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Abstract

We propose a simple taxonomy of probabilistic graphical models for the semi-supervised
learning problem. We give some broad classes of algorithms for each of the families and point to
specific realizations in the literature. Finally, we shed more detailed light on the family of meth-
ods using input-dependent regularization (or conditionalprior distributions) and show parallels
to the Co-training paradigm.

1 The Semi-Supervised Learning Problem

The semi-supervised learning (SSL)problem has recently drawn large attention in the machine
learning community, mainly due to its significant importance in practical applications. In this Sec-
tion we define the problem and introduce the notation to be used in the rest of this Chapter.

In statistical machine learning, we distinguish betweenunsupervisedandsupervised learning. In the
former scenario we are given a sample{xi} of patterns inX drawn independently and identically
distributed (i.i.d.)from some unknown data distribution with densityP(x). Our goal is to estimate
the density or a (known) functional thereof. Supervised learning consists of estimating a functional
relationshipx → y between a covariatex ∈ X and a class variable1 y∈ {1, . . . ,M}, with the goal of
minimizing a functional of the (joint) data distributionP(x,y) such as the probability of classifica-
tion error. The marginal data distributionP(x) is referred to as input distribution. Classification can
be treated as a special case of estimating the joint densityP(x,y), but this is wasteful sincex will
always be given at prediction time, so there is no need to estimate the input distribution.

The terminology “unsupervised learning” is a bit unfortunate, the termdensity estimationshould
probably be preferred. Traditionally, many techniques fordensity estimation propose a latent (un-
observed) class variabley and estimateP(x) asmixture distribution∑M

y=1 P(x|y)P(y). Note thaty
has a fundamentally different role than in classification, in that its existence and rangec is a model-
ing choice rather than observable reality. However, in other density estimation techniques, such as
nonlinear dimensionality reduction, the term “unsupervised” does not make sense.

1We restrict ourselves to classification scenarios in this Chapter.
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The semi-supervised learning problem belongs to the supervised category, since the goal is to mini-
mize the classification error, and an estimate ofP(x) is not sought after.2 The difference to a standard
classification setting is that along with alabeled sample Dl = {(xi ,yi) | i = 1, . . . ,n} drawn i.i.d. from
P(x,y) we also have access to an additionalunlabeled sample Du = {xn+ j | j = 1, . . . ,m} from the
marginalP(x). We are especially interested in cases wherem≫ n which may arise in situations
where obtaining an unlabeled sample is cheap and easy, whilelabeling the sample is expensive or
difficult. We denoteXl = (x1, . . . ,xn),Yl = (y1, . . . ,yn) andXu = (xn+1, . . . ,xn+m). The unobserved
labels are denotedYu = (yn+1, . . . ,yn+m). In a straightforward generalization of SSL (not discussed
here) uncertain information aboutYu is available.

There are two obvious baseline methods for SSL. We can treat it as a supervised classification
problem by ignoringDu, or we can treaty as latent class variable in a mixture estimate ofP(x)
which is fitted using an unsupervised method, then associatelatent groups with observed classes
usingDl (see Section 3.1 for more details). One would agree that any valid SSL technique should
outperform both baseline methods significantly in a range ofpractically relevant situations. If this
sounds rather vague, note that in general for afixedSSL method it should be easy to construct data
distributions for which either of the baseline methods doesbetter.3 In our view, SSL is much more
a practical than a theoretical problem. A useful SSL technique should be configurable to specifics
of the task in a similar way than Bayesian learning, through the choice of prior and model. While
some theoretical work has been done for SSL, the bulk of relevant work so far has tackled real-world
applications.

2 Paradigms for Semi-Supervised Learning

Since SSL methods are supervised learning techniques, theycan be classified according to the stan-
dard taxonomy intogenerativeanddiagnosticparadigms. In this Section we present these paradigms
and highlight their differences in the case of SSL. We also note that this taxonomy which originated
for purely supervised methods, can be ambiguous when applied to SSL, and we suggest how the
borderline can be drawn exactly.

In the figures of this Section, we employ a convenient graphical notation frequently used in statistics
and machine learning [17, 16]. These so-called directedgraphical models(or indepence diagrams)
have the following intuitive semantics. Nodes represent random variables. The parents of a nodei
are the nodesj for which a directed edgej → i exists.4 It is possible to sample the value of a node
once the values of all its parents are known. Thus, a graphical model is a simple way of representing
the sampling mechanism from a distribution over several variables. As such, the graphical model en-
codes conditional independency constraints that have to hold for the distribution. In order to sample
from the distribution, we start with nodes without parents and work in the directions of the edges.

2While this statement is probably open to debate, it is in factagreed upon in statistics. In our opinion, methods
should be classified foremost according to the problem they try to solve,not by which sources of data they make use
of. On the other hand, there are problems in which density estimation is the goal and labeled data is treated as auxiliary
source. However, these fall into a category with very different characteristics and are not in the scope of this Chapter.
In our opinion, it would be very confusing to lump them together with methods we classify as SSL here. A label like
“semi-unsupervised learning” would be more appropriate.

3This is a “no free lunch” statement for SSL, but in practice itseems to be a more serious problem than in the purely
supervised context (where a “no free lunch” statement holdsas well). See Chap.??? in this volume for some examples.

