co-training paradigm.

1 The Semi-Supervised L earning Problem

The semi-supervised learning (SSpjoblem has recently drawn large attention in the machine
learning community, mainly due to its significant importane practical applications. In this Sec-
tion we define the problem and introduce the notation to bd irsthe rest of this Chapter.

In statistical machine learning, we distinguish betwessupervise@ndsupervised learningn the
former scenario we are given a sampie} of patterns inX drawnindependently and identically
distributed (i.i.d.)from some unknown data distribution with densRyx). Our goal is to estimate
the density or a (known) functional thereof. Supervisedniegy consists of estimating a functional
relationshipx — y between a covariatec X and a class variabley € {1,..., M}, with the goal of
minimizing a functional of the (joint) data distributid(x,y) such as the probability of classifica-
tion error. The marginal data distributidt(x) is referred to as input distribution. Classification can
be treated as a special case of estimating the joint deR&ityy), but this is wasteful since will
always be given at prediction time, so there is no need tmeasti the input distribution.

The terminology “unsupervised learning” is a bit unfortteahe termdensity estimatiorshould
probably be preferred. Traditionally, many techniquesdensity estimation propose a latent (un-
observed) class variableand estimatd®(x) as mixture distributionzi\,":l P(x]y)P(y). Note thaty
has a fundamentally different role than in classificatiorthiat its existence and rangés a model-
ing choice rather than observable reality. However, in otiensity estimation techniques, such as
nonlinear dimensionality reduction, the term “unsupeggisdoes not make sense.

Iwe restrict ourselves to classification scenarios in thiapEr.



The semi-supervised learning problem belongs to the sigeglcategory, since the goal is to mini-
mize the classification error, and an estimat®(o{) is not sought aftet.The difference to a standard
classification setting is that along withabeled sample P= {(x;,yi)|i =1,...,n} drawn i.i.d. from
P(x,y) we also have access to an additionalabeled sample P= {xn.j|j = 1,...,m} from the
marginal P(x). We are especially interested in cases wharg- n which may arise in situations
where obtaining an unlabeled sample is cheap and easy, lahé#éng the sample is expensive or
difficult. We denoteX; = (X1,...,%1),Yi = (Y1,-.-,¥n) @ndXy = (Xn11,---,Xntm). The unobserved
labels are denoted, = (Yni1,---,Yn+m)- IN & straightforward generalization of SSL (not discussed
here) uncertain information abo¥t is available.

There are two obvious baseline methods for SSL. We can treet & supervised classification
problem by ignoringD,, or we can treay as latent class variable in a mixture estimateP¢f)
which is fitted using an unsupervised method, then assoleitget groups with observed classes
usingD, (see Section 3.1 for more details). One would agree that aliy 8SL technique should
outperform both baseline methods significantly in a rangpragtically relevant situations. If this
sounds rather vague, note that in general fixed SSL method it should be easy to construct data
distributions for which either of the baseline methods doetser® In our view, SSL is much more
a practical than a theoretical problem. A useful SSL tealmighould be configurable to specifics
of the task in a similar way than Bayesian learning, throdghdhoice of prior and model. While
some theoretical work has been done for SSL, the bulk ofaelework so far has tackled real-world
applications.

2 Paradigmsfor Semi-Supervised L earning

Since SSL methods are supervised learning techniquescémelye classified according to the stan-
dard taxonomy intgenerativeanddiagnosticparadigms. In this Section we present these paradigms
and highlight their differences in the case of SSL. We alde tfmat this taxonomy which originated
for purely supervised methods, can be ambiguous when dpigi&SL, and we suggest how the
borderline can be drawn exactly.

In the figures of this Section, we employ a convenient gragmotation frequently used in statistics
and machine learning [17, 16]. These so-called diregtaghical modelgor indepence diagrams)
have the following intuitive semantics. Nodes representoan variables. The parents of a ndde
are the node$ for which a directed edge — i exists? It is possible to sample the value of a node
once the values of all its parents are known. Thus, a grajphicdel is a simple way of representing
the sampling mechanism from a distribution over severahbstes. As such, the graphical model en-
codes conditional independency constraints that haveltbfbiothe distribution. In order to sample
from the distribution, we start with nodes without parentd avork in the directions of the edges.

2While this statement is probably open to debate, it is in fapeed upon in statistics. In our opinion, methods
should be classified foremost according to the problem theyotsolve,not by which sources of data they make use
of. On the other hand, there are problems in which densitgnasibn is the goal and labeled data is treated as auxiliary
source. However, these fall into a category with very défgrcharacteristics and are not in the scope of this Chapter.
In our opinion, it would be very confusing to lump them togethvith methods we classify as SSL here. A label like
“semi-unsupervised learning” would be more appropriate.

3This is a “no free lunch” statement for SSL, but in practicedems to be a more serious problem than in the purely
supervised context (where a “no free lunch” statement ha¢dsell). See Chap.??? in this volume for some examples.

