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ABSTRACT

Heterogeneous multicore systems are becoming increasingly important as the

need for computation power grows, especially when we are entering into the

big data era. As one of the main trends in heterogeneous multicore, hardware

accelerator systems provide application specific hardware circuits and are thus

more energy efficient and have higher performance than general purpose pro-

cessors, while still providing a large degree of flexibility. However, system perfor-

mance dose not scale when increasing the number of processing cores due to the

communication overhead which increases greatly with the increasing number of

cores. Although data communication is a primary anticipated bottleneck for sys-

tem performance, the interconnect design for data communication among the

accelerator kernels has not been well addressed in hardware accelerator systems.

A simple bus or shared memory is usually used for data communication between

the accelerator kernels. In this dissertation, we address the issue of interconnect

design for heterogeneous hardware accelerator systems.

Evidently, there are dependencies among computations, since data produced

by one kernel may be needed by another kernel. Data communication patterns

can be specific for each application and could lead to different types of intercon-

nect. In this dissertation, we use detailed data communication profiling to de-

sign an optimized hybrid interconnect that provides the most appropriate sup-

port for the communication pattern inside an application while keeping the hard-

ware resource usage for the interconnect minimal. Firstly, we propose a heuristic-

based approach that takes application data communication profiling into ac-

count to design a hardware accelerator system with a custom interconnect. A

number of solutions are considered including crossbar-based shared local mem-

ory, direct memory access (DMA) supporting parallel processing, local buffers,

and hardware duplication. This approach is mainly useful for embedded sys-

tem where the hardware resources are limited. Secondly, we propose an auto-

mated hybrid interconnect design using data communication profiling to define

an optimized interconnect for accelerator kernels of a generic hardware accel-

erator system. The hybrid interconnect consists of a network-on-chip (NoC),
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viii ABSTRACT

shared local memory, or both. To minimize hardware resource usage for the

hybrid interconnect, we also propose an adaptive mapping algorithm to con-

nect the computing kernels and their local memories to the proposed hybrid in-

terconnect. Thirdly, we propose a hardware accelerator architecture to support

streaming image processing. In all presented approaches, we implement the ap-

proach using a number of benchmarks on relevant reconfigurable platforms to

show their effectiveness. The experimental results show that our approaches not

only improve system performance but also reduce overall energy consumption

compared to the baseline systems.
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1
INTRODUCTION

W ITH the rapid development of technology, more and more transistors are

integrated on a single chip. Today, it is possible to integrate more than 20

billion transistors [Leibson, 2014] into one system (announced by Xilinx in May

2014). However, the more transistors are integrated into a system; the more chal-

lenges need to be addressed such as power consumption, thermal emission and

memory access bottleneck. Homogeneous and heterogeneous multicore sys-

tems were introduced to utilize such large numbers of transistor efficiently.

A generic multicore architecture can be seen as a multiprocessor system in

which multiple processing elements (PEs) (also called computational cores) and

a memory system are tightly connected together through a communication in-

frastructure (interconnect). Besides these three main components (PEs, mem-

ory system and communication infrastructure), a multicore architecture typi-

cally contains other components such as I/O, timer, etc.

• Processing elements: In a multicore system, PEs have various types ranging

from general purpose processors to Intellectual Property (IP) cores. PEs

may support either software tasks or hardware tasks. Software tasks can

be performed in instruction set processors such as PowerPC, ARM, etc;

while hardware tasks can be executed in hardware cores such as recon-

figurable logic or dedicated IP cores. Based on the type of PEs, multicore

architectures are classified into two classes called homogeneous and het-

erogeneous architecture. In the homogeneous multicore architecture (Fig-

1
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ure 1.1(a)), all PEs are identical. PEs in the heterogeneous multicore archi-

tecture (Figure 1.1(b)) are different types such as general purpose proces-

sors, hardware accelerators, dedicated IP cores, etc. Each PE can efficiently

and effectively process specific application tasks.

• Memory system: Like other systems, memory in a multicore system con-

tains application data as well as instruction data for instruction set pro-

cessors. Based on the hierarchy of the memory modules, there are two

types of memory systems: shared memory and distributed memory. In

shared memory multicore systems, all PEs share the same memory re-

source (Figure 1.2(a)); therefore, any change made by one PE is visible for

all other PEs in the system. In distributed memory multicore systems, each

PE has its own memory resource (Figure 1.2(b)); therefore, one PE cannot

directly read or write the memory of another PE. Some systems have a hy-

brid memory architecture of both shared and distributed memory. This

type of memory architecture is referred to as heterogeneous memory.

• Communication infrastructure: The communication infrastructure com-

ponent in a multicore system (also called interconnect) is a predefined

backbone upon which other components are connected together. The com-

munication infrastructure provides a medium for data exchange among

PEs as well as between PEs and memory modules in multicore architec-

tures. In modern digital system design, the communication infrastructure

is a primary limitation in performance of the whole system [Dally and

Towles, 2007]. Therefore, interconnect is a key factor in the digital system

design.

Figure 1.1: (a) Homogeneous multicore; (b) Heterogeneous multicore

Compared to homogeneous multicore systems, heterogeneous multicore sys-

tems offer more computation power and efficient energy consumption [Kumar
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Figure 1.2: (a) Shared memory; (b) Distributed memory

et al., 2005] because of the efficiency of specialized cores for specific tasks. In the

past years, a trend towards heterogeneous on chip platforms can be observed.

Intel’s Atom E6x5C Processor [Intel, 2010] uses multiple RISC cores in combina-

tion with an FPGA fabric provided by Altera. Another widely known heteroge-

neous system is IBM Cell Broadband Engine which contains one PowerPC pro-

cessor and eight Synergistic Processor Elements [IBM, 2009]. Modern mobile de-

vices are also based on heterogeneous system-on-chips (SoCs) combining CPUs,

GPUs and specialized accelerators on a single chip.

As one of the main trends in heterogeneous multicore, hardware accelerator

systems provide application specific hardware circuits and are thus more energy

efficient and have higher performance than general purpose processors while

still providing a significant degree of flexibility. Hardware accelerator systems

have been considered as a main approach to continue performance improve-

ment in the future [Borkar and Chien, 2011; Esmaeilzadeh et al., 2011]. They are

increasingly popular both in the embedded system domain as well as in high

performance computing. This technology has been popular for quite a while in

academia [Vassiliadis et al., 2004; Voros et al., 2013] and more and more in the

industry championed by companies such as Maxeler [Pell and Mencer, 2011],

Convey [Convey Computer, 2012], IBM Power 8 [Stuecheli, 2013], Microsoft Cat-

apult [Putnam et al., 2014], etc. In such systems, there is often one general pur-

pose processor that functions as a host processor and one or more hardware ac-

celerators that function as co-processors to speed-up the processing of special

kernels of the application running on the host. Examples of application domains

using such accelerators are image processing [Acasandrei and Barriga, 2013;

Cong and Zou, 2009; Hung et al., 1999], video-based driver assistance [Claus and

Stechele, 2010; Liu et al., 2011], bio-informatics applications [Heideman et al.,
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2012; Ishikawa et al., 2012; Sarkar et al., 2010], SAT problem solver [Yuan et al.,

2012], etc. However, the main problem of those systems is the communication

and data movement overhead they impose [Nilakantan et al., 2013].

1.1. PROBLEM OVERVIEW

The need for computation power grows especially when we are entering into the

big data era, where the amount of data grows faster than the capabilities of pro-

cessing technology. One solution is to increase the number of processing cores

especially hardware accelerator kernels for computationally intensive functions.

However, the system performance does not scale in this approach due to the

communication overhead which increases greatly with the increasing number

of cores [Diamond et al., 2011]. In this dissertation, we address the issue of inter-

connect design for the heterogeneous multicore systems while mainly focusing

on hardware accelerator systems.

Interconnect in a multicore system plays an important role because data is

exchanged between all components, typically between PEs and memory mod-

ules, using the interconnect. Interconnect design is one of the two open issues

along with programming model in multicore system design [Rutzig, 2013]. Al-

though data communication is a primary anticipated bottleneck for system per-

formance [Dally and Towles, 2007; Kavadias et al., 2010; Orduña et al., 2004],

the interconnect design for data communication among the accelerator kernels

has not been well addressed in hardware accelerator systems. A simple bus or

shared memory is usually used for data communication between the host and

the kernels1 as well as among the kernels. Although buses have some certain

advantages such as low cost and simplicity, they become inefficient when the

number of cores rises [Guerrier and Greiner, 2000]. Crossbars have been used

to connect the PEs in some systems such as in [Cong and Xiao, 2013; Johnson

and Nawathe, 2007]. Despite the high performance, crossbars suffer from high

area cost and poor scalability [Rutzig, 2013]. Networks on Chips (NoCs) [Benini

and De Micheli, 2002] have been proposed as an efficient communication in-

frastructure in large systems to allow parallel communication and to increase the

scalability compared to buses. However, the major drawbacks of NoCs are the in-

creased latency and implementation costs [Guerrier and Greiner, 2000]. Shared

memory also has its own disadvantages such as restricted access due to the finite

1In this work, we use the terminology kernel to refer to a dedicated hardware module/circuit that
accelerates the processing of a computationally intensive software function.
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number of memory ports.

An important challenge in hardware accelerator systems is to get the data to

the computing core that needs it. Hiding data communication delay is needed to

improve performance of the systems. In order to do this effectively, the resource

allocation decision requires detailed and accurate information on the amount

of data that is needed as input, and what will be produced as output. Evidently,

there are dependencies among computations, since data produced by one ker-

nel may be needed by another kernel. In order to have an efficient allocation

scheme where the communication delays can be hidden as much as possible, a

detailed profile of the data communication patterns is necessary for which the

most appropriate interconnect infrastructure can be generated. Such communi-

cation patterns can be specific for each application and could lead to different

types of interconnect. In this dissertation, we address the problem of automated

generation of an optimized hybrid interconnect for a specific application.

1.2. DISSERTATION CHALLENGES

In state-of-the-art execution models of hardware accelerator systems in the lit-

erature, data input required for kernel computation is fetched to its local mem-

ory (buffers) when the kernel is invoked as described in [Cong and Zou, 2009]

and [Canis et al., 2013]. This delays the start-up of kernel calculations until the

whole data is available. Although there are some specific solutions to improve

this communication behavior (presented in Section 2.4), those solutions are ad-

hoc approaches for specific architectures or specific platforms. Moreover, those

approaches have not taken the data communication pattern of the application

into consideration. In contrast, we aim to provide a more generic solution and

take the data communication pattern of the application into account.

In this work, we are targeting a generic heterogeneous hardware accelerator

system containing general purpose processors and hardware accelerator kernels.

The hardware accelerator kernels can be implemented by hardware fabrics such

as FPGA, ASIC and GPU, etc. However, GPU interconnect is not reconfigurable

in current day technology. Therefore, our discussion is mainly based on recon-

figurable computing platforms.

Data communication in a hardware accelerator system can be optimized at

both software and hardware levels (presented in Section 2.4). In this thesis we

focus on the hardware level optimization. We therefore explore the following

research questions:
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Question 1 How can data produced by an accelerator kernel be transferred to the

consuming kernels as soon as it becomes available in order to reduce the delay of

kernel calculation?

As we presented above, most hardware accelerator systems transfer input data

required for kernel computation to the local memory of the kernel whenever it

is invoked and copy back output data when it is finished. This forces the kernel

computing to wait for data movement to complete. In this work, we try to answer

this question using a generic approach to improve the system performance.

Question 2 Does it pay off to build a dedicated and hybrid interconnect that pro-

vides the most appropriate support for the communication patterns inside an ap-

plication?

Interconnect plays an important role in a multicore system. It not only con-

tributes to system performance but also incurs hardware overhead. Therefore,

we try to define a dedicated and hybrid interconnect that takes the data commu-

nication patterns inside an application into account; and try to see how efficient

the hybrid interconnect is when compared to standard interconnect.

Question 3 How can we achieve the most optimized system performance while

keeping the hardware resource usage for the hybrid interconnect minimal?

Building a hybrid interconnect that takes the communication patterns of an ap-

plication into consideration to improve the system performance while keeping

the hardware resource usage minimal is one of the main criteria. The reason for

this requirement is that the more hardware resources are used, the more chal-

lenges are faced, such as power consumption or thermal emission. Therefore,

we try to answer this question to achieve an optimized hybrid interconnect in

term of system performance and hardware resource usage.

Question 4 Can the reduction of energy consumption achieved by system perfor-

mance improvement compensate for the increased energy consumption caused by

more hardware resource usage for the hybrid interconnect?

A multicore system has a defined energy budget. Designing a new hybrid inter-

connect to improve system performance can lead to an increase in power con-

sumption due to more hardware resource required for the interconnect. This,

in turn, will lead to increasing overall energy consumption. Therefore, we try to

answer this question to clarify the power utilization of the hybrid interconnect.
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Question 5 Is the hybrid interconnect able to produce system performance im-

provement in both embedded and high performance computing systems?

Embedded and high performance computing accelerator systems are different.

While most embedded accelerator platforms implement both the host and the

accelerator kernels on the same chip, high performance computing platforms

build them on different chips. The host processor in high performance com-

puting platform usually works at a much higher frequency than the host in the

embedded computing platform. Moreover, the communication infrastructure

bandwidth in the high performance computing platforms is larger than in the

embedded ones. Therefore, we explore whether the hybrid interconnect pays off

in both types of systems or not.

1.3. CONTRIBUTIONS
Based on the research questions presented in the previous section, we have been

working on the interconnect of the multicore architecture, especially hardware

accelerator systems, to solve those research challenges. The main contributions

of the dissertation can be summarized as follows:

• We introduce an efficient execution model for a heterogeneous hardware

accelerator system.

Based on a detailed and quantitative data communication profiling, a kernel

knows exactly which kernels consume its output. Therefore, it can deliver the

output directly to the consuming kernels rather than sending it back to the host.

Consequently, this reduces the delay of the start-up of kernel calculation. This

delivery process is supported by the hybrid interconnect dedicated for each ap-

plication. The transfer process can be done in parallel with kernel execution.

• We propose a heuristic communication-aware approach to design a hard-

ware accelerator system with a custom interconnect.

Given the fact that many hardware accelerator systems are implemented using

embedded platforms where the hardware resource is limited, embedded hard-

ware accelerator systems usually use a bus as the communication infrastructure.

Therefore, we propose a heuristic approach that takes the data communication

pattern inside an application into account to design a hardware accelerator sys-

tem with an optimized custom interconnect. The approach is mainly useful for
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embedded systems. A number of solutions are considered consisting of crossbar-

based shared local memory, direct memory access (DMA), local buffer, and hard-

ware duplication. An analytical model to predict system performance improve-

ment is also introduced.

• We propose an automated approach using a detailed and quantitative com-

munication profiling information to define a hybrid interconnect for each

specific application, resulting in the most optimized performance with a

low hardware resource usage and energy consumption.

Evidently, kernels and their communication behaviors are different from one ap-

plication to the other. Therefore, a specific application should have a specific

hybrid interconnect to get data efficiently to the kernels that need it. We call it

hybrid interconnect as ultimately the entire interconnect will consist of not only

a NoC but also uni- or bidirectional communication channels or locally shared

buffers for data exchange. Although in our current experiments we statically de-

fine the hybrid interconnect for each application, the ultimate goal is to have a

dynamically changing infrastructure in function of the specific communication

needs of the application. The design approach results in an optimized hybrid

interconnect while keeping the hardware resources usage for the interconnect

minimal.

• We demonstrate our proposed hybrid interconnect in both an embedded

platform and a high performance computing platform to verify the benefit

of the hybrid interconnect.

Two heterogeneous multicore platforms are used to validate our automated hy-

brid interconnect design approach and the proposed execution model. Those

are the Molen architecture implemented on a Xilinx ML510 board [Xilinx, 2009]

and the Convey high performance computing system [Convey Computer, 2012].

Experimental results in both these platforms show the benefits of the hybrid in-

terconnect in terms of system performance and energy consumption compared

to the systems without our hybrid interconnect.

1.4. DISSERTATION ORGANIZATION
The work in this dissertation is organized in 8 chapters. Chapter 2 gives a sum-

mary on standard on-chip interconnect techniques in the literature and analyzes
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their advantages and disadvantages. Many taxonomies to classify the on-chip in-

terconnects are presented. A survey on the hybrid interconnect architectures in

the literature is also shown. This chapter also presents the state-of-the-art hard-

ware accelerator systems and we zoom in on their interconnect aspects. Data

communication optimization techniques in the literature for such systems are

also summarized in the chapter.

Chapter 3 discusses an overview of our approach to design a hybrid intercon-

nect for a specific application using quantitative data communication profiling

information. The data communication-driven quantitative execution model is

also presented. To further improve the system performance, parallelizing kernel

processing is also analyzed in this chapter.

Chapter 4 analyzes different alternative interconnect solutions to improve

the system performance of a bus-based hardware accelerator system. A number

of solution are presented: DMA, crossbar, NoC, as well as combinations of these.

This chapter also proposes the analytical models to predict the performance for

these solutions and implements them in practice. We profile the application to

extract the data input for the analytical models.