4Directed cycles are not allowed. In other words, it must be impossible to return to a node by moving along edges and
respecting their direction.



We also make use ofplateswhich are rectangular boxes grouping a set of nodes. This means that
the group is sampled repeatedly and independently from the same distribution (i.i.d.) conditioned
on all nodes which are parents of any plate member. For example, the figure of Section 2.1 means
that we first sampleθ andπ independently (neither has parents), then draw a sample{(xi ,yi)} i.i.d.
conditioned onθ, π (which are parents of the plate).

Note that we describe the generative and diagnostic paradigm from an explicitly Bayesian view-
point. This is somewhat a matter of personal choice here, andcertainly one could sketch these
classes without ever mentioning concepts like prior distributions. On the other hand, the Bayesian
view avoids many unnecessary complications, in that all variables are random, no difference has to
be made between functional and probabilistic independence, etc, so we do not think our presentation
lacks clarity or generality because of this choice.

2.1 The Generative Paradigm

We refer to architectures following thegenerative paradigmasgener-
ative methods. Within such, we model the class distributionsP(x|y)
using model families{P(x|y,θ)}, furthermore the class priorsP(y) by
πy = P(y|π), π = (πy)y. We refer to an architecture of this type as ajoint
density model, since we are modeling the full joint densityP(x,y) by
πyP(x|y,θ). For any fixedθ̂, π̂, an estimate ofP(y|x) can then be com-
puted by Bayes’ formula:

θ π

x y

P(y|x, θ̂, π̂) =
π̂yP(x|y, θ̂)

∑M
y′=1 π̂y′P(x|y′, θ̂)

.

This is sometimes referred to asplug-in estimate. Alternatively, one can obtain the Bayesian pre-
dictive distributionP(y|x,Dl ) by averagingP(y|x,θ,π) over the posteriorP(θ,π|Dl ).5 Within the
generative paradigm, a model for the marginalP(x) emerges naturally as

P(x|θ,π) =
M

∑
y=1

πyP(x|y,θ).

If labeled and unlabeled data are available, a natural criterion emerges as thejoint log likelihoodof
bothDl and Du,

n

∑
i=1

logπyi P(xi|yi ,θ)+
n+m

∑
i=n+1

log
M

∑
y=1

πyP(xi |y,θ), (1)

or alternatively the posteriorP(θ,π|Dl ,Du).6 This is essentially an issue of maximum likelihood in
the presence of missing data (treatingy as latent variable), which can in principle be attacked by the
expectation-maximization (EM) algorithm (see Section 3.1) or by direct gradient descent.

Some researchers have been quick in hailing this strategy asan obvious solution to the SSL prob-
lem, but this is not the case, in about the same sense as generative methods often do not provide

5In a sense, the predictive distribution is a Bayesian’s bestestimate of the underlying true data distributionP(y|x). It
is however obtained as posterior expectation, not by maximizing some criterion.

6To predict, we averageP(y|x,θ,π) over the posterior. If we know thatx is drawn fromP(x) and independent from
D, we should rather employ the posteriorP(θ,π|Dl ,Du,x). However, in this case the test set usually forms a part ofDu,
and the two posteriors are the same.



good solutions to classification problems. Generative techniques provide an estimate ofP(x) along
the way, although this is not required for classification, and in general this proves wasteful given
limited data. For example, maximizing the joint likelihoodof a finite sample need not lead to small
classification error, because depending on the model it may be possible to increase the likelihood
more by improving the fit ofP(x) than the fit ofP(y|x). This is an instance of the general problem
of balancing the impact ofDl andDu on the final predictions, especially in the casem≫ n. This
issue is discussed in Section 3.1. Furthermore, in the SSL setting y is a latent variable which has
to be summed out onDu, leading to highly multimodal posteriors, so that likelihood or posterior
maximization techniques are plagued by the presence of verymany (local) minima.

2.2 The Diagnostic Paradigm

In diagnostic methods, we model the conditional distributionP(y|x) di-
rectly using the family{P(y|x,θ)}. To arrive at a complete sampling
model for the data, we also have to modelP(x) by a familyP(x|µ), how-
ever if we are only interested in updating our belief inθ or in predicting
y on unseen points, this is not necessary, as we will see next. Under this
model,θ andµ area priori independent, i.e.P(θ,µ) = P(θ)P(µ).

µ θ

x y
The likelihood factors as

P(Dl ,Du|θ,µ) = P(Yl |Xl ,θ)P(Xl ,Du|µ),

which implies thatP(θ|Dl ,Du) ∝ P(Yl |Xl ,θ)P(θ), i.e. P(θ|Dl ,Du) = P(θ|Dl ), andθ andµ area-
posteriori independent. Furthermore,P(θ|Dl ,µ) = P(θ|Dl ). This means that neither knowledge of
the unlabeled dataDu nor anyknowledge ofµ changes the posterior beliefP(θ|Dl ) of the labeled
sample. Therefore, in the standard data generation model for diagnostic methods, unlabeled dataDu

cannot be used for Bayesian inference, and modelling the input distributionP(x) is not necessary.
There are non-Bayesian diagnostic techniques in which we can make use ofDu (see Section 3.2),
but the impact of doing so (as opposed to ignoringDu) is usually very limited. In order to make
significant use of unlabeled data in diagnostic methods, thedata generation model discussed above
has to be modified as discussed in the following Section.