4Directed cycles are not allowed. In other words, it must bedssible to return to a node by moving along edges and
respecting their direction.



We also make use gflateswhich are rectangular boxes grouping a set of hodes. Thissniat
the group is sampled repeatedly and independently fromatine glistribution (i.i.d.) conditioned
on all nodes which are parents of any plate member. For exartiyd figure of Section 2.1 means
that we first sampl® andmtindependently (neither has parents), then draw a safiigley;)} i.i.d.
conditioned orB, 1t (which are parents of the plate).

Note that we describe the generative and diagnostic paraftigm an explicitly Bayesian view-
point. This is somewhat a matter of personal choice here,caninly one could sketch these
classes without ever mentioning concepts like prior digtions. On the other hand, the Bayesian
view avoids many unnecessary complications, in that aibtsées are random, no difference has to
be made between functional and probabilistic independeceso we do not think our presentation
lacks clarity or generality because of this choice.

2.1 The Generative Paradigm

We refer to architectures following thgenerative paradignas gener-
ative methodsWithin such, we model the class distributioR$x|y)
usmg model famllles{P(x|y, )}, furthermore the class prioi®(y) by

P(y|m), = (1%,)y. We refer to an architecture of this type goiat
denS|ty modelsmce we are modeling the full joint densiB(x,y) by

P(x|y,0). For any fixedd, f, an estimate oP(y|x) can then be com-
T4P(x|3,6). For any fixed (yIx) @ | @

puted by Bayes’ formula:

P(xly.6)
Sy Ty P(xly.,6)
This is sometimes referred to phig-in estimateAlternatively, one can obtain the Bayesian pre-
dictive distributionP(y|x,D;) by averagingP(y|x,8, ) over the posterioP(8,iD)).> Within the
generative paradigm, a model for the margiR&t) emerges naturally as

P(y|x,8,71) =

M
P(x|8,) = T,P(X]y,).
(x/6, 1 y;ny (]y.®)

If labeled and unlabeled data are available, a naturakicitemerges as theint log likelihood of
bothD, and O,

n+

> log nyp Xy, ), (1)

i= n+1

_Zilog T3, P(xiyi,8) +

or alternatively the posterid?(8, Dy, Dy).® This is essentially an issue of maximum likelihood in
the presence of missing data (treatings latent variable), which can in principle be attacked Iy th
expectation-maximization (EM) algorithm (see Sectior) 8rlby direct gradient descent.

Some researchers have been quick in hailing this strategp abvious solution to the SSL prob-
lem, but this is not the case, in about the same sense as tienen@thods often do not provide

5In a sense, the predictive distribution is a Bayesian’s bstitnate of the underlying true data distribut®fy|x). It
is however obtained as posterior expectation, not by makngisome criterion.

6To predict, we averagB(y|x,8,T) over the posterior. If we know thatis drawn fromP(x) and independent from
D, we should rather employ the poster®(, Dy, Dy, x). However, in this case the test set usually forms a pakyef
and the two posteriors are the same.



good solutions to classification problems. Generativertiegles provide an estimate Bfx) along
the way, although this is not required for classificationd @mgeneral this proves wasteful given
limited data. For example, maximizing the joint likelihootla finite sample need not lead to small
classification error, because depending on the model it regyossible to increase the likelihood
more by improving the fit oP(x) than the fit ofP(y|x). This is an instance of the general problem
of balancing the impact dD; andD, on the final predictions, especially in the came> n. This
issue is discussed in Section 3.1. Furthermore, in the S8ihgg is a latent variable which has
to be summed out ob,, leading to highly multimodal posteriors, so that likeliftbor posterior
maximization techniques are plagued by the presence ofrmany (local) minima.

2.2 TheDiagnostic Paradigm

In diagnostic methodsve model the conditional distributid®(y|x) di- @
rectly using the family{P(y|x,8)}. To arrive at a complete sampling
model for the data, we also have to moBék) by a family P(x|u), how-
ever if we are only interested in updating our belieBior in predicting

y On unseen points, this is not necessary, as we will see nagefthis '
model,0 andp area priori independenti.e. P(6, 1) = P(8)P().

The likelihood factors as

P(D|7DU’97 I"l) = P(Yl ‘X|79)P(X| 9 DU“J')v

which implies that?(8|D;,Dy) O P(Y|X;,8)P(8), i.e. P(8|D;,Dy) = P(8|D;), and® andp area-
posteriori independenturthermoreP(6|D;, ) = P(8|Dy). This means that neither knowledge of
the unlabeled datB, nor any knowledge ofu changes the posterior belief0|D,) of the labeled
sample. Therefore, in the standard data generation modaigfgnostic methods, unlabeled data
cannot be used for Bayesian inference, and modelling that iigtributionP(x) is not necessary.
There are non-Bayesian diagnostic techniques in which wereke use oD, (see Section 3.2),
but the impact of doing so (as opposed to ignorihg is usually very limited. In order to make
significant use of unlabeled data in diagnostic methodsj#it@ generation model discussed above
has to be modified as discussed in the following Section.