Chapter 5 presents a heuristic-based approach to design an application spe-

cific hardware accelerator system with a custom2 interconnect using quantita-

tive data communication profiling information. A number of solutions are con-

sidered in this chapter. Those are crossbar-based shared local memory, DMA

support parallel processing, local buffer, and hardware duplication. Experimen-

tal results with different applications are done to validate the proposed heuristic

approach. We also analyze the contribution of each solution to system perfor-

mance improvement.

Chapter 6 introduces an automated interconnect design strategy to create

an efficient custom interconnect for kernels in a hardware accelerator system

to accelerate their communication behavior. Our custom interconnect includes

a NoC, shared local memory solution, or both. Depending on the quantitative

communication profiling of the application, the interconnect is built using our

proposed custom interconnect design algorithm. An adaptive data communica-

tion-based mapping for the hardware accelerators is proposed to obtain a low

overhead and latency interconnect. Experiments on both an embedded plat-

form and a high performance computing platform are performed to validate the

2In this work, we use two terminology hybrid interconnect and custom interconnect interchange-
ably.
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proposed design strategy.

In Chapter 7, we present a case study of a heterogeneous hardware acceler-

ator architecture to support streaming image processing. Each image in a data-

set is preprocessed on a host processor and sent to hardware kernels. The host

processor and the hardware kernels process a stream of images in parallel. The

Convey hybrid computing system is used to develop our proposed architecture.

The Canny edge detection application is used as our case study.

Finally, we summarize the list of our contribution and conclude this disser-

tation in Chapter 8. We also propose open questions and future research in this

chapter.



2
BACKGROUND AND RELATED

WORK

I N this chapter, we give a summary of state-of-the-art standard on-chip in-

terconnects. Many taxonomies to classify the on-chip interconnects are pre-

sented. A survey on the hybrid interconnect architectures is discussed. Hard-

ware accelerator systems in the literature are also presented where we zoom in

on their communication infrastructures. We also give an overview on the data

communication optimization techniques in the literature for hardware acceler-

ator systems.

2.1. ON-CHIP INTERCONNECT
In modern digital systems, particularly in multicore systems, processing elements

(PEs) are not isolated. They cooperate to process data. Therefore, the intercon-

nection network (communication infrastructure) plays an important role to ex-

change data among the PEs as well as between the PEs and the memory modules.

Choosing a suitable interconnection network has a strong impact on system per-

formance. There are three main factors affecting the choice of an appropriate

interconnection network for an underlying system. Those are performance, scal-

ability and cost [Duato et al., 2002].

Interconnection networks connect components at different levels. Therefore,

they can be classified into different groups [Dubois et al., 2014].

• On-chip interconnects connect PEs together and PEs to memory modules.

11
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• I/O interconnects connect various I/O devices to the system communica-

tion infrastructure.

• Inter-system interconnects connect separated systems together. They in-

clude system area networks (SANs - connecting systems at a very short dis-

tances), local area networks (LANs - connecting systems within an organi-

zation or a building) and wide area networks (WANs - connecting multiple

LANs at long distances).

• Internet is also a global and worldwide interconnect.

As a subset of a broader class - the interconnection network, on-chip in-

terconnect transfers data between communicating nodes1 in a system-on-chip

(SoC). During the last decades, many on-chip interconnects have been proposed,

along with the rising number of PEs in the systems. Figure 2.1 (adapted from

[Matos et al., 2013]) summarizes the evolution of on-chip interconnects.

Point-to-point

Shared bus

Hierachical bus

Network-on-chip

Crossbar

- Hybrid interconnect
- Hierachical NoCs
- GALS NoCs

1980

1985

1990

1995

2000

2005

2010

2015

Figure 2.1: The evolution of the on-chip interconnects

There are many different ways to classify on-chip interconnects. Here, we list

the five different well-known taxonomies.

Taxonomy 1 Mechanism-based classification.

Based on the mechanism upon which the processing elements communicate to-

gether, on-chip interconnects can be divided into two groups: shared memory

and message passing [Pham et al., 2011].

1a node is any component that connects to the network such as a processing element or a memory
module
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• Shared memory: the idea of shared memory is that the system consists of

shared memories that are accessed by the communicating processing ele-

ments. The producing PEs write data to the shared memory modules while

the consuming PEs read data from those shared memories. Examples of

this interconnect type are bus systems, directly shared local memory, and

crossbars.

• Message passing: in this interconnect type, communication among PEs is

carried out by explicit messages. Data from the source PE is encoded to in-

terconnect packets and sent to the destination PEs through the intercon-

nect. Examples of this interconnect type are Network-on-Chips (NoCs).

Taxonomy 2 Connection-based classification.

Based on the connection of the PEs, interconnects can be categorized into four

major classes: shared medium networks, direct networks, indirect networks and

hybrid networks [Duato et al., 2002].

• Shared medium networks: in this type, the transmission medium is shared

by all the communicating nodes. Examples for this type of interconnect

are buses, and directly shared local memory.

• Direct networks: in this scheme, each communicating node has a router,

and there are point-to-point links to connect one communicating node to

a subset of other communicating nodes in the network. Examples of this

category are NoCs.

• Indirect networks: networks belonging to this category have nodes con-

nected together by one or more switches. Examples of this interconnect

types are crossbars.

• Hybrid network: in general, the hybrid networks combine shared medium

and direct or indirect networks to alleviate the disadvantages of one type by

the advantages of the other type such as increasing bandwidth with respect

to shared medium networks and decreasing the distance between nodes in

direct and indirect networks.

Taxonomy 3 Communication link-based classification.
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Based on how to connect a PE and a memory module to other PEs and mem-

ory modules, interconnects can be categorized into two categories: static and

dynamic networks [Grama et al., 2002].

• Static networks: A static network consists of dedicated communication

links established among the communicating nodes to form a fixed net-

work. Examples of this type of networks are NoCs and directly shared local

memory.

• Dynamic networks: A dynamic network consists of switches and commu-

nication links. The links are connected together dynamically through the

switches to establish paths among communicating nodes. Examples for

this type of networks are buses and crossbars.

Taxonomy 4 Switching technique-based classification.

Based on the switching techniques, the mechanisms for forwarding message from

the source nodes to the destination nodes, of the interconnects, they can be clas-

sified into two classes: circuit switching and packet switching [El-Rewini and

Abd-El-Barr, 2005].

• Circuit switching networks: In this group of networks, a physical path is

established between the source and the destination before data is trans-

mitted through the network. This established path exists during the whole

data communication period; no other source and destination pair can share

this path. Examples of this interconnect network group are buses, crossbar,

and directly shared local memory.

• Packet switching networks: The networks in this group partition commu-

nication data into small fixed-length packets. Each packet is individually

transferred from the source to the destination through the network. Ex-

amples of this group are NoCs, which may use either wormhole or virtual

cut-through switching mechanisms.

Taxonomy 5 Architecture-based classification.

Based on the interconnect architecture, interconnects can be classified into many

different groups [Gebali, 2011; Kogel et al., 2006]. Here, we list only four well-

known interconnects that are widely used in most hardware accelerator systems.

Those are: directly shared local memory, bus, crossbar, and NoC.
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• Directly shared local memory: In this interconnect scheme, PEs connect

directly to memory modules through the memory ports as illustrated in

Figure 2.2(a). Communication among the PEs is carried out through read

and write operations.

• Bus: The bus is the simplest and most well-known interconnect. All the

communicating nodes are connected to the bus as shown in Figure 2.2(b).

Communication among the nodes follows a bus-protocol [Pasricha and

Dutt, 2008].

• Crossbar: A crossbar is defined as a switch with n inputs and m outputs.

Figure 2.2(c) depicts a 2×2 crossbar. A crossbar can connect any input to

any free output. It is usually used to establish an interconnect for n pro-

cessors and m memory modules.

• NoC: A NoC consists of routers or switches connected together by links.

The connection pattern of these routers or switches forms a network topol-

ogy. Examples of well-known network topologies are ring, 2D-mesh, torus

or tree. Figure 2.2(d) illustrates a 2D-mesh NoC.
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Bus system
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PEPEPE
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Figure 2.2: (a) Directly shared local memory; (b) Bus; (c) Crossbar; (d) Network-on-Chip
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Table 2.1: Interconnect classifications overview

Taxonomy DSLMa Bus Crossbar NoC

Taxonomy 1 shared
memory

shared
memory

shared
memory

message
passing

Taxonomy 2 shared
medium

shared
medium

indirect
network

direct
network

Taxonomy 3 dynamic
network

dynamic
network

dynamic
network

static
network

Taxonomy 4 circuit
switching

circuit
switching

circuit
switching

packet
switching
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Figure 2.3: Interconnects comparison.

Table 2.1 shows the relationship between the taxonomies. Figure 2.3 illus-

trates the advantages and disadvantages of different interconnect types. While

buses are simple and area-efficient, they suffer from low performance and scala-

bility problems compared to the others because of the serialized communication

[Sanchez et al., 2010]. A crossbar outperforms a bus in term of system perfor-

mance because it offers separate paths from sources to destinations [Hur, 2011].

However, it has limited scalability because the area cost increases quadratically

when the number of ports increases. While shared local memory can offer an

area-efficient solution, its scalability is limited by the finite number of mem-

ory ports. Although NoCs have their certain advantages such as high perfor-

mance and scalability, they suffer from a high area cost [Guerrier and Greiner,

2000]. Therefore, a hybrid interconnect with high performance, area-efficiency

and high scalability is an essential demand.
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2.2. SYSTEM-LEVEL HYBRID INTERCONNECT

In this section, we review proposed hybrid interconnects in the literature. In the

previous section, we introduced five different taxonomies to classify the inter-

connects. Each interconnect group has its own advantages and disadvantages.

For example, compared to the indirect interconnect group, direct interconnects

are simpler in term of implementation but have lower performance while indi-

rect interconnects provide better scalability but are accomplished with higher

cost. Circuit switching interconnects are faster and have higher bandwidth than

packet switching interconnects but they may block other messages because the

physical path is reserved during the message communication. Meanwhile, many

messages can be processed simultaneously in packet switching interconnects,

however message partitioning produces some overhead. Therefore, in recent

years, hybrid interconnects have been proposed to take the advantages of dif-

ferent interconnect types.

Hybrid interconnects can be classified into two groups. In the first group, a

combination of different topologies of NoCs forms a hybrid interconnect, for ex-

ample, a combination of a 2D-mesh topology and a ring topology. We name this

group as mixed topologies hybrid interconnect. The second group includes hy-

brid interconnects that utilize multiple interconnect architectures, for example,

a combination of a bus and a NoC. We name this group as mixed architectures

hybrid interconnect. The following sections present the proposed hybrid inter-

connects of these groups.

2.2.1. MIXED TOPOLOGIES HYBRID INTERCONNECT

Network-on-chip topology [Jerger and Peh, 2009] refers to the structure upon

which the nodes are connected together via the links. There are many standard

topologies well presented in the literature. Figure 2.4 gives some examples of

NoC topology including 2D-mesh, ring, hypercube, tree, and star. Although there

are some certain advantages in those standard topologies, each topology suffers

from some disadvantages, for example 2D-mesh has drawbacks in communica-

tion latency scalability, and the concentration of the traffic in the center of the

mesh [Bourduas and Zilic, 2011] while ring topology does not offer a uniform la-

tency for all nodes [Pham et al., 2011]. Therefore, hybrid topology or application-

specific topology interconnects have been proposed. The following summary in-

troduces some hybrid topology interconnects in the literature. The list is sorted

by the publication year.
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Figure 2.4: Examples of NoC topologies: (a) 2D-mesh; (b) ring; (c) hypercube; (d) tree; and (e) star.

CMesh (concentrated mesh) [Balfour and Dally, 2006] combines four com-

municating nodes into a group through a star connection. Those groups are

connected together via a 2D-mesh network. Compared to the original mesh net-

work, the CMesh network reduces the average hop count. As an extended CMesh

network, the Flattened Butterfly network [Kim et al., 2007] adds dedicated links

between the groups in a row or a column. With those point-to-point links, the

maximum hop count of the Flattened Butterfly network is two. Simulation is

used to evaluate both the network. The results show that CMesh has a 24% im-

provement in area-efficiency and a 48% reduction in energy consumption com-

pared to other topologies. Compared to the mesh network, the Flattened But-

terfly produces 4× area reduction while reducing 2.5× area when compared to

CMesh.

Murali et al. [2006] proposed a design methodology that automated synthe-

sizes a custom-tailored, application-specific NoC that satisfies the design objec-

tives and the constraints of the targeted application domain. The main goal of

the methodology is to design NoC topologies that satisfy two objective functions:

minimizing network power consumption, and minimizing the hop-count. To

achieve the goal, based on a task graph, the following steps are executed: 1) ex-

ploring several topologies with different number of switches; 2) automated per-

forming floor-planning for the topologies; 3) choosing the topology that best op-
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timizes the design objectives and satisfies all the constraints. Experimental re-

sults on an embedded platform using ARM processors as computing cores show

that the synthesized topology improves system performance up to 1.73× and re-

duces the power consumption 2.78× in average when compared to the standard

topologies.

The Mesh-of-Tree (MoT) interconnection network [Balkan et al., 2006] com-

bines two sets of trees to connect processing elements (PEs) and memory mod-

ules. In contrast to other tree-based network architectures, where communicat-

ing nodes are connected to the leaf nodes, the communicating nodes are associ-

ated with the root nodes. The first set of trees, called the fan-out trees, is attached

to PEs while the second set, called the fan-in set, is linked to memory modules.

The leaf nodes of the fan-out set are associated with the leaf nodes of the fan-in

set in an 1-to-1 mapping. The MoT network has two main properties: the path

between each source and each destination is unique, and packets transferred

between different sources and destinations will not interfere. Simulation is used

to validate the proposed architecture. The results show that MoT can improve

the network throughput by up to 76% and 28% when compared to butterfly and

hypercube networks, respectively.

The hybrid MoT-BF network [Balkan et al., 2008] combining the MoT network

and the area efficient butterfly network (BF) is an extended version of the MoT

network. The main goal of this hybrid network is to reduce the area cost of the

MoT network. Therefore, some intermediate nodes and leaf nodes of both the

fan-in and fan-out trees are replaced by the 2×2 butterfly networks. The number

of replaced intermediate nodes is the level of the MoT-h-BF network where h is

the network level. Simulation is done to validate the architecture and compare

the throughput with the previous version. According to the results, a 64 termi-

nals MoT-BF reduces 34% area overhead with only 0.5% sacrificing throughput

compared to the MoT network.

ReNoC [Stensgaard and Sparso, 2008] is a NoC architecture that enables the

topology to be reconfigured based on the application task graph. In this work,

each network node consists of a conventional NoC router wrapped by a topol-

ogy switch. The topology switch can connect the NoC links to the router and the

NoC links together (bypass the router). Therefore, different topologies can be

formed based on the application task graph by configuring the topology switch.

The final interconnect can be a combination of rings and meshes or even point-

to-point links interconnect. The experimental results with the ASIC 90nm tech-
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nology show that only 25% hardware resource is needed for the ReNoC compared

to a static mesh while energy consumption is reduced by up to 56%.

G-Star/L-Hybrid [Kim and Hwang, 2008] is a hybrid interconnect including

a star topology global network and mixed topology (star and mesh) local net-

works. The main purpose of this hybrid network is to reduce the packet drop

rate. The author conducted many different topology combinations with some

different applications and concluded that combining both the star and the mesh

topology is the most optimized solution. Simulation results show that compared

to other topologies, up to 45.5% packet drop was reduced by the proposed hybrid

interconnect. Power consumption and area overhead are also better than other

topologies.

VIP [Modarressi et al., 2010] is a hybrid network benefiting from the scala-

bility and resource utilization advantages of NoCs and superior communication

performance of point-to-point dedicated links. To build the hybrid interconnect,

the following steps are done based on the application task graph: 1) physically

map the tasks to different nodes of a 2D-mesh NoC; 2) construct the point-to-

point links between the tasks as much as possible; 3) re-direct the flow for which

messages are traveled following the point-to-point link in such a way that the

power consumption and latency of the 2D-mesh NoC is minimized. A NoC simu-

lator tool is used to evaluate the architecture. The experimental results show that

VIPs reduce the total NoC power consumption by 20%, on average, over other

NoCs.

Bourduas and Zilic [2011] proposed several hierarchical topologies that use

the ring networks to reduce hop counts and latencies of global (long distance)

traffic. In this approach, a mesh is partitioned into sub-meshes (a sub-mesh is

the smallest mesh in the system, a 2×2 mesh). Four sub-meshes are connected

together by a ring forming a local mesh. Consequently, local meshes are con-

nected together by another ring. The ring-mesh bridge component is also de-

signed for transferring packets between mesh nodes and ring nodes. Moreover,

two ring architectures are also implemented. The first is a slotted simplicity and

low-cost ring architecture while the second uses wormhole routing and virtual

channel that provide flexibility and best performance. Simulation validated the

claims of the proposed architecture. The results show that the proposed hybrid

topologies outperform the mesh network when the number of nodes is smaller

than 44.

DMesh [Wang et al., 2011] composes of two sub-networks called E-subnet
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and W-subnet in which each router is added diagonal links to neighbor routers.