2.3 Regularization depending on the Input Distribution

When learning from a sampleDl of limited size, typically very many associationsx → y are con-
sistent with the data. The idea ofregularizationis to bias our choice of classifier towards “simpler”
hypotheses, by adding a regularization functional to the criterion to be minimized which grows with
complexity. Here, the notion of simplicity depends on the task and the model setup. For example,
for a linear model it is customary to penalize a norm of the weight vector, and for some commonly
used regularization functionals this can be shown to be equivalent to placing a zero-mean prior dis-
tribution on the weight vector. From now on we will only be interested in regularization by priors
and will use the terms interchangeably.

We have seen in Section 2.2 that with straight diagnostic Bayesian methods for classification, we
cannot make use of additional unlabeled dataDu, becauseθ (parameterizingP(y|x)) andµ (parame-
terizingP(x)) area priori independent. In other words, the model family{P(y|x,θ)} is regularized
independentlyof the input distribution.



If we allow prior dependencies betweenθ and µ, e.g. P(θ,µ) =
P(θ|µ)P(µ) andP(θ) =

R

P(θ|µ)P(µ)dµ (as shown in the independence
diagram to the right), the situation is different. The conditional prior
P(θ|µ) in principle allows information aboutµ to be transferred toθ. In
general,θ andDu will be dependent given the labeled dataDl , therefore
unlabeled data can change our posterior belief inθ.

µ θ

x y
We conclude that to make use of additional unlabeled data within the context of diagnostic Bayesian
supervised techniques, we have to allow ana priori dependence between the latent function repre-
senting the conditional probability and the input probability itself. In other words, we have to use
a regularization of the latent function which depends on the input distribution. The potential gain
can be demonstrated by the following argument. Note that conditional priors imply a marginal prior
P(θ) which is a mixture distribution:P(θ) =

R

P(θ|µ)P(µ)dµ. By conditioning on the unlabeled
data, this is replaced byP(θ|Du) =

R

P(θ|µ)P(µ|Du)dµ which can have a much smaller entropy
thanP(θ), implying that the posterior beliefP(θ|Dl ,Du) can be much narrower thanP(θ|Dl ). On
the other hand, the same argument can be used to demonstrate that using additional unlabeled data
Du can hurt instead of help. Namely, if the priorsP(θ|µ) enforce certain constraints very rigidly,
but these happen to be violated in the true distributionP(x,y), the conditional “prior”P(θ|Du) will
assign much lower probability thanP(θ) to modelsP(y|x,θ) close to the truth, and the posterior
P(θ|Dl ,Du) can be concentrated around suboptimal models. While it is certainly easy to construct
artificial situations where additional unlabeled data hurts, it is worrying that such failures do hap-
pen quite unexpectedly in practically relevant settings aswell. For a more thorough analysis of this
problem, see Cozman and Cohen (Chap.??? in this volume).

We note that while the modification to the standard data generation model for diagnostic methods
suggested here is straightforward, choosing appropriate conditional priorsP(θ|µ) suitable for a task
at hand can be challenging. However, several general techniques for SSL can actually be seen as
realizing input-dependent regularization, as is demonstrated in Section 3.3.

The reader may feel uneasy at this point. If we usea priori dependentθ andµ, the final predictive
distributiondependson the priorP(µ) over the input distribution. This forces us to model the input
distribution itself, in contrast to the situation for standard diagnostic methods. In this case, will our
method still be a diagnostic one? Is it not the case that any method which modelsP(x) in some way,
must automatically be generative? Diagnostic methods can be much more parsimonious simply
becauseP(x) need not be estimated. In order to implement input-dependent regularization, do we
have to use a generative model with the drawbacks discussed in Section 2.1? There is indeed some
ambiguity here, but we will try to clarify this point in Section 2.4. Under this general viewpoint,
input-dependent regularization is indeed a diagnostic SSLtechnique.

In the diagnostic paradigm for purely supervised tasks,θ andµ are treated asa priori independent,
leading to the fact that no aspects ofP(x) have to be estimated. While this is convenient, it is not clear
whether we should really believe in such independence for a real-world task. For example, suppose
thatP(θ) enforces smoothness of the relationshipP(y|x,θ). Is it sensible to enforce smoothness of
x→ y around allx, or should we not rather penalize rough behaviour only whereP(x) has significant
volume? The former is more conservative and possibly more robust, but also risks ignoring valuable
information sources (see Section 3.3.1 for an example).



2.4 The Borderline between the Paradigms

While the borderline between supervised and unsupervised methods is clearly drawn, the distinc-
tion between generative and diagnostic techniques can be ambiguous, especially if we apply this
taxonomy to SSL. In this Section we give two criteria for a clear discrimination: a simple and a
more elaborate one. In a sense they are both based on the same issue, namely therole that theP(x)
estimate plays for the prediction.