2.3 Regularization depending on the Input Distribution

When learning from a samplg, of limited size, typically very many associatiors— y are con-
sistent with the data. The idea gularizationis to bias our choice of classifier towards “simpler”
hypotheses, by adding a regularization functional to titeraon to be minimized which grows with
complexity. Here, the notion of simplicity depends on thektand the model setup. For example,
for a linear model it is customary to penalize a norm of theghevector, and for some commonly
used regularization functionals this can be shown to bevafgrit to placing a zero-mean prior dis-
tribution on the weight vector. From now on we will only bedrested in regularization by priors
and will use the terms interchangeably.

We have seen in Section 2.2 that with straight diagnosticeBiay methods for classification, we
cannot make use of additional unlabeled dajabecaus® (parameterizind®(y|x)) andu (parame-
terizing P(x)) area priori independent. In other words, the model fam{iB(y|x,0)} is regularized
independentlyf the input distribution.



If we allow prior dependencies betweeth and , e.g. R6,p)
P(B|w)P(p) andP(8) = [ P(8|p)P(n) dp(as shown in the mdependence

diagram to the right), the situation is different. The cdiadial prior
P(B|w) in principle allows information aboyt to be transferred t6. In

general® andDy will be dependent given the labeled d&tg therefore
unlabeled data can change our posterior beli€.in

We conclude that to make use of additional unlabeled data@mtihe context of diagnostic Bayesian
supervised techniques, we have to allowagpriori dependence between the latent function repre-
senting the conditional probability and the input probiapitself. In other words, we have to use
aregularization of the latent function which depends on tijgut distribution The potential gain
can be demonstrated by the following argument. Note thaditonal priors imply a marginal prior
P(B8) which is a mixture distributionP(8) = [P(8|u)P(u)dp. By conditioning on the unlabeled
data, this is replaced by(6|Dy) = [P(6|u)P(p|Dy)dp which can have a much smaller entropy
thanP(8), implying that the posterior belig?(6|D;,D,) can be much narrower tha(8|D;). On
the other hand, the same argument can be used to demonk#ttsing additional unlabeled data
Dy can hurt instead of help. Namely, if the pridP$0|u) enforce certain constraints very rigidly,
but these happen to be violated in the true distribuB¢x y), the conditional “prior"P(8|Dy,) will
assign much lower probability tha?(6) to modelsP(y|x,0) close to the truth, and the posterior
P(8|D;,Dy) can be concentrated around suboptimal models. While itriaiody easy to construct
artificial situations where additional unlabeled data $uttis worrying that such failures do hap-
pen quite unexpectedly in practically relevant settingsels. For a more thorough analysis of this
problem, see Cozman and Cohen (Chap.??? in this volume).

We note that while the modification to the standard data @eioer model for diagnostic methods
suggested here is straightforward, choosing appropratditonal priorsP(0|u) suitable for a task
at hand can be challenging. However, several general gabsifor SSL can actually be seen as
realizing input-dependent regularization, as is dematestrin Section 3.3.

The reader may feel uneasy at this point. If we agwiori dependen andy, the final predictive
distributiondependsn the priorP(p) over the input distribution. This forces us to model the inpu
distribution itself, in contrast to the situation for stand diagnostic methods. In this case, will our
method still be a diagnostic one? Is it not the case that arnlgadevhich model#(x) in some way,
must automatically be generative? Diagnostic methods eamich more parsimonious simply
becauseP(x) need not be estimated. In order to implement input-depenegularization, do we
have to use a generative model with the drawbacks discussgekction 2.1? There is indeed some
ambiguity here, but we will try to clarify this point in Seati 2.4. Under this general viewpoint,
input-dependent regularization is indeed a diagnostic B8hnique.

In the diagnostic paradigm for purely supervised ta8kandp are treated as priori independent,
leading to the fact that no aspectRgk) have to be estimated. While this is convenient, it is notrclea
whether we should really believe in such independence feabworld task. For example, suppose
thatP(0) enforces smoothness of the relationsR{y|x, 0). Is it sensible to enforce smoothness of
x — yaround allx, or should we not rather penalize rough behaviour only wRéx¢ has significant
volume? The former is more conservative and possibly mdrestp but also risks ignoring valuable
information sources (see Section 3.3.1 for an example).



2.4 TheBorderline between the Paradigms

While the borderline between supervised and unsupervisattiads is clearly drawn, the distinc-
tion between generative and diagnostic techniques can begaaus, especially if we apply this
taxonomy to SSL. In this Section we give two criteria for aatldiscrimination: a simple and a
more elaborate one. In a sense they are both based on thessarmeriamely thele that theP(x)
estimate plays for the prediction.