E-subnet is responsible for transferring eastward packets while W-subnet is re-

sponsible for westward traffic. Each router consists of two sub-routers, one E-

router for E-subnet and one W-router for W-subnet. When the source PE starts a

message transmission, packets are injected into the network via either E-router

or W-router depending on the direction of the destination PE. New routing al-

gorithm is also proposed for the architecture. A SystemC-based simulator tool

is used to evaluate the proposed network. The results show that DMesh outper-

forms the compared network in an 8×8 network.

PC-Mesh [Camacho et al., 2011] is another extended version of the CMesh

network. The PC-Mesh network uses some other 2D-mesh networks to connect

groups of four adjacent nodes which are not grouped in the original CMesh net-

work yet. The benefits of the PC-Mesh network are its fault tolerance degree and

the lower latency in terms of hops. Because one node is connected to more than

one switches, an injection algorithm is proposed to adapt the utilization of the

added 2D-mesh networks to the current injection load of the node. Simulation is

used to validate the proposed architecture. The results show that PC-Mesh can

reduce execution time by a factor of 2 and energy consumption by 50% when

compared to CMesh.

Yin et al. [2014] proposed a hybrid-switch NoC that combines point-to-point

links and a standard 2D-mesh NoC. The dedicated point-to-point links are es-

tablished between the frequently communicating nodes by explicit configura-

tion messages. In another point of view, the architecture supports both packet

and circuit switching in which packet-switched messages are buffered, routed

and then forwarded at each router; while circuit-switched messages follow dedi-

cated links without incurring additional buffering/routing overhead. Simulation

results show that the proposed direct links can improve system performance by

up to 12% and reduce energy consumption by up to 24% when compared to the

original NoC.

Swaminathan et al. [2014] proposed a hybrid NoC topology that combines

triple topologies: 2D-mesh, torus and folded. The mesh links connect two ad-

jacent routers while the folded-like links bridge the odd routers in a row or a

column together as well as the even routers in a row or a column together. The

torus-like links connect two routers at the boundary of a row or a column. The

new routing algorithm for the hybrid NoC topology is proposed in this work. Due

to the combination of triple topologies, the hybrid NoC topology reduces the av-
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erage hop count compared to the original topologies and improves the through-

put. Simulation is used to evaluate the proposed architecture. The results show

that the proposed hybrid NoC can improve system performance by up to 26%

when compared to mesh network.

Table 2.2 summarizes all the proposed mixed topologies hybrid intercon-

nects already presented. As shown in the table, most of the proposed mixed

topologies hybrid interconnects do not take specific application parameters, such

as data communication pattern, into consideration. Two of them use task graphs

to design the hybrid NoCs. However, the task graph does not show actual com-

munication pattern inside an application. One approach uses communication

rate to establish the links. However, communication rate may change during the

execution time.

2.2.2. MIXED ARCHITECTURES HYBRID INTERCONNECT

Although directly shared local memory, bus, crossbar, and NoC are used in most

computing systems, they suffer from their own disadvantages as already ana-

lyzed in Section 2.1. Therefore, many studies in the literature have proposed

hybrid interconnects that combine one or more interconnect types together to

compensate disadvantages of one type by advantages of other types. In this sec-

tion, we summarize mixed architectures hybrid interconnects in the literature.

The list is sorted by the publication year.

dTDMA/NoC [Richardson et al., 2006] hybrid interconnect is composed of

buses and a NoC. A bus is used to connect a number of frequently communi-

cating PEs belonging to an affinity group while communication between PEs not

belonging to an affinity group is accomplished by the NoC. This proposed hybrid

architecture is based on two heuristics: 1) Buses provide a better performance

than NoCs for a group of 9 PEs or fewer; 2) NoC performance degrades much

faster than bus performance with increasing load rate. Therefore, the PEs are

grouped into affinity groups based on their frequently communicating behavior.

All PEs in one affinity group are linked by a bus. Each affinity group is associ-

ated with one NoC router through a bridge. All PEs that are not assigned into any

affinity group are also connected to NoC routers. Simulation results show that

the hybrid interconnect outperforms the original NoC in both performance and

energy consumption. The worst-case latency reduction and power consumption

reduction are 15.2% and 8%, respectively, when compared to mesh network.

MECS [Grot et al., 2009] (Multidrop Express Channels) is a hybrid intercon-
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Table 2.2: Mixed topology hybrid interconnect summary

Proposal Combined
topologies

Input dataa Experimental
platform

Year

CMesh Mesh/Star Staticb Simulation 2006
Murali et al. Variousc User

constraints
Embedded
platform

2006

MoT Mesh/Tree Static Simulation 2006
Flattened
Butterfly

Mesh/Star/
P2Pd

Static Simulation 2007

MoT-BF Mesh/Tree/
Butterfly

Static Simulation 2008

ReNoC Various Task graph Embedded
platform

2008

G-Star/L-
Hybrid

Mesh/Star Static Simulation 2008

VIP Mesh/P2P Task graph Simulation 2010
Bourduas et
al.

Mesh/Ring Static Simulation 2011

DMesh Mesh/Mesh Static Simulation 2011
PC-Mesh Several

Meshes
Static Simulation 2011

Yin et al. Mesh/P2P Communication
rate

Simulation 2014

Swaminathan
et al.

Folded/Mesh/
Torus

Static Simulation 2014

a Which input data the proposal uses to design the proposed architecture, for example task graph
or communication pattern.
b Static means that the proposal does not use any input data from any application/domain.
c Various means that many topologies can be used depending on the application.
d Point-to-point.
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nect that combines a CMesh NoC [Balfour and Dally, 2006] and bus-like one-to-

many channels. The bus-like one-to-may channel is similar in architecture as a

bus, but only the master node can send data to one or many slave nodes con-

nected to the channel. Each CMesh’s group connects with 2(n − 1) channels in

which each channel connects all groups within a row or a column together. Be-

cause of the one-to-many channels, multicast and broadcast are supported with

a little additional cost. Simulation with both synthetic and application-based

workload shows the benefits of the interconnect compared to the CMesh and

the Flatten Butterfly [Kim et al., 2007] interconnects. In a 64-terminal network,

MECS offers a 9% latency advantage when compared to other topologies.

BENoC (Bus-enhanced NoC) [Manevich et al., 2009] is a hybrid interconnect

in which a NoC is equipped with a specialized bus. The bus has low and pre-

dictable latency. The bus is used for system-wide distribution of control signals

as well as performs broadcast and multicast. Therefore, the complexity and cost

of broadcast operations in the NoC can be avoided by using the bus, because

broadcast usually transmits short messages. Simulation results show that the

BENoC provides an execution speedup around 3× on average compared to a

classic NoC.

Das et al. [2009] proposed a hierarchical hybrid on-chip interconnect that

uses both buses and a NoC. Eight PEs are connected by a bus to form a local net-

work. Each bus is associated with a router of a 2D-mesh NoC through a bus in-

terface to form the global network. A network transaction in the hybrid network

can be either entirely carried out by the bus or will incur global transactions and

an additional local transaction in order to reach the destination. Simulation with

synthetic benchmark is done to evaluate the proposed architecture. The results

show that the proposed hybrid interconnect improves system performance by

up to 14% compared to mesh network.

RAMS [Avakian et al., 2010] is a reconfigurable hybrid interconnect that con-

sists of bus-based subsystems connected through routers forming a mesh NoC.

Based on the conclusion that when the number of PEs is small (vary between

1 and 8, depending on applications), bus-based systems outperform NoC-based

systems; RAMS has scalable bus-based multiprocessor subsystems on each node

in the NoC. PEs are attached to bus segments. Bus segments are connected to-

gether through switches. Based on the memory access rate, the operation system

configures the switches to form bus-based subsystems. NoC simulator tool is

used to compare the proposed RAMS interconnect to 2D-mesh NoC. The results
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show that RAMS outperforms the original NoC in term of system performance.

Tsai et al. [2010] proposed a hybrid interconnect that consists of a NoC and

buses. The NoC connects bus-based subsystems and single IP cores through

their routers. Based on the communication graph that shows bandwidth require-

ments between application’s functions, the approach classifies the IP cores im-

plementing the functions into to affinity groups. IP cores that cannot be grouped

are used as single IP cores. IP cores in an affinity group are connected together

through a bus to form a subsystem. The subsystems are attached to the routers

via bridges. Simulation is used to evaluate the proposed hybrid interconnect.

The results show that up to 17.6% latency reduction was obtained.

HNoC [Zarkesh-Ha et al., 2010] is a hybrid interconnect with local buses and

a global 2D-mesh. The HNoC hybrid interconnect uses local buses for nearest-

neighbor communication and a 2D-mesh NoC for global interconnect. In other

words, besides the 2D-mesh NoC, every two PEs that connect to two adjacent

routers are linked by a bus. Those buses perform all the nearest-neighbor traf-

fic. Therefore, traffic on the global network is reduced, which results in increased

throughput and reduced energy consumption. HNoC is implemented in a sys-

tem simulator to verify and evaluate. The experimental results show that HNoC

improves throughput by 4.5× and reduces energy consumption by 58% when

compared to a conventional NoC topology.

Giefers and Platzner [2010] proposed a hybrid interconnect that contains

triple architectures: a reconfigurable mesh that can be configured as buses, a

classical NoC, and a barrier network. The reconfigurable mesh consists of switch-

es connected to PEs. PEs have control over a local switch and can dynamically re-

configure the switch. The PEs are also connected to the NoC routers. The barrier

network is used to manage the synchronization of the PEs. An FPGA-based mul-

ticore prototype is used to validate and evaluate the hybrid interconnect. Exper-

iments with the Jacobi algorithm shows that combination of the three networks

provides the highest performance.

MORPHEUS [Grasset et al., 2011] is a heterogeneous accelerator system that

uses three different components as the system interconnect. The host proces-

sor uses a control bus to handle control, synchronization, and debug all the re-

sources. Configuration bitstreams for the hardware accelerators are transferred

through another bus called configuration bus. Application data is transferred by

a high-throughput NoC-based interconnect structure that allows direct access to

the external Flash/SDRAM/DDRAM. A chip prototype is built to test the system
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as well as the interconnect.

The duo [Jin et al., 2012] hybrid interconnect consists of a baseline 2D-mesh

NoC augmented with a bus-like reconfigurable multidrop channels (the same

in the MECS [Grot et al., 2009] hybrid interconnect). Due to the reconfigura-

tion ability, each row or each column has only one channel instead of 2(n −1) in

MECS. Communication traffics of applications are traced, and the applications

are classified into classes based on their communication behavior. The channels

are configured for each application class using the communication behavior of

the class. Simulation is used to evaluate the proposed hybrid interconnect. The

results show that network latency and energy consumption can be reduced on

average by 15% and 27%, respectively when compared to mesh network.

Zhao et al. [2012] proposed a hybrid interconnect in which buses can share

links with a NoC to form a bus-NoC hybrid interconnect. In order to share the

links between buses and a NoC, a bus-switch component is added to each router.

The component is a programmable switch that can connect segments (NoC links)

to form a bus. When the links form the bus, they do not connect to the routers.

When links are used as part of the bus, packets need to stay inside the router until

the bus transaction is over. The hybrid interconnect is evaluated by a simulator

to compare with the baseline NoC. The results show that the proposed hybrid

interconnect improves system performance by up to 12% and saves energy con-

sumption by up to 37% compared to the baseline network.

Todorov et al. [2014] proposed a deterministic synthesis approach to design

a hybrid application-specific interconnect that contains buses and NoC routers.

Input of the synthesis approach is the use-cases with bandwidth required, la-

tency constraints, and packet size distribution information. Based on those use-

cases, PEs are partitioned into clusters. Clusters with low communication band-

width are connected to the shared buses while the other clusters are attached to

the routers. The shared buses are linked to the routers through the network in-

terfaces. A deadlock free flow routing algorithm is also proposed for the hybrid

interconnect. Simulation results show that the proposed interconnect has al-

most the same latency compared to the classic NoC while reducing the hardware

cost by up to 22.6% compared to conventional NoC topologies.

Table 2.3 summarizes all the proposed mixed architectures hybrid intercon-

nects. As shown in the table, all the mixed architectures hybrid interconnects

combine buses and a NoC to form hybrid interconnects. Beside the static de-

signs, communication rate is usually used as input data to design the hybrid in-
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Table 2.3: Mixed architecture hybrid interconnect summary

Proposal Combined ar-
chitectures

Input dataa Experimental
platform

Year

dTDMA/NoC Bus/NoC Communication
rate

Simulation 2006

MECS Bus-like/NoC Static Simulation 2006
BENoC Bus/NoC Staticb Simulation 2009
Das et al. Bus/NoC Static Simulation 2009
RAMS Bus/NoC Memory access

rate
Simulation 2010

Tsai et al. Bus/NoC Communication
bandwidth

Simulation 2010

HNoC Bus/NoC Static Simulation 2010
Giefers et al. Bus/NoC/ Bar-

rier
Static FPGA-based

platform
2010

MORPHEUS Bus/NoC Static ASIC-based
platform

2011

duo Bus-like/NoC Communication
rate

Simulation 2012

Zhao et al. Bus/NoC Static Simulation 2012
Todorov et
al.

Bus/NoC
routers

Bandwidth
and Latency
constraints

Simulation 2014

a Which input data the proposal uses to design the proposed architecture, for example task graph
or communication pattern.
b Static means that the proposal does not use any data from any application/domain.

terconnect. However, communication rate may change from time to time. None

of the above proposed hybrid interconnects take application quantitative data

communication pattern into account.

2.3. INTERCONNECT IN HARDWARE ACCELERATOR SYSTEMS

In recent years, many hardware accelerator systems have been proposed for gen-

eral purpose computing as well as for specific applications (domains). Figure 2.5

presents a generic architecture of hardware accelerator system. In such system,

the host processor can be a general high-performance CPU (e.g., x86 Intel CPU)
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or an embedded processor (e.g., Xilinx PowerPC) or a soft processor (e.g., Mi-

croBlaze or Nios). The kernels are implemented in hardware fabric such as FPGA,

DSP, GPU, etc. While the host processor uses the main memory to store applica-

tion data, the kernels have their local memories to store local data (data cache)

to improve the parallelism between the kernels. A kernel communicates with the

host, other kernels and I/Os through a communication infrastructure.

Host processor

Communication infrastructure

Local Mem.

Main mem. Shared mem.

...
Core

interface

Interface

Local mem.

Core

Interface

Local Mem.

Core

interface

Local mem.

Core

Interface

Hardware kernel Hardware kernel

I/O

Figure 2.5: A generic hardware accelerator architecture

The following review classifies the hardware accelerator systems presented

in the literature into four different groups based on the communication infras-

tructure (the interconnect) of the system.

• Bus-based interconnect: Molen [Vassiliadis et al., 2004], Warp processor [Ly-

secky and Vahid, 2009], IMORC [Schumacher et al., 2012], the target sys-

tems in [Canis et al., 2013; Ismail and Shannon, 2011; Pilato et al., 2012],

and IBM’s PowerEN [Heil et al., 2014] use a bus as the communication in-

frastructure. In these systems, data is transferred between the main mem-

ory and the local memories of the kernels through the bus. The host deliv-

ers data input to the kernel when it is invoked and collects the result when

the kernel finishes computation through the bus. Other modules such as

I/O, DMA, interrupt controller, etc. are also connected with the bus.

• NoC-based interconnect: The MORPHEUS system [Grasset et al., 2011; Voros

et al., 2013] uses the Spidergon NoC for data communication of kernels and

memory modules.In the target system in [Chung et al., 2011], and [Chung

et al., 2012], a CoRAM element in each kernel collects data input for the

kernel from the memory modules and sends the result back to them through

a NoC. The P2012 architecture [Benini et al., 2012] uses an asynchronous
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NoC for communication among the kernels while communication between

the host and the kernels is done by direct memory access (DMA).

• Shared memory: Shared memory is used in many commercial hardware

accelerator systems for high performance computing. Intel proposes a sys-

tem using a Front Side Bus (FSB) [Ling et al., 2009] to enable both the host

and FPGA access the shared memory. Convey [Convey Computer, 2012]

uses a Hybrid-core Globally Shared Memory (HGSM) controlled by Con-

vey’s Hybrid-core Memory Interconnect (HCMI) for communication be-

tween the host and the kernels as well as among the kernels. The IBM

Power 8 uses IBM’s Coherence Attach Processor Interface (CAPI) [Stuecheli,

2013] to allow coherent memory sharing between the host processor and

FPGA. Microsoft introduces their hardware system, called Catapult [Put-

nam et al., 2014], for accelerating large-scale datacenter services in which

shared memory technique is used for data communication between the

host and the accelerators. Shared memory mechanism is also used in [Wil-

lenberg and Chow, 2013] through a remote memory access infrastructure.

• Crossbar: The research in [Betkaoui et al., 2011] proposed a framework for

accelerating large graph problems. The target system includes graph pro-

cessing elements (GPEs) connected with memory modules through a full

crossbar. The crossbar contains three different components: FIFOs, an ar-

biter and multiplexer. The round-robin algorithm is used to schedule com-

munication between the GPEs and the memory. The work in [Cong and

Xiao, 2013] proposed an optimized crossbar with the fewest switches while

keeping high routability between the accelerators and the shared memo-

ries. The crossbar can be reconfigured upon accelerator launch so that

each memory module is connected to only one accelerator.