Recall that we restrict ourselves to methods whose ultimategoal it is to estimateP(y|x). Tradition-
ally, generative methods achieve this by modelling the joint distributionP(y,x) and fit this model
to data by capturing characteristics of the true joint data distribution. An estimate ofP(x) can al-
ways be obtained by marginalizing the joint estimate. In contrast, diagnostic methods concentrate
on modelling the conditional distributionP(y|x) only, and an estimate ofP(x) cannot be extracted.
However, in the SSL case we do have to modelP(x) in order to profit fromDu. So are all SSL
methods generative? We argue against this viewpoint and tryto classify SSL techniques according
to the role which theP(x) estimate actually plays.

While it is true that any SSL method has to modelP(x) in some way, in a generative technique we
model the class-conditional distributionsP(x|y) explicitly, so that the model forP(x) is a mixture
of those. From these estimates (and the estimates ofP(y)) we obtain an estimate ofP(y|x) using
Bayes’ formula. Characteristics of the predictive estimate (such as the function class in a parametric
situation) depend entirely on the class-conditional models. For example, if the latter are Gaussian
with the same covariance matrix, the predictive estimates will be based on linear functions. In a
nutshell, we specify theP(x|y) using our modelling toolbox, which implies the form of ourP(y|x)
andP(x) estimates (the latter is a mixture of theP(x|y)). The only way to encodespecificproperties
for the latter estimates is to findP(x|y) candidates which are both tractable to work with and imply
the desired properties ofP(y|x) andP(x). In contrast to that, in a diagnostic method we modelP(y|x)
directly, and also typically have considerable freedom in modellingP(x). In SSL we regularize the
P(y|x) estimates using information fromP(x), but we do not have to specify the class-conditional
distributions explicitly.7 While this definition is workable for the SSL methods mentioned here,
it may be too restrictive on the generative side. For example, the “many-centers-per-class” model
of Section 3.1 is clearly generative, but works with a mixture model forP(x) which has several
components for each classy, andP(x|y) is modelled indirectly viaP(x|y) = ∑k πyβy,kP(x|k), i.e.
as a mixture itself. In the following paragraph we suggest analternative view which leaves more
freedom for generative techiques.

The practical success of SSL has shown that unlabeled data,i.e. knowledge aboutP(x), can be
useful for supervised tasks, but it is not necessarily the sametypeof knowledge that would lead to a
good estimate ofP(x) according to common performance criteria for density estimation. In fact, it
is actually a few general characteristics ofP(x) which seem to help classification (see for example
Section 3.3.1). For example, if we convert a purely diagnostic technique such as SVM or logistic
regression into an SSL technique by employing a regularizerpenalizingP(y|x) estimates which
violate certain aspectsof P(x) such as the cluster assumption (see Section 3.3.1), the influence of
P(x) on the finalP(y|x) estimate is restricted to just these aspects that we hope areimportant for
better classification. These restrictions are engineered by us because we want to make best use of
Du in order to predict P(y|x). In contrast if we perform SSL by maximizing a suitably reweighted

7There are of course class-conditional distributions whichareimpliedby the models ofP(y|x) andP(x) (use Bayes’
formula), but importantly we do not have to work with them directly, so that their form is not restricted by tractability
requirements.



version of the joint log likelihood (Eq. 1) of a mixture model(see Section 3.1), such a restriction to
classification-relevant aspects is not given or at least notdirectly planned. In fact the joint model is
designed in much the same way as we would do for density estimation.

For example, consider the framework of conditional priors of Section 2.3. While it is essential to
learn aboutP(x) in SSL, the impact of an oversimple model forP(x) on the final prediction is much
less severe than in density estimation. This is because a suitable regularization will only depend on
certain aspects ofP(x) (for example on the coarse locations of high density regionsunder the cluster
assumption, see Section 3.3.1), and our model for thex distribution only has to be able to capture
those accurately.

3 Examples

In this Section we provide examples of SSL methods falling ineach of the categories introduced
in the previous Section. We do not try to provide a comprehensive literature review here (see [22]
for review of work up to about 2001), but are selective in order to point out characteristics of and
differences between the categories. Note that in this context (and also in [22]) some methods are
classified as “baseline methods”. This does not constitute adevaluation, and in fact some of these
methods belong to the top-performers on some tasks. Furthermore, we think that theoretical analyses
of such methods are of great value, not least because many practitioners use them. Our label applies
to methods which can be derived fairly straightforwardly from standard unsupervised or supervised
methods, and we hope that truely novel proposals are in fact compared against the most closely
related baseline methods.

3.1 Generative Techniques

Recall from Section 2.1 that generative techniques use a model family {P(x,y|θ,π)} in order to
model the joint data distributionP(x,y). The simplest idea is to run a mixture density estimation
method forP(x) on Xl ∪Xu, treatingy as a latent class variable, then using the labeled sample
Dl in order to associate latent classes with actual ones. An obvious problem with this approach is
that the labeling provided by the unsupervised method may beinconsistent withDl , in which case
the clustering should be modified to achieve consistency with Dl . Castelli and Cover [6] provide a
simple analysis of this baseline method under fairly unrealistic identifiability conditions. Namely,
they assume that the data distribution is exactly identifiable by the unsupervised method at hand,
which employs a mixture model with one component for each class. It is not clear how to achieve
this in practice, even ifP(x) is exactly known.8 In the large-sample limit, all class distributions can
be learned perfectly, but the assignment of classes to labelnames obviously remains completely
open. However, only a few additional labeled points are required in order to learn this assignment.
In fact, it is easy to see that the error rate converges to the Bayes error exponentially fast (in the
number of labeled examples drawn fromP(x,y)).