Recall that we restrict ourselves to methods whose ultigat it is to estimaté(y|x). Tradition-
ally, generative methods achieve this by modelling thetjdistribution P(y,x) and fit this model
to data by capturing characteristics of the true joint dag&itdution. An estimate oP(x) can al-
ways be obtained by marginalizing the joint estimate. Intiast, diagnostic methods concentrate
on modelling the conditional distributioR(y|x) only, and an estimate &f(x) cannot be extracted.
However, in the SSL case we do have to moéet) in order to profit fromD,. So are all SSL
methods generative? We argue against this viewpoint arto thassify SSL techniques according
to the role which thé>(x) estimate actually plays.

While it is true that any SSL method has to moBék) in some way, in a generative technique we
model the class-conditional distributioR$x|y) explicitly, so that the model foP(x) is a mixture

of those. From these estimates (and the estimat&%y0j we obtain an estimate @&#(y|x) using
Bayes’ formula. Characteristics of the predictive estar(atich as the function class in a parametric
situation) depend entirely on the class-conditional madebr example, if the latter are Gaussian
with the same covariance matrix, the predictive estimatidisbe based on linear functions. In a
nutshell, we specify th@(x|y) using our modelling toolbox, which implies the form of dafy|x)
andP(x) estimates (the latter is a mixture of tRéx|y)). The only way to encodspecificproperties
for the latter estimates is to fire(x|y) candidates which are both tractable to work with and imply
the desired properties 8{y|x) andP(x). In contrast to that, in a diagnostic method we mdi®|x)
directly, and also typically have considerable freedom odelling P(x). In SSL we regularize the
P(y|x) estimates using information frof(x), but we do not have to specify the class-conditional
distributions explicitly’ While this definition is workable for the SSL methods mengidrhere,

it may be too restrictive on the generative side. For exapke “many-centers-per-class” model
of Section 3.1 is clearly generative, but works with a migtunodel forP(x) which has several
components for each clagsandP(x|y) is modelled indirectly viaP(x|y) = 5 1,BykP(x|k), i.e.

as a mixture itself. In the following paragraph we suggesalarnative view which leaves more
freedom for generative techiques.

The practical success of SSL has shown that unlabeled idatknowledge abouP(x), can be
useful for supervised tasks, but it is not necessarily thaesgpeof knowledge that would lead to a
good estimate oP(x) according to common performance criteria for density estiom. In fact, it

is actually a few general characteristicsRik) which seem to help classification (see for example
Section 3.3.1). For example, if we convert a purely diagndsthnique such as SVM or logistic
regression into an SSL technique by employing a regulapeslizingP(y|x) estimates which
violate certain aspect®f P(x) such as the cluster assumption (see Section 3.3.1), thercfuof
P(x) on the finalP(y|x) estimate is restricted to just these aspects that we hopenametant for
better classification. These restrictions are engineeyagstbecause we want to make best use of
Dy in order to predict Ry|x). In contrast if we perform SSL by maximizing a suitably regfged

"There are of course class-conditional distributions whicsimplied by the models oP(y|x) andP(x) (use Bayes’
formula), but importantly we do not have to work with themeditly, so that their form is not restricted by tractability
requirements.



version of the joint log likelihood (Eg. 1) of a mixture modske Section 3.1), such a restriction to
classification-relevant aspects is not given or at leastimettly planned. In fact the joint model is
designed in much the same way as we would do for density g#tima

For example, consider the framework of conditional pridr&Section 2.3. While it is essential to
learn abouP(x) in SSL, the impact of an oversimple model #(x) on the final prediction is much
less severe than in density estimation. This is becausdabkuregularization will only depend on
certain aspects ¢f(x) (for example on the coarse locations of high density regimmer the cluster
assumption, see Section 3.3.1), and our model foxtHistribution only has to be able to capture
those accurately.

3 Examples

In this Section we provide examples of SSL methods fallingach of the categories introduced
in the previous Section. We do not try to provide a compreiwerigerature review here (see [22]
for review of work up to about 2001), but are selective in ordepoint out characteristics of and
differences between the categories. Note that in this gbi@éad also in [22]) some methods are
classified as “baseline methods”. This does not constitatevaluation, and in fact some of these
methods belong to the top-performers on some tasks. Farthier we think that theoretical analyses
of such methods are of great value, not least because mattitipreers use them. Our label applies
to methods which can be derived fairly straightforwardiynir standard unsupervised or supervised
methods, and we hope that truely novel proposals are in faopared against the most closely
related baseline methods.

3.1 Generative Techniques

Recall from Section 2.1 that generative techniques use ahfahily {P(x,y|8,1)} in order to
model the joint data distributioR(x,y). The simplest idea is to run a mixture density estimation
method forP(x) on X; U Xy, treatingy as a latent class variable, then using the labeled sample
D, in order to associate latent classes with actual ones. Aibadyroblem with this approach is
that the labeling provided by the unsupervised method magdmnsistent withD,, in which case
the clustering should be modified to achieve consistencly Bjit Castelli and Cover [6] provide a
simple analysis of this baseline method under fairly urisgalidentifiability conditions. Namely,
they assume that the data distribution is exactly identdiddy the unsupervised method at hand,
which employs a mixture model with one component for eachscld is not clear how to achieve
this in practice, even iP(x) is exactly knowr? In the large-sample limit, all class distributions can
be learned perfectly, but the assignment of classes to fedraks obviously remains completely
open. However, only a few additional labeled points are irequin order to learn this assignment.
In fact, it is easy to see that the error rate converges to the8error exponentially fast (in the
number of labeled examples drawn frétx, y)).