While the prototypes described in [Canis et al., 2013; Chung et al., 2012; Cong

and Xiao, 2013; Ismail and Shannon, 2011; Lysecky and Vahid, 2009; Pilato et al.,

2012; Vassiliadis et al., 2004; Willenberg and Chow, 2013] implement the host

and the kernels on the same chip (embedded hardwired or soft processor as the

host), the implementation of [Benini et al., 2012; Betkaoui et al., 2011; Convey

Computer, 2012; Ling et al., 2009; Putnam et al., 2014; Schumacher et al., 2012;

Stuecheli, 2013; Voros et al., 2013] uses different chips for the host and the ker-

nels.
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2.4. DATA COMMUNICATION OPTIMIZATION TECHNIQUE

Data communication of a hardware accelerator system can be optimized at two

different levels: software and hardware. The following sections present the tech-

niques in the literature to optimize data communication at those levels.

2.4.1. SOFTWARE LEVEL OPTIMIZATION

Software level optimization is a set of operations or services executed by the host

to speed up the software-hardware intercommunication. Optimization at soft-

ware level can be applied for an existing hardware accelerator system without

any hardware modification. However, software optimizations depend on the

communication behavior of the running application. Additionally, some soft-

ware level optimizations require specific modules/functions supported by the

hardware platform.

Transferring data input/output between the main memory and the local me-

mory in parallel with the kernel computation is one of the optimizations for data

communication reported in [Cong and Zou, 2009]. Research in [Ismail and Shan-

non, 2011] developed an operating system service to establish a direct memory

map to the address space of kernels and to enable arrays of data to be copied in

a single access. Curreri et al. [2012] proposed a visualization tool to detect data

communication bottleneck in an FPGA-based accelerator system using DMA to

transfer data from the host to the kernels or among the kernels. Based on the

identified bottleneck, designers can increase or decrease the DMA block size and

bandwidth to improve the system performance. Pouchet et al. [2013] proposed

a framework to optimize data reuse for a class of programs through which the

data communication overhead was reduced. In [Goringer et al., 2010], the au-

thors present the partitioning of an application between several processing ele-

ments (SW/SW partitioning) at the function-level, as well as HW/SW partitioning

utilizing some profiling information. The work in [Ashraf et al., 2012] extended

the QUAD toolset [Ostadzadeh et al., 2012] to provide the information about the

unique data values involved in inter-function data-communication. The authors

have utilized this extended information to perform the HW/SW partition to op-

timize the data-communication.

2.4.2. HARDWARE LEVEL OPTIMIZATION

Hardware level optimization is a hardware implementation targeted to specific

platforms to speed up the software-hardware or hardware-hardware intercom-
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munication. In recent years, some efficient interconnect architectures dedicated

for a hardware fabric have been proposed to exploit the advantages of the fabric

such as DESA NoC [Roca et al., 2012] or low-cost and specific-application cross-

bar in [Hur et al., 2012; Murali et al., 2007] developed for FPGAs. Additionally,

many hybrid interconnects both in mixed NoC topologies and in mixed archi-

tectures have been proposed to improve the hybrid interconnect throughput or

reduce hardware cost as presented in Section 2.2.

Moreover, other optimization techniques have been proposed to accelerate

the communication behavior of the kernels in a hardware accelerator system be-

cause data communication is usually a primary anticipated bottleneck for sys-

tem performance. Research in [Choi et al., 2012] proposed a multi-ported cache

design for communication of multiple accelerator kernels in an FPGA-based ac-

celerator system. However, this proposal is system-dependent since they assume

that the on-chip memory can work at 2× the speed of the system clock (clock

for kernels). Another interesting work is the CoRAM architecture [Chung et al.,

2011]. In this work, CoRAM modules are used to collect data input required for

kernel computation efficiently and write back the result to the memory. A soft-

ware control task is used to manage the execution of the CoRAM modules and

inform the kernels when data input is ready. In the IMORC architecture [Schu-

macher et al., 2012], asynchronous FIFOs are inserted into the communication

channels between the cores and the memories to provide a sufficient bandwidth

as well as to help improving the system performance by decoupling core execu-

tion and memory access.

However, all the above approaches have not taken the actual data communi-

cation pattern among the kernels into consideration yet. The work described in

this dissertation uses data communication profiling information of each appli-

cation/domain to automatically define an efficient hybrid interconnect for the

kernels.





3
COMMUNICATION DRIVEN HYBRID

INTERCONNECT DESIGN

I NTERCONNECT in a heterogeneous multicore system, particularly in a hard-

ware accelerator system, plays an important role especially when the number

of cores is rising. Each interconnect type presented in Chapter 2 has its own ad-

vantages and disadvantages. Moreover, communication patterns are different

from application to application. A specific application should have a specific in-

terconnect dedicated to its communication patterns. The specific interconnect

should have an optimized performance while keeping hardware resource usage

minimal. Therefore, in this chapter, we present an overview of our approach to

design a hybrid interconnect for a specific application using quantitative data

communication profiling information. The data communication driven quan-

titative execution model is also presented. Based on the data communication

profiling information, the data output from one kernel is delivered to the con-

suming kernels in parallel with the kernel execution. Therefore, the consuming

kernels do not need to collect these data input when they are invoked.

3.1. OVERVIEW HYBRID INTERCONNECT DESIGN

In this section, we define the terminology used in the dissertation and present an

overview of our approach.

33
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Figure 3.1: (a) The generic FPGA-based accelerator architecture; (b) The generic FPGA-based
accelerator system with our hybrid interconnect.

3.1.1. TERMINOLOGY

In a generic hardware accelerator system (as depicted in Figure 3.1(a)), the com-

munication infrastructure is a predefined system backbone upon which data is

transferred between the host and the kernels as well as among the kernels. The

communication infrastructure is different from system to system. It can be a bus,

a NoC, shared memory, or a crossbar. In this work, we refer to the terminology

communication infrastructure as the original interconnect of the system.

In this work, the hybrid interconnect terminology refers to our proposed in-

frastructure that is used for data communication among the hardware acceler-

ator kernels to speed up system performance, which consists of different inter-

connect types such as NoC, shared local memory, or crossbar. The accelerator

system using our approach includes both the original communication infras-

tructure to exchange parameters as well as data between the host and the ker-

nels and the hybrid interconnect to transfer data from one kernel to the other

kernels. Figure 3.1(b) illustrates the generic accelerator system with our hybrid

interconnect.

3.1.2. OUR APPROACH

In this work, the detailed profile of the data communication pattern is used to

define a hybrid interconnect which can lessen the data communication bottle-
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Figure 3.2: Hybrid interconnect design steps

neck issue and improve system performance. Based on the detailed profile, a

kernel knows exactly which other kernels will consume its output. Therefore, the

kernel can deliver its output directly to the consuming kernels as soon as output

data is available. This delivery process is supported by the hybrid interconnect

and can be done in parallel with kernel execution. In order to define the hybrid

interconnect, the design steps as depicted in Figure 3.2 are used.

STEP 1: PROFILING

Profiling provides characteristics of an application such as execution time, com-

munication patterns, etc., to drive the subsequent steps. In this work, the appli-

cation is analyzed by the GNU profiler, gropf [Graham et al., 1982], to recognize

the computationally intensive functions. Those functions are good candidates

for hardware acceleration.

In order to generate the data communication profiling driving the hybrid in-

terconnect design, the QUAD toolset [Ostadzadeh, 2012] is used. Conventional

profilers such as gprof or Valgrind [Nethercote and Seward, 2007] do not sep-

arate actual computational time from data communication time coming from

bus access, memory access, etc. QUAD provides a comprehensive overview of

the memory access behavior of an application by a QDU (Quantitative Data Us-
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age) graph output (an example of a QDU graph is shown in Figure 3.3). QUAD

toolset is based on PIN Dynamic Binary Instrumentation (DBI) framework [Luk

et al., 2005]. QUAD traces each memory read and write access to record neces-

sary information regarding the data communication among functions. When a

function writes data to a memory location, it is marked as the producer of the

data. The function reading data from the memory location is known as the con-

sumer of this data. The QUAD tool reports an amount of data communication

between a producer and a consumer in bytes. Memory addresses are also an-

alyzed to calculate the number of unique locations used in the data communi-

cation. This information is reported in the end as Unique Memory Addresses

(UNMAs). Furthermore, the number of bytes uniquely communicated is also re-

ported as Unique Data Values (UNDVs).

STEP 2: HARDWARE-SOFTWARE PARTITION

The main purpose of the hardware-software partition is to decompose the appli-

cation into parts that can be mapped to the host processor or to the hardware

kernels. The main objective of this partition is to improve system performance,

consequently, to achieve speed-up. In order to reach this goal, the computation-

ally intensive parts are usually mapped to the hardware accelerators while the

other parts are executed by the host.

STEP 3: HYBRID INTERCONNECT GENERATION

The main objective of this work is to define a hybrid interconnect to optimize the

data communication behavior of the hardware kernels while keeping the hard-

ware resource usage for the hybrid interconnect minimal. Based on the results

of Steps 1 and 2, this step defines a dedicated hybrid interconnect for each appli-

cation to help the kernels deliver their output to other kernels in an optimal way.

The detail hybrid interconnect generation is explained in the later chapters.

STEP 4: HARDWARE GENERATION

In this step, the hardware implementation of the accelerated parts is generated.

Although we target a generic hardware accelerator system in which FPGAs, ASICs,

or GPUs can be used as the hardware accelerator fabric, GPU interconnect is

not reconfigurable in current day technology. Therefore, we develop our experi-

ments using reconfigurable computing platforms. High level synthesis tools such

as Xilinx Vivado [Xilinx, 2014], DWARV [Nane et al., 2012], etc., generate the syn-

thesizable hardware descriptions for the accelerated parts from the original ap-

plication source code.
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Figure 3.3: Example of a QDU graph
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STEP 5: IMPLEMENTATION ON THE TARGET PLATFORM

The system is synthesized and implemented on target platforms using the sup-

porting tools related to those platforms. Finally, the application is executed on

those platforms by both the host and the hardware accelerator kernels. The host

controls the execution of the kernels as well as data communication between the

host and the kernels following the ideal execution model presented in the next

section.

3.2. DATA COMMUNICATION DRIVEN QUANTITATIVE EXECU-

TION MODEL
This section presents a baseline execution model that we use to compare our

proposed execution model. Our proposed execution model in which data input

for a kernel is delivered to its local memory as soon as possible is presented. To

further optimize the system performance, parallelizing kernel processing is also

discussed.

3.2.1. BASELINE EXECUTION MODEL

Similar to most presented hardware accelerator systems, we use a baseline sys-

tem that contains one host processor and some accelerator kernels. The host

processes part of the application in software while the accelerator kernels pro-

cess some computationally intensive functions of the application. The data in-

put required for kernel computation is fetched to the local memory of the kernel,

and the result is copied back to the host after the kernel finished. Data is trans-

ferred through the communication infrastructure.

Consider a hardware accelerator system with n kernels; a kernel i (with 0 ≤
i ≤ n −1) is defined as in Equation 3.1

HWi (τi ,D H
i (i n),DK

i (i n),D H
i (out ),DK

i (out )) (3.1)

in which:

• τi is the computation time of the kernel;

• D H
i (i n) and DK

i (i n) are the total amount of data input for the kernel generated

by the functions in the host and by the other kernels, respectively;

• D H
i (out ) and DK

i (out ) are the total amount of data output of the kernel con-

sumed by the functions in the host and by the other kernels, respectively.
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According to the baseline model, all data input (Di (i n) = D H
i (i n) +DK

i (i n)) re-

quired for the execution of kernel i is fetched from the main memory and all

output result (Di (out ) = D H
i (out ) + DK

i (out )) is copied back to the main memory.

However, we distinguish data of the host (D H
(i n/out )) and of the other kernels

(DK
(i n/out )) to make a comparison to our proposed model later on.

Following this model, the total baseline execution time (Tb) of the n kernels

is shown in Equation 3.2, in which θ is the average time for transferring one

byte of data through the communication infrastructure. This value is system-

dependent. In this equation,
∑n−1

i=0 τi is the total computation time of all the ker-

nels while
∑n−1

i=0 (Di (i n) +Di (out ))θ is the total communication time (transferring

data). While computation time depends mainly on the algorithm itself, commu-

nication time depends on the data movement behavior.

Tb =
n−1∑
i=0

τi +
n−1∑
i=0

(Di (i n) +Di (out ))θ, (3.2)

where Di (i n) = D H
i (i n) +DK

i (i n) and Di (out ) = D H
i (out ) +DK

i (out ).

Although the fetching phase can be done in pipeline with the computation

phase, this mechanism depends on the actual behavior of the application. There-

fore, we use a general model that is compatible with most applications (domains)

as a baseline model.

3.2.2. IDEAL EXECUTION MODEL

Based on the data communication profiling, a kernel knows exactly which ker-

nels will consume its output. The kernel can delivers it output directly to the

consumed kernels through the hybrid interconnect. Consequently, only data in-

put for the kernels generated by the functions on the host (D H
i (i n)) and data out-

put of the kernels consumed by the functions on the host (D H
i (out )) needs to be

transferred through the communication infrastructure. Other data (DK
i (i n) and

DK
i (out )) is transferred from kernel to kernel by the hybrid interconnect in paral-

lel with the kernels’ execution. Therefore, the data communication among the

kernels is hidden. The total execution time of the n kernels following the ideal

execution model (Ti deal ) is shown in Equation 3.3.

Ti deal =
n−1∑
i=0

τi +
n−1∑
i=0

(D H
i (i n) +D H

i (out ))θ (3.3)
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Figure 3.4: The sequential diagrams for the baseline (left) and ideal execution model (right)

Compared to the baseline model, the execution time is reduced by ∆i deal = Tb −
Ti deal =

∑n−1
i=0 (DK

i (i n) +DK
i (out ))θ.

Figure 3.4 shows the sequential diagrams for the two execution scenarios of a

hardware accelerator system which has one host processor and two kernels. The

left diagram follows the baseline execution model while the right one follows the

ideal execution model. Assume that part of the output from Kernel 1 is directly

consumed by Kernel 2 (without any modification by the host). As shown in the

diagrams, because only part of data output from Kernel 1 is copied back to the

main memory (2* compared to 2) and part of data input for Kernel 2 is transferred

from the main memory (3* compared to 3), the total execution time of the ideal

execution model is shorter than the execution time of the baseline model.

The ideal execution model approach is different from the data communi-

cation optimization approaches presented in Section 2.4 which collect data for

a kernel only when it is invoked. To approach this model, we propose design

strategies to define an efficient hybrid interconnect for accelerator kernels using

communication profiling. The hybrid interconnect, then, helps the kernel de-

liver its output. The objective of the strategies is to optimize the communication

time while keeping interconnect resource usage minimal.
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3.2.3. PARALLELIZING KERNEL PROCESSING

Given the fact that hardware accelerator systems have been increasingly used to

address parallelizable and data intensive application domains [Ling et al., 2009]

such as image or video processing [Cong and Zou, 2009], datacenter services [Put-

nam et al., 2014], etc., the parallelizing kernel processing can be used to further

improve the system performance beside the proposed hybrid interconnect. Par-

allelism can be exploited at two different levels. Those are: data parallelism and

instruction parallelism.

DATA PARALLELISM

Data parallelism is an execution scenario in which data is partitioned into seg-

ments, and concurrent processing kernels process those segments in parallel.

In other words, one computationally intensive function can be accelerated by a

number of concurrent kernels. Each kernel processes each data segment. As-

sume that a computationally intensive function has n accelerator kernels, data

input for the function is partitioned into n segments. The reduction in process-

ing time of this function compared to one accelerator kernel is ∆d p = τi (n−1)
n −O

where τi is the time for processing the whole data with only one kernel and O

is the overhead for data parallelism processing. This overhead depends on the

application’s algorithm and occurs because extra data needs to be processed to

achieve the correct result for each segment [Gustafson, 1988]. Figure 3.5 shows a

comparison between serial processing and data parallelism processing in which

the function is accelerated by three different kernels (Kernel i_1, Kernel i_2, and

Kernel_3) and data is partitioned into three segments.

Figure 3.5: An example of data parallelism processing compared to serial processing
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INSTRUCTION PARALLELISM

Instruction parallelism is an execution scenario in which the accelerator kernels

of the functions form a pipeline to process a stream of data segments. Each ker-

nel of the accelerated function establishes a pipeline stage. Data segments are

streamed through those stages. Different from the serial execution scenario, in

instruction parallelism, the kernels are working at the same time. The pipeline

depth is the number of data segments processed. Assume that there are n pro-

cessing stages, the total execution time in the serial scenario when the proposed

hybrid interconnect takes care of the data communication between the kernels

is evaluated by Equation 3.4.

Tser i al =
n−1∑
i=0

τi +
n−1∑
i=0

(D H
i (i n) +D H

i (out ))θ (3.4)

where D H
i (i n) and D H

i (out ) are the total amount of input data produced by the host

and of output data consumed by the host.

When the pipeline scenario is exploited with depth m (assume that m ≥ n),

the total execution time is approximated by Equation 3.5

Tpi pel i ne =(
τ0

m
+O0)+ max

0≤i≤1
(
τi

m
+Oi )+ ...+ max

0≤i≤n−1
(
τi

m
+Oi )× (m −n +1)

+ max
1≤i≤n−1

(
τi

m
+Oi )+ ...+ max

n−2≤i≤n−1
(
τi

m
+Oi )+ (

τn−1

m
+On−1) (3.5)

+
n−1∑
i=0

(D H
i (i n) +D H

i (out ))θ

where Oi is the overhead explained in the previous section. The instruction par-

allelism is beneficial when Tpi pel i ne < Tser i al .