Another baseline method consists of maximizing the joint likelihood of Eq. 1. Form> 0, the crite-
rion to be minimized is not convex and typically multimodal,so we have to contend ourselves with

8It is not unrealistic to assume thatP(x) is exactly known, or thatm→ ∞. The problem is that they assume that if
P(x) is viewed as mixture distribution, then the model can fit the class distributionsP(x|y) exactly. This is not realistic for
real-world problems, especially if the quantities of interest are simply good estimates ofP(y|x) or a small generalization
error of the resulting classifier.



finding a local maximum. This can be done by direct gradient descent or more conveniently by ap-
plying theexpectation maximization (EM)algorithm [11]. The latter is an iterative procedure which
is guaranteed to converge to a local maximum of the likelihood. If all data in Eq. 1 were labeled,
a local maximum would be found by a single optimization overθ. In fact, if the class-conditional
distributionsP(x|y,θ) are from an exponential family, the global maximum can be found analyt-
ically. EM works by assigning label distributionsq(y|xi) to all pointsxi . For a labeled point, the
label is represented in thatq(y|xi) = δy,yi . If xi is unlabeled, we use the conditional posterior (for the
currentθ), i.e. q(y|xi) ∝ πyP(xi|y,θ). Intuitively, this choice reflects our best current point estimate
for the label ofxi. The E step in EM consists of computingq(y|xi) for all points. In the M step, the
parametersθ, π are updated by maximizing the expected log likelihood undertheq distributions:

φ(θ′,π′) =
n+m

∑
i=1

M

∑
y=1

q(y|xi) logπ′
yP(xi|y,θ′).

E and M steps are iterated until convergence. It is easy to show thatφ is a lower bound on the joint
log likelihood Eq. 1 forany choice ofq on the unlabeled points. The bound becomes an equality
if the q are chosen as posteriors and the parametersθ, π are not changed. Furthermore, under this
choice the gradient of lower bound and joint log likelihood are the same atθ, π, so that if EM
converges we have found a local maximum of Eq. 1.

The idea of using EM on a joint generative model to train on labeled and unlabeled data is almost as
old as EM itself. Titteringtonet.al. ([27], Sect. 5.7) review early theoretical work on the problem of
discriminant analysis in the presence of additional unlabeled data. The most common assumption is
that the data has been generated from a mixture of two Gaussians with equal covariance matrices,
in which case the Bayes discriminant is linear. They analyzethe “plug-in” method from the gen-
erative paradigm (see Section 2.1) in which the parameters of the class distributions are estimated
by maximum likelihood. If the two Gaussians are somewhat well-separated, the asymptotic gain of
using unlabeled samples is very significant. For details, see [21, 13, 14]. McLachlan [18] gives a
practical algorithm for this case which is essentially a “hard” version of EM, i.e. in every E step
the unlabeled points are allocated to one of the populations, using the discriminant derived from the
mixture parameters of the previous step (note that the general EM algorithm had not been proposed
at that time). He proves that for “moderate-sized” trainingsets from each population and for a pool
Du of points sampled from the mixture, if the algorithm is initialized with the ML solution based
on the labeled data, the solutions computed by the method converge almost surely against the true
mixture distribution with|Du| = m→ ∞. These early papers provide some important insight into
properties of the semi-supervised problem, but their strict assumptions limit the conclusions that
can be drawn for large real-world problems.

The EM algorithm has been applied to text classification by Nigamet.al. (see [20], or Chap.???
in this volume). From Eq. 1 we see that in the joint log likelihood, labeled and unlabeled data are
weighted at the ration to m. This “natural” weighting makes sense if the likelihood is taken at
face value,i.e. as a correct description of the sampling mechanism for the data, but it is somewhat
irrelevant for the problem of SSL where a strong sampling bias is present whose exact size is usually
unknown. In other words, unlabeled data is often available in huge quantities simply because it can
be obtained much cheaper than labeled data. If we use the natural weighting in the interesting case
m≫ n, the labeled dataDl are effectively ignored. Nigamet.al. suggest to reweight the terms in
Eq. 1 by(1−λ)/n andλ/m respectively (the natural weighting is given byλ = m/(m+n)) and to
adjustλ by standard techniques such as cross-validation onDl .



Note thaty is treated as the latent class variable as far as the estimation
of P(x) from Du is concerned, and we can just as well allow for more
mixture components than classes. Namely, we can introduce an additional
separator variable ksuch that under the modelx and y are independent
givenk. This means that all the informationx contains about its classy is
already captured ink. This fact is illustrated in the independence model on
the right.

k

x y
The reweighted joint log likelihood is

1−λ
n

n

∑
i=1

log∑
k

βyi ,kπkP(xi |k,θ)+
λ
m

n+m

∑
i=n+1

log∑
k

πkP(xi|k,θ),

whereπk = P(k|θ) andβy,k = P(y|k,θ). It is straightforward to maximize this criterion using EM.
Miller and Uyar [19] present some results using this model together with Gaussian components
P(x|k,θ). The “many-centers-per-class” case in [20] is equivalent to this method.