Another baseline method consists of maximizing the jokslihood of Eq. 1. Fom > 0, the crite-
rion to be minimized is not convex and typically multimodsd, we have to contend ourselves with

81t is not unrealistic to assume thRfx) is exactly known, or thatn — co. The problem is that they assume that if
P(x) is viewed as mixture distribution, then the model can fit fas distribution$(x|y) exactly. This is not realistic for
real-world problems, especially if the quantities of iegrare simply good estimatesR(y|x) or a small generalization
error of the resulting classifier.



finding a local maximum. This can be done by direct gradiestépt or more conveniently by ap-
plying theexpectation maximization (ENygorithm [11]. The latter is an iterative procedure which
is guaranteed to converge to a local maximum of the likelihdball data in Eq. 1 were labeled,
a local maximum would be found by a single optimization o®emn fact, if the class-conditional
distributionsP(x|y,0) are from an exponential family, the global maximum can benébanalyt-
ically. EM works by assigning label distributiortgy|x;) to all pointsx;. For a labeled point, the
label is represented in thaty|x;) = dyy,. If ; is unlabeled, we use the conditional posterior (for the
current®), i.e. oy|x) O ,P(x|y,0). Intuitively, this choice reflects our best current poirtireate

for the label ofx;. The E step in EM consists of computingy|x;) for all points. In the M step, the
parameter®, 1t are updated by maximizing the expected log likelihood utideq distributions:

n+m M

o, 1) = Zl Zlq(y\xi) logmyP(xly, &)
I=1y=

E and M steps are iterated until convergence. It is easy to ghat @ is a lower bound on the joint
log likelihood Eq. 1 forany choice ofg on the unlabeled points. The bound becomes an equality
if the g are chosen as posteriors and the paraméemnsare not changed. Furthermore, under this
choice the gradient of lower bound and joint log likelihoa# ghe same a8, 11, so that if EM
converges we have found a local maximum of Eq. 1.

The idea of using EM on a joint generative model to train oelatt and unlabeled data is almost as
old as EM itself. Titteringtoret.al. ([27], Sect. 5.7) review early theoretical work on the pesblof
discriminant analysis in the presence of additional uribdata. The most common assumption is
that the data has been generated from a mixture of two Gagssith equal covariance matrices,
in which case the Bayes discriminant is linear. They anatheeplug-in” method from the gen-
erative paradigm (see Section 2.1) in which the paramefafreclass distributions are estimated
by maximum likelihood. If the two Gaussians are somewhat-segparated, the asymptotic gain of
using unlabeled samples is very significant. For detaiks,[2&, 13, 14]. McLachlan [18] gives a
practical algorithm for this case which is essentially arttiazersion of EM,i.e. in every E step
the unlabeled points are allocated to one of the populatimsiag the discriminant derived from the
mixture parameters of the previous step (note that the geB&t algorithm had not been proposed
at that time). He proves that for “moderate-sized” trainkegs from each population and for a pool
D, of points sampled from the mixture, if the algorithm is ialized with the ML solution based
on the labeled data, the solutions computed by the methogeagpsm almost surely against the true
mixture distribution with|Dy| = m — . These early papers provide some important insight into
properties of the semi-supervised problem, but their tstdsumptions limit the conclusions that
can be drawn for large real-world problems.

The EM algorithm has been applied to text classification byaNiet.al. (see [20], or Chap.???
in this volume). From Eq. 1 we see that in the joint log likeldd, labeled and unlabeled data are
weighted at the ratimm to m. This “natural” weighting makes sense if the likelihood @kén at
face valuej.e. as a correct description of the sampling mechanism for tkeg @at it is somewhat
irrelevant for the problem of SSL where a strong sampling Egresent whose exact size is usually
unknown. In other words, unlabeled data is often availableuige quantities simply because it can
be obtained much cheaper than labeled data. If we use theahateighting in the interesting case
m>> n, the labeled dat®, are effectively ignored. Nigarat.al. suggest to reweight the terms in
Eqg. 1 by(1—A)/nand)A/mrespectively (the natural weighting is given by= m/(m-+n)) and to
adjustA by standard techniques such as cross-validatio®,on



Note thaty is treated as the latent class variable as far as the estimati

of P(x) from Dy is concerned, and we can just as well allow for more
mixture components than classes. Namely, we can introdueel@itional
separator variable ksuch that under the modglandy are independent
givenk. This means that all the informationcontains about its clagsis

already captured ik. This fact is illustrated in the independence model

the right. O@
The reweighted joint log likelihood is

1-A 2 o A\ mm K8)
—— > log} By kmiP(xi|k,6) + — log S TiP(xi |k, ),
N 2009 PrskPikt g, g loog Pl

wherety, = P(k|0) andByx = P(ylk, 0). It is straightforward to maximize this criterion using EM.
Miller and Uyar [19] present some results using this modgktber with Gaussian components
P(x|k,0). The “many-centers-per-class” case in [20] is equivalerhis method.