Figure 3.6 shows a comparison between a serial processing and a instruction

parallelism processing. In the instruction parallelism processing, the number of

pipeline stage, the number of kernels, is 3 (n = 3) while the pipeline depth, the

number of data segments, is 4 (m = 4).

3.3. SUMMARY

In this chapter, we presented an overview of our approach to design a hybrid

interconnect for a specific application using data communication profiling. The

data communication driven quantitative execution model which is the goal of in-

terconnect design is discussed. To further improve system performance, parallel
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Figure 3.6: An example of instruction parallelism processing compared to serial processing

processing with support from the hybrid interconnect also presented. Compared

to the baseline execution model, we aim to hide all the data communication

among the accelerator kernels by delivering data from sources to destinations

in parallel with kernels execution.

Note. The content of this chapter is partially based on the following papers:

1. C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, Automated Hybrid Interconnect

Design for FPGA Accelerators Using Data Communication Profiling, (May

2014), 28th International Parallel & Distributed Processing Symposium Work-

shops (IPDPSW 2014), 19-23 May 2014, Phoenix, USA.

2. C. Pham-Quoc, I. Ashraf, Z. Al-Ars, K.L.M. Bertels, Data Communication

Driven Hybrid Interconnect Design for Heterogeneous Hardware Accel-

erator Systems, (submitted), ACM Transactions on Reconfigurable Tech-

nology and Systems.





4
BUS-BASED INTERCONNECT WITH

EXTENSIONS

I N this chapter, we analyze an overview of different alternative interconnect

solutions to improve system performance of a bus-based hardware accelera-

tor system. A number of solutions are presented: direct memory access (DMA),

crossbar, network-on-chip (NoC), as well as combinations of these. This chapter

also proposes the analytical models to predict the performance for these solu-

tions and implements them in practice. We profile the application to extract the

data input for the analytical models.

4.1. INTRODUCTION
Although bus systems are usually used as the main communication infrastruc-

ture in many heterogeneous hardware accelerator systems due to their certain

advantages [Guerrier and Greiner, 2000], they become inefficient when the num-

ber of cores rises. Moreover, in data intensive applications, such as multimedia

computing, HD digital TVs, etc., a large amount of data needs to be transferred

from core to core. Therefore, data communication is usually a primary antici-

pated bottleneck for system performance. Optimization of the interconnect tak-

ing the data communication into account is an essential demand.

In this chapter, we present an overview on the interconnect solutions used

for hardware accelerator systems. To improve the performance of bus-based in-

terconnects, a DMA, a crossbar, and a combination of both are used to consoli-

45
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date the bus-based architecture. Moreover, NoC, a state-of-the-art interconnect

approach, can be used to improve data communication behavior of hardware ac-

celerators. In this work, we present the interconnect solution models to estimate

the performance improvement of each interconnect compared to the bus-based

interconnect. The experimental results show that the best system in terms of ex-

ecution time and energy consumption is the system with a bus and a NoC, where

the bus is used for the data exchange between the host and the hardware accel-

erators while the NoC is responsible for data communication among the hard-

ware accelerators. Such system takes a toll of up to 20.7% additional hardware

resource compared to the bus-based interconnect system.

The rest of the chapter is organized as follows. Section 4.2 briefly describes

the related work. Section 4.3 presents in detail different interconnect solutions

used in the heterogeneous hardware accelerator systems and their comparison.

We implement experiments to validate the comparison between the intercon-

nect solutions in Section 4.4. The discussion on the different interconnect solu-

tion is presented in Section 4.5. Finally, Section 4.6 summarizes the chapter.

4.2. RELATED WORK

In this section, we discuss different standard interconnect techniques as well as

hardware accelerator systems that use a bus as the main communication infras-

tructure in the literature.

4.2.1. INTERCONNECT TECHNIQUES

Point-to-point interconnect is considered as the simplest interconnect solution

for a system-on-chip (SoC). In a point-to-point interconnect architecture, the

producer processing element (PE) is directly connected to the consumer PE. How-

ever, the biggest drawback of this architecture is the large number of wires re-

quired. This leads to difficulty in routing. Designs using this architecture are

reported in [Dick, 1996], [ARM Limited, 2001].

The bus architecture is a low cost interconnect for SoCs. The two standard

and well-known bus architectures are AMBA developed by ARM [ARM Limited,

1999] and CoreConnect developed by IBM [IBM, 1999]. Only CoreConnect has

been adopted in Xilinx Virtex FPGA families. The main disadvantage of the bus

architecture is the competition among modules (host processor, IO, memory

controllers, etc) to access the bus introducing arbitrary latencies. This compe-

tition potentially degrades the performance of the system.
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The crossbar is a well-known architecture for providing a high-performance

and minimum latency interconnect. The main drawback of a crossbar is its cost.

An n×n crossbar can quickly become prohibitively expensive as its cost increases

by n2. To reduce the cost, many studies focusing on application-specific cross-

bars have been reported such as in [Hur et al., 2007], [Murali et al., 2007].

In recent years, many Network-on-Chip architectures for FPGA have been re-

ported such as DyNoC [Bobda et al., 2005], FLUX [Vassiliadis and Sourdis, 2006]

and CuNoC [Jovanovic et al., 2007]. For low-latency applications-specific NoCs,

driven by application task graphs, ReNoC [Stensgaard and Sparso, 2008] and Skip-

links [Jackson and Hollis, 2010] are used. Scalability is the main advantage of

NoC. Moreover, NoCs are emerging as a high level interconnect solution ensur-

ing parallelism and high performance. However, there are still several issues that

need to be addressed such as power consumption and especially high area cost.

4.2.2. BUS-BASED HARDWARE ACCELERATOR SYSTEMS

Section 2.3 listed some bus-based hardware accelerator systems in academia and

in commercial. Here we present in details some well-known hardware accelera-

tor systems using a bus as the main communication infrastructure.

The Molen architecture [Vassiliadis et al., 2004] is a heterogeneous multicore

system for software/hardware co-design. The Molen architecture consists of two

types of processing elements (PEs): one General Purpose Processor (GPP) and one

or more Reconfigurable Processor(s), also so-called Custom Computing Unit(s)

(CCUs). GPP has the main memory to contain application data while each CCU

has each local memory (CCUMem) to contain its local data. The CCU exchanges

parameters with GPP by exchange registers (CCUXreg) through an on-chip stan-

dard bus. While the GPP can access the main memory and the accelerator local

memories, the accelerators can access only its local memory. The GPP and the

accelerator local memories are also connected through an on-chip bus. When

accelerator functions are needed, the GPP transfers data from the main memory

to the local memory of the accelerator and copies the result back to the main

memory when the accelerator finished.

A Warp processor [Lysecky and Vahid, 2009] consists of a main general pur-

pose processor, an efficient on chip profiler, an on-chip CAD module (OCM) and

a warp-oriented FPGA (w-FPGA). The main processor executes the software part

of an application while the critical software regions are synthesized and mapped

onto the w-FPGA. The selection, synthesis and mapping the critical software ker-
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nels are done automatically by the profiler and the CAD module. The w-FPGA

and the processor share the main data cache by using a mutually exclusive exe-

cution model. The main process, CAD module and the w-FPGA are connected

together through an on-chip standard bus to configure the w-FGPA as well as

to provide a mechanism for communication and synchronization between the

main processor and the w-FPGA.

LegUp [Canis et al., 2013] is an open source high-level synthesis tool for FPGA-

based processor/accelerators systems. The target system contains a processor

connecting with custom hardware accelerators through a standard on-chip bus

interface. The current version is implemented on the Altera Cyclone II FPGA with

an Altera Avalon Bus as the interface for processor and accelerators communica-

tion. In this version, a shared memory architecture is used for exchanging vari-

ables between the processor and the accelerators. The shared memory uses an

on-FPGA data cache and off-chip memory. The authors indicate that limitations

of the bus system need to be further investigated.

The authors in [Schumacher et al., 2012] proposes IMORC, an infrastructure

and architecture template that helps raising the level of abstraction to simplify

the FGPA-based accelerator design. In the IMORC architecture, the computing

cores are connected together through a multi-bus on-chip network. Each core

has a number of communication ports which can be master or slave ports. One

master port can connect with a number of slave ports via a bus. Beside the ports,

the core comprises an execution unit and local memory. The execution unit can

access the local memory and send message to other cores through the master

port. The host processor which has a host interface core containing some com-

munication ports communicates with the cores in the same protocol.

The PowerEN chip [Brown et al., 2011] [Heil et al., 2014] consists of 16 general

purpose processors, two memory controllers, and a collection of hardware ac-

celerators including Host Ethernet Adapter, Multi-Pattern Matching, Compres-

sion/Decompression, Cryptographic Data Mover, and XML Processing modules.

Those components are connected together via a fabric called PBus. The PBus

supports multiple module-to-module links and implements a snooping protocol

to improve bandwidth. The accelerators communicate together through a mem-

ory buffer allocated in memory modules which are accessible by all the compo-

nents.



4.3. DIFFERENT INTERCONNECT SOLUTIONS

4

49

4.3. DIFFERENT INTERCONNECT SOLUTIONS
In this section, we introduce different interconnect solutions used in heteroge-

neous hardware accelerators and give a comparison between them in terms of

the total execution time of the hardware accelerators. In this work, we mainly

focus on the data communication between the hardware accelerators.

4.3.1. ASSUMPTIONS AND DEFINITIONS

Hardware accelerator systems, such as Molen and target system in LegUp re-

search, usually use a heterogeneous memory hierarchy in which the main mem-

ory is connected to the host while each hardware accelerator has its local mem-

ory to store data. In this work, we assume that the memory hierarchy is as follows:

• The host can access the main memory as well as the local memories of

hardware accelerators through a standard on-chip bus; and

• The hardware accelerator kernel can access its local memory only.

In this chapter, we consider the hardware accelerator systems using a bus as

the communication infrastructure and some consolidating interconnect tech-

niques to improve system performance. We assume that a standard on-chip bus

connects the local memories and the host together. We use the word “local mem-

ory” to refer to the local memory of a hardware accelerator. The word “main

memory” is used for the main memory of the system which is connected to the

host.

Before presenting different interconnects used in heterogeneous hardware

accelerator systems, we need to define some equations used to compare the

quality of the interconnect techniques. Beside the hardware accelerator kernel

defined in Section 3.2.1, the following terminology is used:

• Data communication between two kernels is defined by [HWi → HW j :

Di j ]; where HWi and HW j are the producer and the consumer kernels,

respectively, and Di j is the total amount of data in bytes transferred from

HWi to HW j .

• The average time taken by the host for transferring 1 byte from the main

memory to a hardware accelerator local memory or vice versa via the bus is

tb , and the average time for transferring 1 byte from a hardware accelerator

local memory to another one on the bus using DMA is td . These values are

platform dependent, however td < tb .
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The “amount of data” mentioned in the data communication definition can be

measured by using profiling tools such as the QUAD toolset [Ostadzadeh, 2012].

4.3.2. BUS-BASED INTERCONNECT

The bus system has some certain advantages compared with other interconnect

techniques such as being compatible with most Intellectual Property (IP) blocks

including host processors [Guerrier and Greiner, 2000]. Therefore, the bus sys-

tem is considered as interconnect for many heterogeneous hardware accelerator

systems. In these systems, the host uses the bus to transfer data between the

main memory and the local memories. Figure 4.1 depicts an architecture using

the bus system as interconnect.

Figure 4.1: The bus is used as interconnect

Consider two accelerator kernels HW1(τ1,D H
1(i n),DK

1(i n),D H
1(out ),DK

1(out )) and

HW2(τ2,D H
2(i n),DK

2(i n),D H
2(out ),DK

2(out )) communicating together with the commu-

nication [HW1 → HW2 : D12]. In many hardware accelerator systems, whenever

the hardware accelerator is invoked, the host transfers input data from the main

memory to the local memory. The kernel is executed right after all the required

data is available in the local memory. Finally, the host copies the result of the

hardware accelerator from the local memory to the main memory when the ker-

nel is finished. Following these steps, the total execution time of the two hard-

ware accelerators is shown in Equation 4.1. We refer to this model as the bus-
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based model to which we compare other interconnect solutions.

Tb = τ1 +τ2 + (D1(i n) +D1(out ) +D2(i n) +D2(out ))tb (4.1)

where Di (i n) = DK
i (i n) +D H

i (i n) and Di (out ) = DK
i (out ) +D H

i (out ). We distinguish data

from the host and from the kernels in this equation to compare to the other in-

terconnect solutions presented later.

The main advantage of the bus-based interconnect is that the system is sim-

ple. The bus-based system can be implemented on most hardware platforms.

However, the biggest disadvantage of this system is that the communication be-

tween hardware accelerators is not taken directly into consideration but has to

go through the main memory. This leads to a high volume of data needed to be

transferred through the bus. Additionally, the data movement performed by the

host through the bus is usually very slow. The higher the amount of data com-

munication is performed, the lower system performance is achieved.

In the next sections, we introduce techniques used to consolidate the bus to

improve the performance of such systems.

4.3.3. BUS-BASED WITH A CONSOLIDATION OF A DMA
DMA is a technique that allows to access system memory independently of the

host. DMA is usually shared the bus with the host and the local memories. The

main advantage of DMA is that while DMA transfers data, the host can do other

work. Moreover, DMA usually takes less time than the host for moving the same

amount of data. The main disadvantage of DMA is the bus competition because

it shares the bus with the host and the local memories. In addition, hardware re-

source overhead is also a disadvantage of DMA. Figure 4.2 depicts an architecture

using the bus system with a consolidation of the DMA as interconnect.

In this solution, a DMA is used to consolidate the bus. DMA is responsible

for transferring data from one local memory to another local memory. Different

from the bus-based model, a communication profiling is used to improve the

data communication operation. Consider the two above hardware accelerator

kernels HW1 and HW2, the output DK
1(out ) and DK

2(out ) of the hardware accelera-

tors are transferred to other hardware accelerators by the DMA rather than being

written back to the main memory. In other words, the host is only responsible for

transferring D H
1(i n) and D H

2(i n) from the main memory to the local memories as

well as the result D H
1(out ) and D H

2(out ) from the local memories to the main mem-

ory. Other data movement is performed by the DMA. Following this way, the total
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Figure 4.2: The DMA is used as a consolidation to the bus

execution time for the two hardware accelerators is as follows (Equation 4.2).

Tdma = τ1 +τ2 + (D H
1(i n) +D H

1(out ) +D H
2(i n) +D H

2(out ))tb + (DK
1(i n) +DK

2(i n))td (4.2)

The time needed to transfer the results of HW1 and HW2 (i.e., DK
1(out ) and

DK
2(out )) to other local memories is not considered in this equation since it is

taken into account by the execution time of the other hardware accelerators. In

other words, they are transferred to the local memories of the consumed kernels

by the DMA whenever the consumed kernels are invoked.

The total reduction in time compared to the bus-based model is as follows.

∆dma = (DK
1(out ) +DK

2(out ))tb + (DK
1(i n) +DK

2(i n))(tb − td ) (4.3)

where (DK
1(out ) +DK

2(out ))tb is the reduction time because those outputs are not

need to transferred back to the main memory while (DK
1(i n) +DK

2(i n))(tb − td ) is

the reduction in time because the DMA takes care those data inputs movement

instead of the host.

4.3.4. BUS-BASED WITH A CONSOLIDATION OF A CROSSBAR

Crossbar is a high-performance and minimum latency interconnect technique.

Although the cost of crossbar increases by n2 where n is the number of inputs,

small crossbar is area-efficient and delay-optimized. In this model, we consider a
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Figure 4.3: The crossbar is used as a consolidation to the bus

2×2 crossbar to share the local memories of the two hardware accelerators which

communicate together. Figure 4.3 depicts the system using a crossbar as a con-

solidation to the bus. The main advantage of the crossbar is that there is no need

to move data between the two hardware accelerators connected to the crossbar.

The crossbar does not introduce any communication overhead because data is

not needed to encode and decode when transferred through the crossbar. The

main disadvantage of the crossbar is the additional hardware overhead for the

crossbar logic.

Consider the 2 hardware accelerators HW1 and HW2 above. With the cross-

bar, HW1 can access not only its local memory but also the local memory of

HW2. Therefore, neither the host nor the DMA is needed to transfer D12 from

the local memory of HW1 to the local memory of HW2. The host is responsible

for transferring other data. Based on this model, the total execution time of the

two hardware accelerators is as follows.

Txbar = τ1 +τ2 + (D1(i n) +D1(out ) +D2(i n) +D2(out ) −2D12)tb (4.4)

where Di (i n) = DK
i (i n) +D H

i (i n) and Di (out ) = DK
i (out ) +D H

i (out ).

The total reduction in time compared to the bus-based model is as follows.

∆xbar = 2D12tb (4.5)

In this model, the reduction in time is 2D12tb because the host does not need to

copy D12 from the local memory of HW1 to the main memory as well as does not

need to copy this data from the main memory to the local memory of HW2 when

it is invoked.
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4.3.5. BUS-BASED WITH BOTH A DMA AND A CROSSBAR

Due to the advantages of both the DMA and the crossbar, they can be considered

as consolidations to the bus to improve system performance at the same time.