Some drawbacks of this simple generative mixture model approach have already been mentioned in
Section 2.1. First, the weightingλ between the labeled and unlabeled data sources has to be chosen
carefully, for example the natural weighting is usually notappropriate. A selection ofλ by cross-
validation onDl is robust in principle, but bound to fail ifn is very small. Second, forλ not close to
0 the joint log likelihood has many (local) maxima, and forλ → 1 consistency withDl is less and
less enforced. Both problems are adressed in a principal manner by Corduneanu and Jaakkola [9].
Under suitable identifiability conditions9 on P(x|y,θ) the maximum point forλ = 0 (labeled data
only) is unique, while forλ = 1 (unlabeled data only) there are many equivalent maximum points
at least due to label permutation symmetry. Therefore, as wetrace the maximum point for growing
λ starting from 0, the path must split at a first criticalλ∗ > 0. The authors argue that the maximum
point of the log likelihood at thisλ∗ provides a promising solution to the SSL problem (in this
generative setting) in that it still fully incorporates thelabel information. Also, the path up toλ∗ is
unique, while it splits for largerλ, and the decision of which one to follow is independent of the
label information. They show how to employ homotopy continuation (path following) methods in
order to trace the solution path up toλ∗ fairly efficiently. By restricting themselves toλ ≤ λ∗ they
circumvent the many (local) maxima problem, and their choice of λ = λ∗ is well-motivated.

Murray and Titterington (see [27], Ex. 4.3.11) suggest to use Dl for each class to obtain kernel-
based estimates of the densitiesP(x|t). They fix these estimates and use EM in order to maximize
the joint likelihood ofDl , Du w.r.t. the mixing coefficientsπt only.10 This procedure is robust, but
does not make a lot of use of the unlabeled data. IfDl is small, the kernel-based estimates of the
P(x|t) will be poor, and even ifDu can be used to obtain better values for the mixing coefficients,
this is not likely to rescue the final discrimination. Furthermore, the procedure has been suggested
for situations where the natural weighting betweenDl , Du is appropriate, which is typically not the
case for SSL.

Shahshahani and Landgrebe [25] provide an analysis aimed towards the general question whether
unlabeled data can help in classification, based on methods originating in asymptotic maximum-
likelihood theory. Their argumentation is somewhat unclear and has been criticized by various other
authors (e.g., [20, 29]). They do not define model classes and seem to confuse asymptotic and

9These are not very restrictive, for example they hold for all(regular) exponential families.
10EM w.r.t. the mixing coefficients only always converges to a uniqueglobal optimum. It is essentially a variant of the

Blahut-Arimoto algorithmto compute therate distortion functionwhich is important for quantization, see [10].



finite-sample terms. After all, their claim seems to be that unlabeled data can reduce the asymptotic
variance of an estimator, but they do not worry about the factthat such modifications could actu-
ally introduce new bias, especially in the interesting casewherem≫ n. On the practical side, the
algorithm they suggest is the joint EM scheme discussed above.

Another analysis of SSL which also employs Fisher information, is given by Zhang and Oles [29].
The authors show that for purely diagnostic models, unlabeled data cannot help (this fact is of
course known since a long time, see also Section 2.2). In the generative setup, they show thatDu

can only help. While this is true under their assumptions, itdraws on asymptotic concepts and may
not be relevant in practical situations. The Fisher information characterizes the minimalasymptotic
variance of an unbiased estimator only, and the maximum-likelihood estimator is typically only
asymptoticallyunbiased. Applying such concepts to the case whereDl is small cannot lead to strong
conclusions, and the question of (even asymptotic) bias remains in the case wherem grows much
faster thann. On the practical side, some empirical evidence is presented on a text categorization
task which shows that unlabeled data can lead to instabilities in common transduction algorithms
and therefore “hurt” (see comments in Section 2.3).

3.2 Diagnostic Techniques

We noted in Section 2.2 that unlabeled data cannot be used in Bayesian diagnostic methods ifθ
andµ area priori independent, so in order to make use ofDu we have to employ conditional priors
P(θ|µ). Unlabeled data may still be useful in non-Bayesian settings. An example has been given by
Tong and Koller [28] under the name ofrestriced Bayes optimal classification (RBOC). Consider
a diagnostic method in which the sum of an empirical loss termand a regularization functional is
minimized. The empirical loss term is the expectation w.r.t. the labeled sampleDl of a loss function
relevant for the problem (for example, the zero-one lossL(x,y,h) = I{t 6=h(x)}). The authors suggest
incorporating unlabeled dataDu by estimatingP(x,y) from Dl ∪Du, then replacing the empirical
loss term by the expectation of the loss under this estimate.The regularization term is not changed.
We can compare this method directly with input-dependent regularization (see Section 2.3). In the
former, the empirical loss part (the negative log likelihood for a probabilistic model) is modified
based onDu, in the latter it is the regularization term. We would not expect RBOC to produce very
different results from the corresponding diagnostic technique, especially ifn is rather small (which
is the interesting case in practice). This is somewhat confirmed by the weak results in [28]. A very
similar idea is proposed in [7] in order to modify the diagnostic SVM framework.