Some drawbacks of this simple generative mixture modelaggbr have already been mentioned in
Section 2.1. First, the weightingbetween the labeled and unlabeled data sources has to mnchos
carefully, for example the natural weighting is usually appropriate. A selection of by cross-
validation onD is robust in principle, but bound to fail if is very small. Second, fox not close to

0 the joint log likelihood has many (local) maxima, and for~ 1 consistency witld, is less and
less enforced. Both problems are adressed in a principahendoy Corduneanu and Jaakkola [9].
Under suitable identifiability conditiodson P(x|y,8) the maximum point fol = 0 (labeled data
only) is unique, while foiA = 1 (unlabeled data only) there are many equivalent maximuimt$o
at least due to label permutation symmetry. Therefore, asage the maximum point for growing

A starting from 0, the path must split at a first critiddl > 0. The authors argue that the maximum
point of the log likelihood at thi\* provides a promising solution to the SSL problem (in this
generative setting) in that it still fully incorporates tladel information. Also, the path up & is
unique, while it splits for largel, and the decision of which one to follow is independent of the
label information. They show how to employ homotopy conditien (path following) methods in
order to trace the solution path upXé fairly efficiently. By restricting themselves to< A* they
circumvent the many (local) maxima problem, and their ch@fA = A* is well-motivated.

Murray and Titterington (see [27], Ex. 4.3.11) suggest te Dsfor each class to obtain kernel-
based estimates of the densitRx|t). They fix these estimates and use EM in order to maximize
the joint likelihood ofD), Dy w.r.t. the mixing coefficientsg only.X? This procedure is robust, but
does not make a lot of use of the unlabeled dat&®, Ifs small, the kernel-based estimates of the
P(x]t) will be poor, and even iD, can be used to obtain better values for the mixing coeffisjent
this is not likely to rescue the final discrimination. Furtinere, the procedure has been suggested
for situations where the natural weighting betw&snD,, is appropriate, which is typically not the
case for SSL.

Shahshahani and Landgrebe [25] provide an analysis aimettde the general question whether
unlabeled data can help in classification, based on methagisating in asymptotic maximum-
likelihood theory. Their argumentation is somewhat uncéea has been criticized by various other
authors €.g, [20, 29]). They do not define model classes and seem to aordagmptotic and

9These are not very restrictive, for example they hold fofradjular) exponential families.
10EM w.r.t. the mixing coefficients only always converges taiaqueglobal optimum. It is essentially a variant of the
Blahut-Arimoto algorithmo compute theate distortion functiorwhich is important for quantization, see [10].



finite-sample terms. After all, their claim seems to be thdabeled data can reduce the asymptotic
variance of an estimator, but they do not worry about the tfaat such modifications could actu-
ally introduce new bias, especially in the interesting cakerem > n. On the practical side, the
algorithm they suggest is the joint EM scheme discussedeabov

Another analysis of SSL which also employs Fisher inforomtis given by Zhang and Oles [29].
The authors show that for purely diagnostic models, untabelata cannot help (this fact is of
course known since a long time, see also Section 2.2). Inehergtive setup, they show thag
can only help. While this is true under their assumptiondraivs on asymptotic concepts and may
not be relevant in practical situations. The Fisher infdramecharacterizes the minimasymptotic
variance of an unbiased estimator only, and the maximueiiizod estimator is typically only
asymptoticallyunbiased. Applying such concepts to the case wbeis small cannot lead to strong
conclusions, and the question of (even asymptotic) biagiresrin the case whema grows much
faster tham. On the practical side, some empirical evidence is predemtea text categorization
task which shows that unlabeled data can lead to instasilii common transduction algorithms
and therefore “hurt” (see comments in Section 2.3).

3.2 Diagnostic Techniques

We noted in Section 2.2 that unlabeled data cannot be usedyesian diagnostic methodséf
andp area priori independent, so in order to make usdgfwe have to employ conditional priors
P(8]u). Unlabeled data may still be useful in non-Bayesian sestidg example has been given by
Tong and Koller [28] under the name mdstriced Bayes optimal classification (RBOCpnsider

a diagnostic method in which the sum of an empirical loss tenh a regularization functional is
minimized. The empirical loss term is the expectation wthig labeled samplB, of a loss function
relevant for the problem (for example, the zero-one lossy, h) = I nx)})- The authors suggest
incorporating unlabeled dafa, by estimatingP(x,y) from D, UD,, then replacing the empirical
loss term by the expectation of the loss under this estinfdite regularization term is not changed.
We can compare this method directly with input-dependegiilegization (see Section 2.3). In the
former, the empirical loss part (the negative log likeliddor a probabilistic model) is modified
based oDy, in the latter it is the regularization term. We would not espRBOC to produce very
different results from the corresponding diagnostic tégpine, especially ifis rather small (which
is the interesting case in practice). This is somewhat aoefirby the weak results in [28]. A very
similar idea is proposed in [7] in order to modify the diagimS§VM framework.