Consider a hardware accelerator system consisting of three hardware accelera-

tors (as illustrated in Figure 4.4) in which two hardware accelerators HW1 and

HW2 using the crossbar to share their local memory and the DMA is used for

other data communication.

Figure 4.4: The DMA and the crossbar are used as consolidations to the bus

Assume that data communication between HW1 and HW2 is [HW1 → HW2 :

D12]. With the DMA, the data input for the hardware accelerators from the other

hardware accelerators (i.e., DK
1(i n), DK

2(i n), and DK
3(i n)), except D12, are done by

DMA. The host only takes care data produced and consumed by the host (i.e.,

D H
i (i n) and D H

i (out )). The host can do other work while the DMA performs the

data movement. The total execution time of the three hardware accelerators is

as follows (Equation 4.6).

Tdma&xbar = τ1 +τ2 +τ3 +
3∑

i=1
(D H

i (i n) +D H
i (out ))tb + (

3∑
i=1

DK
i (i n) −D12)td (4.6)

The total reduction in time compared to the bus-based model is as follows.

∆dma&xbar =
3∑

i=1
DK

i (out )tg +
3∑

i=1
DK

i (i n)(tb − td )+D12td (4.7)

In Equation 4.7, the first value
∑3

i=1 DK
i (out )tg is reduced because the output of the

hardware accelerators consumed by other hardware accelerators does not need
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to be transferred back to the main memory. The second value
∑3

i=1 DK
i (i n)(tb − td )

is the total time reduction when the DMA takes care the data movement from

one local memory to another local memory instead of the host. The final value

contribute to the equation because we do not need to move this data when the

crossbar is used to share the local memories of HW1 and HW2.

4.3.6. NOC-BASED INTERCONNECT

NoC has been emerging as a high level interconnect solution ensuring paral-

lelism and high performance. Although there are some certain disadvantages

such as area overhead and latency [Guerrier and Greiner, 2000], a well designed

NoC can be used as the interconnect among the hardware accelerators. In this

model, we use both the bus and the NoC as the interconnect. The NoC is used

to transfer data from one local memory to another while the bus is used to ex-

change data between the host and the hardware accelerators. Figure 4.5 shows a

system using a NoC as interconnect of the hardware accelerators. Using only the

NoC as interconnect is an alternative solution. However, this solution will incur a

higher hardware overhead for the network interface at the host and higher delay

in the communication between the host and the local memory compared to the

bus.

Figure 4.5: The NoC is used as interconnect of the hardware accelerators
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With the NoC, the communication among the hardware accelerators is done

in parallel with their execution. In other words, the output of one hardware ac-

celerator is sent directly to the local memory of the consuming hardware accel-

erator through the NoC. Therefore, neither host nor DMA is required for data

movement among the local memories. Consider a hardware accelerators with n

hardware accelerators. The total execution time of the n hardware accelerators

is as follows (Equation 4.8).

Tnoc =
n∑

i=1
[τi + (D H

i (i n) +D H
i (out ))tb] (4.8)

The total reduction in time compared to the baseline model is as follows.

∆noc =
n∑

i=1
(DK

i (i n) +DK
i (out ))tb (4.9)

Since, data communication among the hardware accelerator kernels [HWi →
HW j : Di j ] is done by the NoC in parallel with the kernels execution, the data

communication is hidden. Therefore, the reduction in time ∆noc is achieved in

Equation 4.9.

However, the compatibility of the NoC and the hardware accelerators as well

as the local memories needs to be addressed. The network interfaces should be

developed to encapsulate the data and address generated by the hardware ac-

celerators to the network packets at the hardware accelerator side and to decode

the network packets to the data and address at the local memory side.

4.4. EXPERIMENTS

In this section, we present the experimental results using the aforementioned in-

terconnect solutions. Based on those results, we compare the presented models

and the execution time on a real hardware accelerator platform. Other system

aspects such as hardware resource usage and energy consumption are also ana-

lyzed in this section.

4.4.1. EXPERIMENTAL SETUP

Before present the experimental results, we introduce the application and the

way we implement the experiment considering all the aforementioned intercon-

nect solutions. We use the Molen architecture as the base system. Xilinx ML510
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board [Xilinx, 2009] containing a xc5vfx130t FPGA device is used as our hardware

system. In this experiment, we use the jpeg application from the powerstone

benchmark [Scott et al., 1998]. The QUAD toolset is used to generate data com-

munication profiling for the application first. We then choose the most suitable

functions to accelerate on hardware. Figure 4.6 shows the communication pro-

filing graph for the jpeg application.

huff_ac_dec 151516 bytes (300 UMA)

dquantz_lum

75608 bytes (75608 UMA)

jpeg_check

116 bytes (44 UMA)

huff_dc_dec

1220 bytes (1220 UMA)

1202 bytes (1202 UMA)

1200 bytes (1200 UMA)

28 bytes (2 UMA)

j_rev_dct

76808 bytes (76808 UMA)

76842 bytes (76810 UMA)

76808 bytes (76808 UMA)

main

105984 bytes (2222 UMA)

13184 bytes (2466 UMA)

38404 bytes (68 UMA)

4 bytes (4 UMA)

Figure 4.6: The communication profiling graph generated by QUAD tool for the jpeg application

In this experiment, 4 functions (huff_ac_dec, huff_dc_dec, dquantz_lum and

j_rev_dct) are accelerated on hardware. The application is implemented using

the Molen architecture first. The DWARV tool [Nane et al., 2012] is used to syn-

thesize the functions from C code to VHDL code. In the Molen architecture, only

the bus system is used as interconnect. The host is the PowerPC embedded in

the FPGA device and hardware accelerators are mapped on to the reconfigurable

area. The PowerPC is run at 400MHz while the hardware accelerators are exe-

cuted at 100MHz. Block RAMs (BRAMs) are used as local memories. We then

extend the system with the DMA, the crossbar, both the DMA and the crossbar,

and the NoC.

In the extended systems, we develop our 2 × 2 crossbar to share the local

memories of the two hardware accelerators as depicted in Figure 4.3. The Xil-

inx DMA IP core is used for DMA. A 3×2 NoC developed by Karlsruhe Institute of

Technology, Germany [Heisswolf et al., 2012] is adapted as the NoC in the exper-
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Table 4.1: Hardware resource utilization (#LUTs/#Registers) for each interconnect component
and the frequency

Component Resource utilization Max. frequency

Bus 1048/188 345.8MHz
DMA 700/556 252.7MHz
Crossbar 201/200 N/A
NoC 1854/2122 150MHz
NI HW Accelerator 396/426 422.5MHz
NI local memory 60/114 874.2MHz

iment. We implement network interfaces (NIs) for the communication between

the hardware accelerators as well as the local memories and the NoC. Table 4.1

presents the hardware resource utilization for each interconnect component and

the maximum frequency.

4.4.2. EXPERIMENTAL RESULTS

In this section, we present the results for the jpeg application with different inter-

connect scenarios. We name the scenarios as Bus-based, DMA, Crossbar, DMA +
Crossbar, and NoC-based for the bus-based interconnect, bus with a DMA, bus

with a crossbar, bus with both DMA and crossbar, and NoC-based interconnect,

respectively. In the jpeg application, we use two crossbars between huff_ac_dec

and huff_dc_dec as well as between dquantz_lum and j_rev_dct.

Table 4.2 shows the computation time, the communication time, and the to-

tal execution time for the hardware accelerators of the jpeg application. These

numbers are measured by the real execution using the FPGA board mentioned

above. The computation time is the time for the hardware accelerator process-

ing input data while the communication time is the time for data movement be-

tween components. The execution total time of a hardware accelerator is the

sum of the computation time and communication time. As shown in the table,

the computation time does not change in different scenarios. The NoC-based

scenario is the most efficient interconnect since it reduces the communication

time by 74.3% compared to the bus-based model. Hence, the total execution

time in the NoC-based scenario results in a 2.4× speed-up compared to the bus-

based scenario. Based on the models presented in Section 4.3 and the informa-

tion from the communication profiling graph in Figure 4.6, the communication

time of hardware accelerators for each scenarios is computed theoretically. This

theoretical communication time is shown in Figure 4.7 normalized to the soft-
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Table 4.2: Computation, communication and total execution time of hardware accelerators

Scenario Computation Communication Total

Bus-based 2.07ms 7.52ms 9.59ms
DMA 2.07ms 2.54ms 4.61ms
Crossbar 2.07ms 2.87ms 4.94ms
DMA+Crossbar 2.07ms 2.20ms 4.27ms
NoC-based 2.07ms 1.93ms 4.00ms

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Theoretical Comm.HW Acc.Comm.Comp.Software

Figure 4.7: Comparison between computation (Comp.), communication (Comm.), hardware
accelerator execution (HW Acc.), and theoretical communication (Theoretical Comm.) times

normalized to software time

ware time of the hardware accelerators. The figure also compares the execution

time normalized to the software time of the hardware accelerators in different

scenarios. As shown in the figure, the theoretical communication time matches

closely the measured communication time.

Table 4.3 gives the speed-up of the hardware accelerators and the overall ap-

plication with respect to the software (the whole application is executed by the

host only) and the bus-based model. The results show that the NoC-based model

achieves a speed-up of up to 2.3× and 1.86× when compared to the bus-based

model and the software, respectively. The table also shows that the performance

of the bus-based model is even slower compared to the software due to the large

communication time between the host and the hardware accelerators. There-

fore, speed-ups compared to the bus-based model are larger than speed-ups

compared to software. Figure 4.8 shows the speed-up of hardware accelerators

in different scenarios with respect to the software and bus-based model.

Table 4.4 shows the hardware resource utilization for all scenarios. The re-

sults show that the NoC-based model requires additional 20.7% resources (which
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Table 4.3: Speed-up of hardware accelerators and overall application compared to software and
bus-based model

Scenarios
HW accelerators Overall Application

w.r.t Software w.r.t Bus-based w.r.t Software w.r.t bus-based

Bus-based 0.81× 1.00× 0.81× 1.00×
DMA 1.69× 2.08× 1.64× 2.02×
Crossbar 1.58× 1.94× 1.54× 1.90×
DMA+Crossbar 1.82× 2.25× 1.75× 2.16×
NoC-based 1.95× 2.40× 1.86× 2.30×

0

0.5

1

1.5

2

2.5

3

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Speedup w.r.t SW Speedup w.r.t. bus-based

Figure 4.8: Speed-up of hardware accelerators with respect to software and bus-based model

Table 4.4: Hardware resource utilization (#LUTs/#Registers)

Scenario Accelerator Interconnect Total

Bus-based 10707/11722 1048/188 11755/11910
DMA 10707/11722 1748/744 12455/12466
Crossbar 10707/11722 1249/388 11956/12110
DMA+Crossbar 10707/11722 1949/944 12656/12666
NoC-based 10707/11722 3490/2850 14197/14572

0
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0.4

0.6

0.8

1

1.2

1.4

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Resource utilization Energy consumption

Figure 4.9: Comparison of resource utilization and energy consumption normalized to bus-based
model
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takes 2.9% of FPGA resources) compared to bus-based model. Figure 4.9 com-

pares the hardware resource utilization and the energy consumption in differ-

ent scenarios normalized to bus-based model. As shown in the figure, although

the hardware resource utilization is the largest in NoC-based scenario, it is the

smallest energy consumption scenario. The energy consumption is calculated

as power consumption (estimated with Xilinx Power Analyzer) multiplied by the

overall application execution time. For all scenarios, the power consumption

is almost identical, with a slight increase following the increasing hardware re-

source utilization.

4.5. DISCUSSION

In Section 4.3, we presented the five different interconnect architectures for het-

erogeneous hardware accelerator systems. We implemented an experiment with

the jpeg application. In this section, we discuss aspects of the interconnect archi-

tectures such as hardware resource utilization, hardware accelerator speed-up

and the energy consumption.

Based on the models as well as the experiments, the NoC-based model is the

best in terms of execution time but it uses the most hardware resource when

compared to others. The more resources are used the more power consumption

is needed. On the other hand, the bus-based with consolidation of DMA, cross-

bar, or a combination of both has a moderate improvement in speed-up and uses

a limited amount of hardware resources.

Although modern devices, such as FPGA, contain a abundant amounts of re-

sources, we have to choose trade off the number of resources and the price of

the device. Moreover, the energy consumption is one of the main issues needed

to be taken into consideration especially in battery-based systems. Energy con-

sumption depends not only on power consumption but also the total execution

time.

Based on the models, the designers can choose which interconnect solution

is the most optimized for their systems. The designers have to choose trade off

between the performance and the resource utilization. Depending on the re-

quirements of the application as well as the resources available, the decision is

made.



4

62 4. BUS-BASED INTERCONNECT WITH EXTENSIONS

4.6. SUMMARY
This chapter presented an overview of interconnect solutions for hardware ac-

celerator systems. The chapter investigated the impact of augmenting the so-

lutions to an existing bus-based infrastructure. Performance models for bus-

based, DMA, crossbar, DMA+crossbar, and NoC systems were discussed. The

jpeg decoder is used for our case study in different scenarios using the presented

interconnect solutions. Measurements made using these systems match the pre-

dicted analytical performance models. The NoC solution provides the highest

performance achieving a speed-up of 2.4× compared to the bus-based system,

and consuming the least amount of energy. At the same time, the NoC has the

highest resource usage of up to 20.7% overhead.

Note. The content of this chapter is partially based on the following papers:

1. C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, Heterogeneous Hardware Accel-

erators Interconnect: An Overview, NASA/ESA Conference on Adaptive

Hardware and Systems (AHS 2013), 25-27 June 2013, Torino, Italy

2. C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, Heterogeneous Hardware Accel-

erators Interconnect: An Overview, 7th HiPEAC Workshop on Reconfig-

urable Computing (WRC 2013), 21 January 2013, Berlin, Germany
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HEURISTIC

COMMUNICATION-AWARE

HARDWARE OPTIMIZATION

M ULTICORE processing, especially heterogeneous multicore, is being increas-

ingly used for data intensive processing in embedded systems. An impor-

tant challenge in multicore processing is to efficiently get the data to the com-

puting core that needs it. In order to have an efficient interconnect design for

multicore architectures, a detailed profiling of data communication patterns is

necessary. In this chapter, we present a heuristic-based approach to design an

application-specific hardware accelerator system with a custom interconnect us-

ing quantitative data communication profiling information. A number of solu-

tions are considered in this chapter. Those are crossbar-based shared local mem-

ory, DMA support parallel processing, local buffers, and hardware duplication.

The ultimate goal is to have the most optimized custom interconnect design tak-

ing runtime communication pattern into account.

5.1. INTRODUCTION
As single-core microprocessors have reached the end of their scaling capabili-

ties, hardware accelerator systems are becoming good platforms to process data

intensive applications such as bio-informatics computing, multimedia comput-

ing, HD digital TVs, etc. The communication and the synchronization between

63
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computing cores (microprocessor and hardware accelerators) are normally done

through an interconnect network such as buses, Networks on Chip (NoC), etc. In

data intensive applications, a large amount of data needs to be transferred from

core to core. Therefore, data communication is usually a primary anticipated

bottleneck for system performance [Altera, 2008; Becker et al., 2007; Donchev

et al., 2006; Kavadias et al., 2010]. One important method to improve the perfor-

mance of such systems is reducing data communication overhead.

Reducing data communication overhead can be done by increasing com-

munication throughput or decreasing the amount of data movement from one

memory to another. Examples of the former are [Altera, 2008; Becker et al., 2007;

Donchev et al., 2006; Jackson and Hollis, 2010; Stensgaard and Sparso, 2008] and

of the latter are [Kavadias et al., 2010; Papaefstathiou et al., 2007]. However, all

the aforementioned works are based on static information of the application

such as task graphs. The actual amount of data transferred between cores (which

is responsible for data communication overhead) is not taken into consideration.

This highlights an important challenge in multicore processing, namely to ef-

ficiently get the data to the computing core that needs it. The goal is, of course, to

hide the communication delay such that a performance improvement can still be

observed. The resource allocation decision requires detailed and accurate infor-

mation on the amount of data that is needed as input and what will be produced

as output. Evidently, there are dependencies between computations since data

produced by one core will be needed by another. To have an efficient allocation

scheme where the communication delays can be hidden as much as possible, a

detailed profile on the data communication patterns is necessary for which the

most appropriate interconnect infrastructure can be generated. Such communi-

cation patterns can be specific for each application and could, therefore, lead to

different types of interconnect. The work presented in this chapter is a first step

towards a custom designed interconnect for an application. The ultimate goal is

to change at runtime the interconnect infrastructure.

The main contributions of this chapter can be summarized as follows: 1. the

introduction of a heuristic-based and detailed profile-driven interconnect de-

sign with an emphasis on runtime management; 2. the presentation of exper-

imental results with seven different applications on a real FPGA platform; and

3. identification of the most suitable interconnect for each application domain

in our experiment.

The rest of the chapter is organized as follows. Section 5.2 presents in de-
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tail our approach to reduce data communication overhead and our proposed

heuristic-based algorithm for a specific application using profiling information.