Anderson [1] suggested an interesting modification of logistic regression in which unlabeled data
can be used. In binary logistic regression, the log odds are modelled as linear function, which gives
P(x|1) = exp(βTx)P(x|2) andP(x) = (π1 exp(βTx)+1−π1)P(x|2), whereπ1 = P{t = 1}. Ander-
son now chooses the parametersβ, π1 andP(x|2) in order to maximize the likelihood of bothDl

andDu, subject to the constraints thatP(x|1) andP(x|2) are normalized. For finiteX , this problem
can be transformed into an unconstrained optimization w.r.t. the parametersβ, π1. For a continu-
ous input variablex, Anderson advocates using the form ofP(x|2) derived for the “finiteX ” case,
although this is not a smooth function. Unfortunately, it isnot clear how to generalize this idea to
more realistic models, for example how to “kernelize” it, and the form ofP(x|2) is inadequate for
many problems with infiniteX .



3.3 Input-Dependent Regularization

We discussed in Section 2.3 that unlabeled dataDu can be useful within a diagnostic technique ifθ
andµ are dependenta priori. In order to implement this idea, we have to specify conditional priors
P(θ|µ) encoding our belief in how characteristics ofx → y depend on knowledge aboutP(x).

3.3.1 The Cluster Assumption

It is not hard to construct “malicious” examples ofP(x,y) which defy any given dependence as-
sumption onθ, µ. However, in practice it is often the case that cluster structure in the data forx
indeed is mostly consistent with the labeling. It is not veryfruitful to speculate about why this is the
case, although certainly there is a selection bias towards features (i.e. components inx) which are
relevantw.r.t. the labeling process, which means they should group in the same way (w.r.t. a simple
distance) as labelings. Thecluster assumption (CA)(e.g., [22]) provides a general way of exploit-
ing this observation for SSL. It postulates that two pointsx′, x′′ should have the same labely with
high probability if there is a “path” between them inX which moves through regions of significant
densityP(x) only. In other words, a discrimination function between theclasses should be smooth
within connected high-density regions ofP(x). Thus, the CA can be compared directly withglobal
smoothness assumptions requiring the discriminant to change smoothly everywhere, independent of
P(x). While the latter penalize sharp changes also in regions which will be sparsely populated by
training and test data, the CA remains indifferent there.

The CA is implemented (to different extent) in a host of methods proposed for SSL. Most prominent
are probablylabel propagationmethods [26, 4, 30]. The rough idea is to construct a graph with
vertices fromXl ∪Xu which contains the test set to be labeled and all ofXl . Nearest neighbors
are joined by edges with a weight proportional to local correlation strength. We then initialize the
nodes corresponding toXl with the labelsYl and propagate label distributions over the remaining
nodes in the manner of a Markov chain on the graph [26]. It is also possible to view the setup as
a Gaussian field with the graph and edge weights specifying the inverse covariance matrix [30].
Label propagation techniques implement the CA relative to unsupervised spectral clustering [4].
The CA has been implemented for kernel machines by way of the cluster kernel [8]. Furthermore,
the generative SSL techniques of Section 3.1 can be seen as implementing the CA relative to a
mixture model clustering.

A generalization of the CA has been given by Corduneanu and Jaakkola (see Chap.??? in this vol-
ume) who show how to obtain a regularizer for the conditionaldistributionP(y|x) from information-
theoretic arguments.

3.3.2 The Fisher Kernel

TheFisher kernelwas proposed in [15] in order to exploit additional unlabeled data within a kernel-
basedsupport vector machine (SVM)framework for detecting remote protein homologies. The idea
is to fit a generative modelP(x|µ) to Du by maximum likelihood (resulting in ˆµ, say). Ifx are DNA
sequences, a hidden Markov model (HMM) can be employed.P(x|µ̂) represents the knowledge
extracted fromDu, and the Fisher kernel is a general way of constructing a covariance kernelKµ̂

which depends on this knowledge. We can then fit an SVM or a Gaussian process (GP) classifier
to Du using the kernelKµ̂. Identifying this setup as an instance of input-dependent regularization is
easiest in the GP context. Here,θ is a process representing the discriminant function (we assume



c= 2 for simplicity), andP(θ|µ) is a GP distribution with zero mean function and covariance kernel
Kµ. In the ML context,P(µ|Du) is approximated by the Delta distributionδµ̂.

Define the Fisher score to beFµ̂(x) = ∇µ̂ logP(x|µ) (the gradient w.r.t.µ is evaluated at ˆµ). The
Fisher information matrix isF = EP(·|µ̂)[Fµ̂(x)Fµ̂(x)T ]. The naive Fisher kernel isKµ̂(x,x′) =
Fµ̂(x)TF−1Fµ̂(x′). In a variant,F is replaced byαI for a scale parameterα. Other variants of the
Fisher kernel are obtained by using the Fisher scoreFµ̂(x) as feature vector forx and plug these
into a standard kernel such as the Gaussian (RBF) one. The latter “embeddings” seem to be more
useful in practice. The Fisher kernel can be motivated from various angles (see [15]), for example
as first-order-approximation to a sample mutual information betweenx, x′ [23].