Anderson [1] suggested an interesting modification of kigigegression in which unlabeled data
can be used. In binary logistic regression, the log odds adetted as linear function, which gives
P(x|1) = exp(BTx)P(x|2) andP(x) = (Th exp(B'X) + 1 — T4 )P(x|2), wherery = P{t = 1}. Ander-
son now chooses the parametfrsy andP(x|2) in order to maximize the likelihood of botb,
andD,, subject to the constraints thafx|1) andP(x|2) are normalized. For finit&’, this problem
can be transformed into an unconstrained optimizationt. kbie parameter, . For a continu-
ous input variable, Anderson advocates using the formRifk|2) derived for the “finitex” case,
although this is not a smooth function. Unfortunately, i@t clear how to generalize this idea to
more realistic models, for example how to “kernelize” itdethe form ofP(x|2) is inadequate for
many problems with infinitex.



3.3 Input-Dependent Regularization

We discussed in Section 2.3 that unlabeled @gtaan be useful within a diagnostic technique if
andp are dependerd priori. In order to implement this idea, we have to specify condalgriors
P(8|u) encoding our belief in how characteristicsxof> y depend on knowledge aboRx).

3.3.1 TheCluster Assumption

It is not hard to construct “malicious” examples Bfx,y) which defy any given dependence as-
sumption onB, u. However, in practice it is often the case that cluster stinecin the data fox
indeed is mostly consistent with the labeling. It is not vienytful to speculate about why this is the
case, although certainly there is a selection bias towaasifes i(e. components irx) which are
relevantw.r.t. the labeling process, which means they should grodpe same way (w.r.t. a simple
distance) as labelings. Thduster assumption (CAE.g, [22]) provides a general way of exploit-
ing this observation for SSL. It postulates that two poiitx” should have the same labelith
high probability if there is a “path” between them hwhich moves through regions of significant
densityP(x) only. In other words, a discrimination function between thesses should be smooth
within connected high-density regions®fx). Thus, the CA can be compared directly wiflobal
smoothness assumptions requiring the discriminant togghamoothly everywhere, independent of
P(x). While the latter penalize sharp changes also in regionstwill be sparsely populated by
training and test data, the CA remains indifferent there.

The CAis implemented (to different extent) in a host of methproposed for SSL. Most prominent
are probablylabel propagationmethods [26, 4, 30]. The rough idea is to construct a graph wit
vertices fromX; U X, which contains the test set to be labeled and alKpfNearest neighbors
are joined by edges with a weight proportional to local datien strength. We then initialize the
nodes corresponding % with the labelsY; and propagate label distributions over the remaining
nodes in the manner of a Markov chain on the graph [26]. Itds @lossible to view the setup as
a Gaussian field with the graph and edge weights specifyiagriverse covariance matrix [30].
Label propagation techniques implement the CA relativertsupervised spectral clustering [4].
The CA has been implemented for kernel machines by way ofltister kernel [8]. Furthermore,
the generative SSL techniques of Section 3.1 can be seenpdanmienting the CA relative to a
mixture model clustering.

A generalization of the CA has been given by Corduneanu azkkd& (see Chap.??? in this vol-
ume) who show how to obtain a regularizer for the conditiahstributionP(y|x) from information-
theoretic arguments.

3.3.2 TheFisher Kernd

TheFisher kernewas proposed in [15] in order to exploit additional unladedata within a kernel-
basedsupport vector machine (SVNtamework for detecting remote protein homologies. Thaide
is to fit a generative modé&l(x|u) to Dy by maximum likelihood (resulting ip,’say). Ifx are DNA
sequences, a hidden Markov model (HMM) can be emplofg|{l) represents the knowledge
extracted fromDy, and the Fisher kernel is a general way of constructing ar@we kerneKg
which depends on this knowledge. We can then fit an SVM or a @auprocess (GP) classifier
to Dy using the kernekKp. Identifying this setup as an instance of input-dependeguilarization is
easiest in the GP context. Hefejs a process representing the discriminant function (waraes



c = 2 for simplicity), andP(8|p) is a GP distribution with zero mean function and covariarexaél
Ky. In the ML context,P(u|Dy) is approximated by the Delta distributidp.

Define the Fisher score to g (x) = OalogP(x|y) (the gradient w.r.ty is evaluated aft). The
Fisher information matrix iss = Ep(.y) [Fa(X)Fa(x)T]. The naive Fisher kernel i&(x,X) =
Fa(X)TF~1FRa(X). In a variant,F is replaced byal for a scale parameter. Other variants of the
Fisher kernel are obtained by using the Fisher ségf&) as feature vector fox and plug these
into a standard kernel such as the Gaussian (RBF) one. Tke lambeddings” seem to be more
useful in practice. The Fisher kernel can be motivated framous angles (see [15]), for example
as first-order-approximation to a sample mutual inforrmabetweerx, X' [23].