Section 5.3 introduces our experiments with 7 different applications. Finally,

Section 5.4 summarizes the chapter.

5.2. CUSTOM INTERCONNECT AND SYSTEM DESIGN

In this section, we introduce a heuristic-based algorithm to design an optimized

application-specific custom interconnect. The heuristic-based algorithm uses

data communication profiling information as a parameter to choose the most

optimized interconnect solution.

5.2.1. OVERVIEW

As presented in Section 3.1.2, a detailed profiling information is required to de-

fine an efficient interconnect of accelerator kernels of a specific application. In

this chapter, the proposed heuristic approach uses data communication profil-

ing information of the application to create the interconnect for the accelerator

kernels. The interconnect includes the solutions presented in the next section.

The main purpose of the heuristic is to define an optimized interconnect in term

of system performance while keeping the hardware resource usage minimal.

In this chapter, a hardware accelerator kernel is defined as in Section 3.2.1.

Since our work target a generic hardware accelerator (i.e., it can be applied for

an existing platform), we assume that the original hardware accelerator system

consists of a host processor and the hardware fabric to implement the acceler-

ator kernels. There is a predefined communication infrastructure for the com-

munication among the host, the kernels, I/O, shared memory and other system

components. The host has a main memory to store application data while the

kernels have local memories to store kernels local data. The work in this chapter

defines accelerator kernels and a custom interconnect for the kernels while keep-

ing the original communication infrastructure because it is a predefined system

backbone. Moreover, in some hardware accelerator system, this communication

infrastructure is not reconfigurable.

5.2.2. DIFFERENT SOLUTIONS

In this section, we present a number of solutions to improve system performance,

especially focusing on data communication behavior among the kernels as well

as between the host and the kernels in the hardware accelerator system.
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Solution 1 Crossbar-based shared local memory

The first interconnect we will use is a crossbar-based shared local memory in the

case where two accelerators need to exchanges data. In this work, we use a cross-

bar for only two accelerators which communicate together to reduce the area

overhead because the crossbar area cost increases quadratically. Figure 5.1(a)

illustrates a simple system with the two hardware accelerators HW1 and HW2

sharing their local memories using a crossbar. When implemented on a real

platform, the crossbar depends on the target hardware accelerator architecture.

Figure 5.1(b) depicts the detailed structure of the crossbar used for the Molen

architecture on an FPGA device.
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Figure 5.1: (a) HW1 and HW2 share their memories using a crossbar; (b) Structure of the crossbar
for the Molen architecture

The QUAD tool identifies functions communicating together and how much

data is transferred between them exactly. Based on this information, we can

choose which functions should share their local memories via a crossbar. The

execution time can be computed as follows.

Consider two hardware accelerators HW1(τ1,D H
1(i n),DK

1(i n),D H
1(out ),DK

1(out ))

and HW2(τ2,D H
2(i n),DK

2(i n),D H
2(out ),DK

2(out )) which communicate together with da-

ta communication [HW1 → HW2 : D12]. According to the baseline system model

presented in Section 3.2.1, the total execution time of the two hardware acceler-

ators is as follows:

Tb = τ1 +τ2 + (D1(i n) +D1(out ) +D2(i n) +D2(out ))θ (5.1)
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where Di (i n) = DK
i (i n) +D H

i (i n) and Di (out ) = DK
i (out ) +D H

i (out ); and θ is the average

time to transfer one byte from the main memory to the local memory via the

communication infrastructure.

Using the data communication profiling information, we know that D12 byte

produced by HW1 is consumed by HW2. Therefore, it should be transferred di-

rectly from HW1 to HW2 instead of copied back to the main memory. One so-

lution to reduce the execution time of the two hardware accelerators is to use

direct memory access (DMA) to transfer data (D12 bytes) from the local mem-

ory of HW1 to the local memory of HW2. However, using DMA to transfer data

from local memory not only has a hardware overhead but does not hide all data

communication.

Through the crossbar, each hardware accelerator, HW1 or HW2, can access

not only its own local memory but also the local memory of the another one.

Therefore, HW1 can write part of its result (D12 bytes) which is used by HW2 to

the local memory of HW2. The host needs to transfer D H
1(out ) bytes and (DK

1(out )−
D12) bytes from the local memory of HW1 to the main memory. The host can

transfer this amount of data in parallel with the execution of HW2 because this

data is not used by HW2. In other words, HW2 can start sooner rather than wait-

ing for the host copies D H
1(out ) and (DK

1(out )−D12) back to the main memory. Sim-

ilarly, the host can move D H
2(i n) bytes from the main memory to the local memory

of HW2 in parallel with the execution of HW1 if this data is available. However,

this parallel behavior depends on the application and the communication in-

frastructure. In the following estimation equation, we do not take this parallel

behavior into account.

Moreover, using the data communication profiling information, we can rec-

ognize data produced and consumed by the accelerator kernels only (DK
i (i n) and

DK
i (out )). In other words, the data is not need to be copied back to the main mem-

ory because it is not used by the host. Therefore, the host can transfer the data

directly from the producer to the consumer instead of copying back to the main

memory. Consequently, the total execution time of the two hardware accelera-

tors is as in Equation 5.2 which is asserted for almost all application.

Txbar = τ1 +τ2 + (
2∑

i=1
D H

i (i n) +
2∑

i=1
D H

i (out ) +
2∑

i=1
DK

i (i n) −D12)θ (5.2)

In this equation,
∑2

i=1 D H
i (i n)θ and

∑2
i=1 D H

i (out )θ are the time for transferring the

accelerators input data produced by the host and for transferring the accelerators
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output data consumed by the host, respectively. (
∑2

i=1 DK
i (i n) −D12)θ is the time

for transferring input data for the accelerators produced by the other accelerators

except D12 byte produced by HW1 and consumed by HW2 due to the shared local

memory. In this equation, DK
i (out ) does not contribute due to direct local memory

to local memory data movement as explained above. With the crossbar, the total

reduction time in comparison with the base system is ∆xbar = ∑2
i=1 DK

i (out )θ+
D12θ.

Solution 2 DMA support for parallel processing

For some applications (multimedia) data can be processed as streaming input.

Using this concept, we can reduce the data communication time by segment-

ing the input data and running the hardware accelerator on each data segment

independently. When the data input is segmented, hardware accelerators execu-

tion and data movement can be executed in parallel. However, the host may be

busy with other work or checking the execution of the kernels. One solution is

to use DMA to transfer data directly from one local memory of a given hardware

accelerator to another one via the communication infrastructure. Moreover, the

average time for transfer one byte data from local memory to local memory by

the DMA is usually lower than by the host.

Consider again the two hardware accelerators and the same communication

that can execute in parallel on different segments, S1 and S2, of the input data.

Assume that they cannot share their local memories by the crossbar. The pro-

cessing flow following the pseudo code in Algorithm 1 can be applied to par-

allelize the data transfer from the main memory the hardware accelerator local

memory and the processing of the hardware accelerators.

With this processing model, the total execution time of the two hardware ac-

celerators is as in Equation 5.3 with an assumption that DMA transfer time is

lower than hardware accelerator execution time.

Tp = τ1

2
+max(

τ1

2
,
τ2

2
+ D12

2
td )+ τ2

2
+ (

D H
1(i n)

2
+

D H
2(out )

2
)θ+ D12

2
td +O (5.3)

where O is the overhead for processing streaming input and td is the average

time for transferring 1 byte from local memory to local memory be the DMA.

The total reduction time in comparison with the base system is ∆p = Tb −Tp =
mi n( H1

2 , H2
2 + D12

2 td )+ ( D1i
2 + D2o

2 )tg − D12
2 td −O.
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Algorithm 1 Pipelining data communication

1: The host copies S1 from the main memory to HW1 local memory;
2: HW1 processes S1 while the host copies S2 from the main memory to HW1

local memory in parallel;
3: HW1 processes S2 while DMA transfers result of S1 from HW1 to HW2 local

memory and HW2 processes the first segment right after DMA is finished;
4: DMA transfers result of S2 from HW1 to HW2 local memory;
5: HW2 processes the second segment while the host copies final result of the

first segment from HW2 local memory to the main memory in parallel;
6: the host copies final result of the second segment from HW2 local memory

to the main memory;

Solution 3 Local buffer

HW
1

HW
2

D
22 D

12

Figure 5.2: Local buffer at HW2

Consider the two hardware accelerators HW1 and HW2 as in Solution 1. They

communicate together with [HW1 → HW2 : D12] as depicted in Figure 5.2. As-

sume that HW1 is executed only one time while HW2 is accelerated on hardware

and iterated n (n > 1) times. HW2 also communicates with itself with a commu-

nication [HW2 → HW2 : D22]. Due to the iteration of HW2 using the same data,

the part of data input for this hardware accelerator produced by HW1 (D12 bytes)

should be kept locally, which eliminates the need to transfer data from the main

memory n−1 times (we need to transfer for the first time). Therefore, only D H
2(i n)

bytes need to be transferred from the main memory to local memory of HW2 in

each iteration. The total time of HW2 is as follows.

Tdl = nτ2 + (D H
2(i n) +D H

2(out )nθ+DK
1(i n)θ (5.4)

The total reduction time in comparison with the based system is ∆dl = D12(n −
1)θ.

Solution 4 Hardware accelerator duplication
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In Solution 2, we introduced a way to parallelize the execution of the hardware

accelerators. In case the data processed by a hardware accelerated function can

be segmented and processed independently in parallel, we can replicate the hard-

ware accelerator to further reduce the execution time. Assume that the hardware

accelerator is duplicated twice, the data input of this accelerator is divided into

two segments and each core processes each segment in parallel. A DMA is used

to transfer the result of these hardware accelerators to others.

Consider a hardware accelerator HW1(τ1,D H
1(i n),DK

1(i n),D H
1(out ),DK

1(out )), the

execution time of the hardware accelerator in the non-duplication case and in

the duplication case with DMA are as in Equation 5.5 and Equation 5.6, respec-

tively.

Tnor mal = τ1 + (D1(i n) +D1(out ))θ (5.5)

where D1(i n) = D H
1(i n) +DK

1(i n) and D1(out ) = D H
1(i n) +DK

1(out )

Td p = τ1

2
+ (D H

1(i n) +D H
1(i n))θ+DK

1(i n)td +O (5.6)

where O is the overhead for parallel processing. The time needed to transfer

the results of HW1 to other local memories (i.e., DK
1(out )) is not considered in

this equation since it is taken into account by the execution time of the con-

suming hardware accelerators. In other words, they are transferred to the local

memories of the consuming kernels by the DMA whenever the consuming ker-

nels are invoked. The total reduction time when compared to the base system is

∆d p = τ1
2 +DK

1(i n)(θ− td )+DK
1(out )θ−O.

5.2.3. HEURISTIC-BASED ALGORITHM

In the previous sections, we introduced different solutions to design a custom in-

terconnect as well as a system using the quantitative data communication pro-

filing. This section proposes a heuristic based algorithm to select the best and

most suitable solution for each application. The pseudo code for the proposed

algorithm is shown in Algorithm 2.

In this algorithm, the most computationally intensive functions suitable to

implement on hardware (i.e., the function can be synthesized to a dedicated

hardware circuit and the hardware fabric of the implemented platform is avail-

able for the function) are selected to accelerate on hardware. Currently, we choose

only five functions as candidates for accelerating because our platform used to
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Algorithm 2 Data communication profiling-driven design

Input: Application source code
Output: The most optimized interconnect

1: Lhw ← List of the most computationally intensive functions suitable to im-
plement on hardware;

2: G ← Quantitative data communication graph for functions in Lhw ;
3: G ← Sort G in decreasing amount of data transfer order;
4: Calculate ∆d p as described in Solution 4 for the most computationally inten-

sive hardware accelerator;
5: if ∆d p > 0 then
6: Apply the solution in Solution 4
7: end if
8: for each function in Lhw do
9: Check for iteration (Figure 5.2) and apply the Local buffer solution;

10: end for
11: for each data communication in G do
12: if the producer and the consumer can be executed in parallel then
13: Apply the solution in Solution 2;
14: else if The crossbar solution is applied to the producer or the consumer

then
15: Use DMA to transfer data from the producer to the consumer
16: else
17: Apply solution in Solution 1;
18: end if
19: end for
20: return A hardware accelerator system with the most optimized interconnect

do experiments can support up to five hardware accelerators. Only the most

computationally intensive hardware accelerator is considered for the hardware

duplication solution. The QUAD profiling tool is used to identify the commu-

nication among the hardware accelerated functions. Based on this information,

the algorithm examines the local buffer characteristic of the functions first. Then

the interconnect solutions presented above are considered for each data com-

munication between two hardware accelerators.

5.3. EXPERIMENTS
In this section, we present our experiment on the Molen architecture using an

FPGA board. We firstly introduce the hardware platform used to implement our
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experiment. A case study with the Canny edge detection application using the

proposed heuristic approach illustrates our work. Finally, our experimental re-

sults with 7 different applications are given.

5.3.1. EXPERIMENTAL SETUP

In this work, we use the Molen architecture as the experimental platform. The

Molen system is implemented on the Xilinx ML510 [Xilinx, 2009] board which

contains a xc5vfx130t-ff1738 FPGA device. The embedded hardwired PowerPC

is used as the host and the hardware accelerators are mapped onto the reconfig-

urable area. The main memory is the off-chip SDRAM connected to the PowerPC

through a high performance IP core from Xilinx. The local memories of hardware

accelerators are the on-chip Block RAMs (BRAMs). The Xilinx PLB bus is used as

the system communication infrastructure. The PowerPC and the hardware accel-

erators are running at 400MHz and 100MHz, respectively. The Xilinx XPS DMA IP

core is used as the DMA. In our experiment, the Molen architecture can support

up to five different hardware accelerators due to limited FPGA resource.

We use the gprof profiling tool [Graham et al., 1982] to identify which part of

the application takes most of the execution time. The gprof profiling tool pro-

vides a function call graph as well as the percent of the execution time of each

function. Based on this graph, we can recognize which functions should be ac-

celerated on hardware in order to reduce the execution time of the whole appli-

cation. Functions with high computational-intensity are good targets for accel-

eration. The QUAD toolset [Ostadzadeh, 2012], which provides a comprehensive

overview of the data communication behavior of an application, is used to gen-

erate the amount of data transfer between the functions of the application.

5.3.2. CASE STUDY

The previous sections presented the hardware techniques and the design algo-

rithm using data communication profiling provided by QUAD to obtain the most

optimized hardware accelerator system with a custom interconnect for each ap-

plication. In this section, we present a case study to clarify the introduced tech-

niques as well as the design algorithm.

Our case study uses the Canny edge detection application. The Canny ap-

plication [Canny, 1986] is a well-known edge detection algorithm. In this work,

we use the implementation version provided by the University of South Florida

[Florida, 1999]. A grayscale PGM image with resolution 100×133 pixels with 8 bits
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per pixel is used in the experiment. The most time-consuming functions in the

specific application are targeted for hardware accelerators and inputted to the

DWARV tool [Nane et al., 2012] to generate VHDL descriptions. The next step is

to use QUAD tool to generate a QDU (Quantitative Data Usage) graph. Figure 5.3

presents the QDU graph generated profiling tools for the Canny application.

The information from the gprof tool shows that functions gaussian_smooth,

derrivative_x_y, magnitude_x_y and non_max_supp take the most percentage

of the execution time. Therefore, they are targeted to accelerate on hardware.

The name of hardware accelerator functions has added prefix “hw_” for distin-

guishing from software functions. The most computationally-intensive func-

tion gaussian_smooth takes around 5× longer than the second computationally-

intensive function. The reduction in time of this function if it is duplicated is

larger than 0, i.e., ∆d p > 0. Hence, Solution 4 is applied to this hardware ac-

celerator. DMA is used to transfer output data from those accelerator kernels

to other kernel (kernel of the hw_derrivative_x_y function). The communica-

tion among hw_derrivative_x_y, hw_magnitude_x_y and non_max_supp func-

tions is investigated next. Two functions derrivative_x_y and magnitude_x_y can

execute in parallel with different data segments. Hence, Solution 2. The DMA

support for parallel processing solution is used to parallelize the execution of

hw_derrivative_x_y and hw_magnitude_x_y. The crossbar is used to share the

local memories of hw_magnitude_x_y and hw_non_max_supp accelerators be-

cause the amount of this data communication is larger than the amount of data

communication between hw_derrivative_x_y and hw_magnitude_x_y. Finally,

data communication between hw_derrivative_x_y and hw_non_max_supp is done

by DMA.

The final version of the hardware accelerator system based on the Molen ar-

chitecture using presented hardware techniques and proposed design rules for

Canny application is shown in Figure 5.4.

Table 5.1 summarizes the hardware size and maximum frequency of our hard-

ware accelerator kernels as well as our crossbar. Table 5.2 summarizes the total

software time, the total hardware time and the speed-up of the accelerator ker-

nels with respect to software. Software time of a function is execution time when

the function is executed on the PowerPC processor at 400MHz while hardware

time of a function is execution time of the corresponding accelerator kernel. Row

1 shows the total software time of the functions; Row 2 and Row 3 shows the hard-

ware time of the accelerated functions without and with applying our design ap-
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Figure 5.3: QUAD graph for the Canny edge detection application
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Figure 5.4: Final system for Canny based on the Molen architecture and proposed solutions

proach, respectively.