3.3.3 Co-training

Co-trainingwas introduced by Blum and Mitchell [5] and is related to earlier work on unsupervised
learning [2]. The idea is to make use of different “views” on the objects to be classified (we restrict
ourselves to binary classification,c = 2, and to two views). For example, a Web page can be repre-
sented by the text on the page, but also by the text of hyperlinks referring to the page. We can train
classifiers separately which are specialized to each of the views, but in this context unlabeled data
Du can be helpful in that although the true label is missing, it must be the same for all the views.
It turns out that Co-training can be seen as a special case of Bayesian inference using conditional
priors (see Section 2.3), as is demonstrated below in this Section.

Let X = X
(1) × X

(2) be a finite or countable input space. Ifx = (x(1),x(2)), the x( j) are differ-
ent “views” on x. We are also given spacesΘ( j) of concepts (binary classifiers)θ( j). Elements
θ = (θ(1),θ(2)) ∈ Θ = Θ(1) ×Θ(2) are called concepts overX , although we may haveθ(1)(x(1)) 6=
θ(2)(x(2)) for somex = (x(1),x(2)) ∈ X . Whenever theθ( j) agree, we writeθ(x) = θ(1)(x(1)). If
A⊂ X , we say that a conceptθ = (θ(1),θ(2)) is compatiblewith A if θ(1)(x(1)) = θ(2)(x(2)) for all
x = (x(1),x(2)) ∈ A. Denote byΘ(A) the space of all concepts compatible withA.11 If Q(x) is a dis-
tribution overX with support S= suppQ(x) = {x|Q(x) > 0}, we say that a conceptθ is compatible
with the distributionQ if it is compatible withS.

In the Co-training setting, there is an unknown input distribution P(x). A target conceptθ is sam-
pled from some unknown distribution overΘ, and the data distribution isP(y|x) = I{θ(x)=t} if
θ ∈ Θ({x}), 1/2 otherwise12. However, the central assumption is that the target conceptθ is com-
patible with the input distributionP(x). More specifically, the support of the concept distribution
must be contained inΘ(suppP(x)). Therefore, unlabeled dataDu can be used by observing that
Θ(suppP(x)) ⊂ Θ(Du∪Xl ), so the effective concept space can be shrunk fromΘ to Θ(Du∪Xl ).

We demonstrate that Co-training can be understood as Bayesian inference with conditional priors
encoding the compatibility assumption. We modelP(x) by {P(x|µ)} and introduce the variable
S= suppP(x|µ) for convenience, then defineP(θ|µ) = P(θ|S) as

P(θ|S) = fS(θ)I{θ∈Θ(S)}, S⊂ X ,

where fS(θ) > 0, and allP(θ|S) are properly normalized. For example, ifΘ(S) is finite, we can
choosefS(θ) = |Θ(S)|−1. The likelihood is given byP(y|x,θ) = (1/2)(I{θ(1)(x(1))=t} + I{θ(2)(x(2))=t})

11In order not to run into trivial problems, we assume thatΘ(A) is never empty, which can be achieved by adding the
constant concept 1 to bothΘ( j).

12Here,IE is 1 if E is true, 0 otherwise. The scenario is callednoiselessbecause the only source of randomness is the
uncertainty in the target function.



(noiseless case). SinceP(θ|S) = 0 for θ 6∈ Θ(S), the conditional prior encodes the compatibility
assumption. The posterior belief aboutθ is given by

P(θ|Dl ,Du) ∝ I{θ(xi)=yi , i=1,...,n}

Z

P(θ|S)P(S|Xl ,Du)dS,

so thatP(θ|Dl ,Du) 6= 0 iff θ is consistent with the labeled dataDl andθ ∈ Θ(Du∪Xl ). Namely,
if θ 6∈ Θ(Du ∪Xl ), thenP(θ|S) = 0 for all S which containDu∪Xl , andP(S|Du,Xl ) = 0 for all
otherS. On the other hand, ifθ ∈ Θ(Du ∪Xl ), then we haveP(θ|Ŝ) > 0 andP(Ŝ|Du,Xl ) > 0 at
least forŜ= Du∪Xl . In the terminology of Blum and Mitchell, suppP(θ|Dl ,Du) is equal to the
“version space” given all the data. The biases for the learning methods onΘ( j) may be encoded in
the potentialsfS(θ).

Once Co-training is understood within a Bayesian frameworkwith conditional priors, one can em-
ploy standard techniques in order to perform inference. In fact, we showed in [24] that the Co-
training algorithm suggested by Blum and Mitchell can be seen as a variant of (sequential) EM on
the probabilistic model sketched above. This viewpoint allows us to generalize Co-training along
various dimensions,e.g. allowing for noise, smoother prior distributions, using batch rather than
online training, uncertain rather than fixed labels on the test points,etc. We refer to [24] for details.

4 Conclusions

In this Chapter we have described a simple taxonomy of methods for semi-supervised learning and
given many examples of SSL methods for each of the categories. Advantages and potential pitfalls
of each group have been discussed. We have underlined the importance of using conditional priors
in diagnostic Bayesian SSL techniques and have given several examples of methods proposed in the
literature which fall into this category.
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