3.3.3 Co-training

Co-trainingwas introduced by Blum and Mitchell [5] and is related to ieavork on unsupervised
learning [2]. The idea is to make use of different “views” tie bbjects to be classified (we restrict
ourselves to binary classification= 2, and to two views). For example, a Web page can be repre-
sented by the text on the page, but also by the text of hyperlieferring to the page. We can train
classifiers separately which are specialized to each ofidvesy but in this context unlabeled data
Dy can be helpful in that although the true label is missing, istrbe the same for all the views.

It turns out that Co-training can be seen as a special casey#dian inference using conditional
priors (see Section 2.3), as is demonstrated below in tlusd®e

Let X = XM x x(® be a finite or countable input space.xdf= (x,x?), the x)) are differ-
ent “views” onx. We are also given spac&'!) of concepts (binary classifier§f!). Elements
8 =(0,0?2)c0=0" x 0@ are called concepts ovef, although we may hav@® (x(1))

8@ (x(?)) for somex = (xV,x@) e x. Whenever theéd'!) agree, we writed(x) = 81 (xV). If

A C X, we say that a concept= (8'Y),8?) is compatiblewith A if 8Y(x1)) = 8 (x2)) for all

x = (x1),x(?)) € A. Denote byd(A) the space of all concepts compatible witi* If Q(x) is a dis-
tribution overX with support S= suppQ(x) = {x|Q(x) > 0}, we say that a conceftis compatible
with the distributionQ if it is compatible withS.

In the Co-training setting, there is an unknown input disttion P(x). A target concep® is sam-
pled from some unknown distribution ov@, and the data distribution iB(y|x) = l;gx)—t} if

8 € O({x}), 1/2 otherwisé?. However, the central assumption is that the target corzéptom-
patible with the input distributionP(x). More specifically, the support of the concept distribution
must be contained i®(suppP(x)). Therefore, unlabeled dafa, can be used by observing that
O(suppP(x)) € ©(DyU X)), so the effective concept space can be shrunk ol ©(D, U X).

We demonstrate that Co-training can be understood as Bayadgerence with conditional priors
encoding the compatibility assumption. We mo&¢k) by {P(x|un)} and introduce the variable
S=suppP(x|p) for convenience, then defif&0|u) = P(6|S) as

P(6]S) = fs(8)lpcors), SC X,

where fs(0) > 0, and allP(8|S) are properly normalized. For example,@{S) is finite, we can
choosefs(0) = |@(S)| L. The likelihood is given byP(y|x,8) = (1/2)(|{e<1>(x<1>):t} + '{e<2>(x<2>):t})

n order not to run into trivial problems, we assume t8&A) is never empty, which can be achieved by adding the
constant concept 1 to bo@i).

12Here,Ig is 1 if E is true, O otherwise. The scenario is calleiselesdecause the only source of randomness is the
uncertainty in the target function.



(noiseless case). Siné¥0|S) = 0 for 6 ¢ ©(S), the conditional prior encodes the compatibility
assumption. The posterior belief ab&uis given by

P(8|D;,Dy) O |{e(>q):yi,i:1,...,n}/P(9|S)P(S|X|,Du)d3

so thatP(8|D;,Dy) # 0 iff 8 is consistent with the labeled dafa and® € ©(D, U X ). Namely,
if 8¢ ©(DyUX)), thenP(0|S) =0 for all Swhich containD, U X;, andP(SDy, X;) = 0 for all
otherS. On the other hand, i € ©(DyUX|), then we haveP(8|S) > 0 andP(§Dy,X;) > 0 at
least forS= D, UX;. In the terminology of Blum and Mitchell, suft{6|D;,D,) is equal to the
“version space” given all the data. The biases for the learniethods o®)) may be encoded in
the potentialsfs(0).

Once Co-training is understood within a Bayesian framewatk conditional priors, one can em-
ploy standard techniques in order to perform inference.abt, fwe showed in [24] that the Co-
training algorithm suggested by Blum and Mitchell can bensea variant of (sequential) EM on
the probabilistic model sketched above. This viewpoirived us to generalize Co-training along
various dimensionsg.g. allowing for noise, smoother prior distributions, usingdtarather than
online training, uncertain rather than fixed labels on tisé peints,etc We refer to [24] for detalils.

4 Conclusions

In this Chapter we have described a simple taxonomy of mestfadsemi-supervised learning and
given many examples of SSL methods for each of the categdhsntages and potential pitfalls
of each group have been discussed. We have underlined tloetanpe of using conditional priors
in diagnostic Bayesian SSL techniques and have given dexexaples of methods proposed in the
literature which fall into this category.
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