Table 5.1: Resource usage and maximum frequency of hardware modules

HW Module Resource (# of LUTs) Max. frequency

Crossbar 201 N/A
DMA 556 252.717MHz
hw_derrivative_x_y 1463 317.269MHz
hw_magnitude_x_y 971 388.342MHz
hw_gaussian_smooth 1938 264.460MHz
hw_non_max_supp 4959 313.908MHz

The maximum speed-up for hardware accelerator is up to 3.79× when the

proposed design approach is applied. The overall application speed-up we can

gain is 3.05×.

5.3.3. EXPERIMENTAL RESULTS

Beside the Canny edge detection application, we did experiments with 6 other

different well-known applications. Those are the Susan edge detector [Smith,

1992] (with an implementation version of Oxford University), KLT feature tracker

[Shi and Tomasi, 1994], Fluid simulation [Stam, 2003], the Blowfish application

(a symmetric block cipher) from the CHStone benchmark [Hara et al., 2009],

AES [SSL, 2012] and Bloom Filter [Christensen, 2012].
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Table 5.2: Execution times of accelerated functions and speed-up compared to software

Scenario Execution time Resource Speed-up

Software 16,723,007 (41.81ms) N/A N/A
Standard Molen 9,033,618 (22.58ms) 9331 LUTs 1.85×
Molen with rules 4,405,894 (11.02ms) 12026 LUTs 3.79×

Table 5.3: Interconnect techniques and hardware resource usage of applications

Application HW techniques # of LUTs # of Kernels

Canny Crossbar, Duplication, DMA 12026 5
SUSAN Crossbar, DMA 21504 3
KLT Crossbar, Duplication, DMA 6553 3
Fluid Crossbar 12569 2
Blowfish Crossbar, Local Buffer 16444 2
AES Crossbar, Local Buffer 19544 2
Bloom filter Crossbar, Local Buffer 1242 2

Table 5.3 present the detailed techniques used for the applications as well

as the hardware resources and the number of kernels in each application. Col-

umn 2 in this table shows the custom interconnect techniques applied to each

application. The crossbar technique is used for all applications in both the mul-

timedia domain (the first four applications) and the cryptography domain (the

last three applications). In the multimedia processing domain, the crossbar and

the DMA techniques are frequently exploited. In the cryptography domain, only

the crossbar and the local buffer techniques are used. Column 3 gives the total

FPGA Look-Up Tables (LUTs) used by each application. Column 4 in this table

shows the number of hardware accelerators used for each application. This col-

umn indicates that the multimedia processing applications have a tendency to

use more hardware accelerator units, making them more suitable to accelerate

on FPGAs compared to the cryptography applications.

Table 5.4 shows our experimental results for the seven different applications.

Column 2 shows the overall application speed-up of Molen architecture with cus-

tom interconnect in comparison with software. Column 3 and column 4 show

the speed-up of hardware accelerators (with respect to software) with and with-

out the custom interconnect design.

As shown in Table 5.4, the speed-up of hardware accelerators and the overall

application go up to 7.8× and 3.05×, respectively. Figure 5.5 shows the compar-

ison of the speed-up of the Molen system with and without using our algorithm



5.3. EXPERIMENTS

5

77

Table 5.4: Application and kernel speed-ups with and without the custom interconnect w.r.t.
software

Application
Application kernel speed-up w.r.t. SW

Speed-up with custom
interconnect

w/o custom
interconnect

Canny 3.05× 3.79× 1.85×
SUSAN 2.51× 2.55× 2.02×
KLT 2.24× 7.8× 4.01×
Fluid simulation 1.50× 1.95× 1.45×
Blowfish 2.86× 3.02× 1.83×
AES 1.41× 2.81× 0.94×
Bloom filter 2.29× 3.05× 1.65×
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Figure 5.5: Speed-up (w.r.t software) of hardware accelerators using Molen platform with and
without using custom interconnect

to choose the most optimized interconnect solutions. As shown in this figure,

hardware accelerators which apply the communication profiling-driven acceler-

ation solutions provide up to 2.98× execution time improvement in comparison

with the accelerators that do not apply these acceleration solutions.

Figure 5.6 shows the contribution of each solution in the speed-up of each

application when compared to the standard Molen architecture. From the fig-

ure, the crossbar-based shared local memory always contributes to the speed-

up of applications. In the first four applications (Canny, Susan, KLT and Fluid),

which belong to the multimedia processing domain, the different interconnects

contribute in a different way to the overall speedup. The crossbar has a highest

contribution in SUSAN, KLT and Fluid while the duplication gives the best per-
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Figure 5.6: The contribution of each solution to the speed-up

formance in Canny. The DMA has a higher contribution to the speed-up when

compared to the crossbar in Canny and when compared to the duplication in

SUSAN. In the last three applications (which belong to the cryptography domain)

the local buffer gives the best performance. The crossbar has a higher contribu-

tion when compared to the DMA and the duplication. Because the cryptography

domain is very computation intensive on few data, it does not need a lot of com-

munication. Therefore, a crossbar-based shared local memory accessible by all

hardware accelerators will suffice.

5.4. SUMMARY

In this chapter, we presented a heuristic-based approach using a detailed data

communication profiling to optimize an application-specific heterogeneous mul-

ticore system. The proposed approach mainly focuses on custom interconnect

design. A heuristic-based algorithm is proposed to choose the most optimized

interconnect solutions for each application. The algorithm uses data communi-

cation profiling information as a guidance parameter because this information

allows the designer to make better founded decisions regarding the most appro-

priate interconnect. Our experimental results show that we can gain speed-up

of hardware accelerators up to 7.8× in comparison with software and to 2.98× in

comparison with the base system without using our approach. We also consid-

ered the contribution of each interconnect solution to each application as well as
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to the application domain. Future research will investigate the possibility of tun-

ing the interconnect at runtime. This runtime reconfigurability can be exploited

evidently between applications but also within the execution of one application.

Note. The content of this chapter is partially based on the following papers:

1. C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, A Heuristic-based Communication-

aware Hardware Optimization Approach in Heterogeneous Multicore Sys-

tems, International Conference on ReConFigurable Computing and FP-

GAs (ReConFig 2012), 5-7 December 2012, Cancun, Mexico

2. C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, Rule-Based Data Communica-

tion Optimization Using Quantitative Communication Profiling, Inter-

national Conference on Field-Programmable Technology (FPT 2012), 10-

12 December 2012, Seoul, Korea





6
AUTOMATED HYBRID

INTERCONNECT DESIGN

T HE communication infrastructure is an important component of a multicore

system along with the computing cores and memories. A good intercon-

nect design plays a key role in improving the performance of such systems. In

this chapter, we introduce an automated interconnect design strategy to create

an efficient custom interconnect for kernels in a hardware accelerator system.

The main purpose of the hybrid interconnect is to accelerate the communication

behavior of the kernels. Our custom interconnect includes a NoC, shared local

memory solution, or both. Depending on the quantitative communication pro-

filing of the application, the interconnect is built using our proposed custom in-

terconnect design algorithm. An adaptive data communication-based mapping

to connect the kernels to the interconnect is proposed to obtain a low hardware

overhead and low latency interconnect. Compared to Chapter 5, this chapter

considers a NoC instead of a DMA in the hybrid interconnect design.

6.1. INTRODUCTION
Evidently, each application has its own data communication patterns. The in-

terconnect design for the application should take its communication patterns

into account to define the most optimized interconnect for the application. In

this chapter, we introduce our automated hybrid interconnect design. The main

purpose is to improve the communication behavior of the kernels in an existing

81
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accelerator system while keeping the amount of hardware resource usage for the

interconnect as low as possible. In state-of-the-art approaches in the literature,

input data required for kernel computation is fetched to its local memory (buffer)

when the kernel is invoked, which delays the start-up of kernel calculations until

the data is available. Although, there are some proposed solutions to tackle this

delay, those solutions are ad-hoc solutions that are developed for specific archi-

tectures instead of a generic approach. Moreover, those approaches do not take

the application data communication patterns into account.

In contrast to those approaches, our approach uses data communication

profiling to create a custom interconnect for the kernels. The interconnect, then,

helps deliver data from one kernel to the others as soon as possible, thereby hid-

ing the data communication time needed for the kernel. Therefore, we approach

the ideal execution model presented in Section 3.2.2. The ultimate goal is to have

a tailored interconnect infrastructure which is dynamically configured. A custom

interconnect design algorithm and an adaptive mapping function using a quan-

titative data communication profiling of the application are proposed to build

the interconnect.

Our results in an embedded platform show that the proposed system achieves

a speed-up of an overall application by up to 2.87× compared to a baseline sys-

tem (a bus-based hardware accelerator system). We also managed to save up to

66.5% energy consumption. The experimental results on the Convey high per-

formance computing platform show that a speed-up of an overall application by

up to 1.55× compared to the baseline high performance computing system is

obtained and up to 63% energy consumption is reduced.

The rest of this chapter is organized as follows. Section 6.2 presents in de-

tail the mathematical modeling of system components and our proposed design

strategy. In Section 6.3, experimental results show the benefit of the custom in-

terconnect architecture using four experimental applications. Finally, Section 6.4

concludes the chapter.

6.2. AUTOMATED HYBRID INTERCONNECT DESIGN

To reach the ideal execution model, the data communication among the ker-

nels needs to be hidden. In other words, the hybrid interconnect of the kernels

transfers data from sources to destinations in parallel with the execution of the

kernels. Therefore, in this section, our design approach driven by the data com-

munication profiling is introduced in order to define the hybrid interconnect for
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the kernels with optimized execution time and hardware resource usage. To de-

rive a mathematical model for performance estimation, we denote communica-

tion between any two kernels of the system as [HWi → HW j : Di j ] in which HWi

sends Di j byte to HW j . This communication behavior can be extracted from the

data communication profiling of the application.

6.2.1. MODELING SYSTEM COMPONENTS

In this section, we analyze the potential benefit of different interconnect choices

as compared to the simple baseline system. We compute for each of the solutions

what improvement it brings over the baseline model. We conclude by introduc-

ing a number of hybrid implementation and show the potential pay off based on

the same execution model.

MODELING SHARED LOCAL MEMORY

We consider to share the local memories of two kernels in which one kernel

(HWi ) only sends its DK
i (out ) output to another kernel (HW j ) and HW j only re-

ceives DK
j (i n) input from HWi (i.e., [HWi → HW j : Di j ] and DK

i (out ) = DK
j (i n) =

Di j ). With the shared local memory, Di j byte of data can be used without any

movement. Hence, compared to the baseline model (presented in Section 3.2.1),

communication time for this data segment is reduced by ∆c = 2Di jθ (one time

from the local memory of HWi to the host and one time from the host to the local

memory of HW j ).

When implemented on FPGA-based platforms, most accelerator systems use

block RAM (BRAM) as the local memory. BRAMs in modern FPGA usually have

only two ports while they may be accessed by three different components (the

two communicating kernels and the host). Therefore, there are two practical so-

lutions to implement the shared local memory. These solutions are chosen based

on the communication pattern generated by the profiling tool.

• Case 1: if the receiving kernel HW j communicates with the host (i.e., D H
j (i n)

6= 0 or D H
j (out ) 6= 0), one of the two BRAM ports is dedicated to communicate

with the host (the same situation is reported in [Choi et al., 2012]). There-

fore, a crossbar is used to share the local memories of the two kernels HWi

and HW j . Kernel 1 and Kernel 2 in Figure 6.1 illustrate this case. The cross-

bar switches data from the cores to the corresponding local memory based

on the address of data. The crossbar does not introduce any communica-

tion overhead because it does not change the structure of data. In other
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words, we do not need to encode and decode data format.

• Case 2: if the receiving kernel HW j does not communicate with the host

(i.e., D H
j (i n) = D H

j (out ) = 0), HWi and HW j can share the local memories

without the crossbar. Kernel 3 and Kernel 4 in Figure 6.1 illustrate this case.

Figure 6.1: Shared local memory with and without crossbar in a hardware accelerator system.

MODELING NOC-BASED INTERCONNECT

NoCs are an established and widely used interconnect method providing par-

allelism and high performance. Although there are certain disadvantages such

as area overhead and latency [Guerrier and Greiner, 2000], a well designed NoC

can be used as the interconnect of the kernels. Figure 6.2 shows a hardware ac-

celerator system in which the kernels use a NoC as their interconnect. An al-

ternative solution is using only the NoC as interconnect of the whole system,

i.e., the communication infrastructure in Figure 6.2 is eliminated and the host,

I/O, the shared memory are directly connected to the NoC. However, this solu-

tion will incur a higher hardware overhead for the network adapters at the host

and the I/O. Most hardware accelerator systems have a predefined communica-

tion infrastructure and predefined connections of the host, the shared memory,

the I/O, etc., to the communication infrastructure. Adding a NoC to accelerate

the communication behavior of the kernels is more suitable than modifying the

whole system. Additionally, in some systems where the host is located on a sepa-

rated chip from the kernels (such as the Convey architecture [Convey Computer,
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2012]), the communication infrastructure of these systems is usually not recon-

figurable.

Figure 6.2: The NoC is used as interconnect of the kernels in a hardware accelerator system.

With the NoC, data communication among the kernels is done in parallel

with their execution. In other words, data output of one kernel is sent directly

to the local memories of the consuming kernels through the NoC as soon as it

is available instead of storing in the local memory of the kernel. Hence, kernel

HWi does not need to collect DK
i (i n) from the main memory and data output

DK
i (out ) is not copied back to the main memory when finished. Consequently,

communication time of the kernels is hidden. Compared to the baseline model,

the NoC reduces the execution time by ∆n = ∑n−1
i=0 (DK

i (i n) +DK
i (out ))θ. Figure 6.3

illustrates the detailed execution of a hardware accelerator system consisting

of three kernels using a NoC as the kernel interconnect. The three accelerator

kernels in the illustrated system are K1 (HW1(τ1,D H
1(i n),0,D H

1(out ),DK
1(out ))), K2

(HW2(τ2,D H
2(i n),DK

2(i n),D H
2(out ), DK

2(out ))), and K3 (HW3(τ3,D H
3(i n),DK

3(i n),D H
3(out ),

0)). Phases 3, 4, 6, and 7 in the NoC-based interconnect system are shorter than

in the baseline system due to data movement through the NoC. While all K1 out-
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put (D H
1(out ) and DK

1(out )) is copied back to the main memory in the baseline sys-

tem in Phase 3, only part of this output (D H
1(out )) is copied to the main memory

in the NoC-based interconnect system because data output consumed by K2 and

K3 (DK
1(out )) is transferred to K2 and K3 by the NoC in Phase 2 (parallel with K1 ex-

ecution). Consequently, when K2 is invoked, only data input generated by func-

tions in the host (D H
2(i n)) is moved from the main memory in Phase 4 in the NoC-

based interconnect system rather than the whole data input (D H
2(i n) and DK

2(i n))

as in the baseline system. Phase 6 and Phase 7 do the same behavior as already

explained.
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Figure 6.3: Illustrated NoC-based interconnect data communication for a hardware accelerator
system.

In this NoC solution, the kernels and their local memories are connected to

NoC routers through adapters. The NoC adapter encodes data input from the

kernel into NoC packets and sends them to the NoC at the kernel side. At the local

memory side, the NoC adapter decodes incoming packets and stores data to the

local memory. The number of routers and adapters is a sum of the components

connected to the NoC, i.e., the more components are connected to the NoC, the

more routers and adapters are needed. The more routers and adapters are used,

the larger resources are required. That is the reason why we consider a hybrid

interconnect to have an optimized resource usage in this work rather than using

only a NoC as the kernels’ interconnect.

Assume that beside the shared local memory, there are still n kernels and

their n local memories using a NoC as interconnect in a hardware accelerator

system, it is not necessary to connect all the n kernels and n local memories to

the NoC (2n routers and adapters are required for the full connection). For ex-

ample, in Figure 6.2, Kernel 1 and local memory in Kernel 2 are not connected
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to the NoC because we assume that Kernel 1 does not send data output to any

other kernel while Kernel 2 does not receive data input from any another kernel

(i.e., DK
1(out ) = 0 and DK

2(i n) = 0). Therefore, based on the communication topol-

ogy of each specific application, we define a different connection topology of the

kernels and the local memories to the NoC so that the number of routers and

adapters required is as low as possible. Details of this proposed adaptive map-

ping algorithm is presented in Section 6.2.3.

6.2.2. CUSTOM INTERCONNECT DESIGN

In this section, an automated design approach is proposed to define an efficient

hybrid interconnect in terms of optimized communication time and low hard-

ware resource usage. The hybrid interconnect consists of the shared local mem-

ory solution along with a NoC. Evidently, accelerator kernels and their communi-

cation behavior are different from one application to the other. Therefore, a spe-

cific application should have a specific hybrid interconnect to efficiently get data

to the kernels that need it. To define the most optimized hybrid interconnect for

the kernels, the interconnect solutions are chosen as the following ordering:

• The shared local memory (as presented in Section 6.2.1) is considered be-

fore the NoC solution because of the hardware resource usage. If the NoC

is used instead of the shared local memory, we need four routers and four

adapters (two for kernels and two for their local memories). Keeping in

mind that the hardware resources usage for those routers and adapters is

5× larger than the hardware resources usage for the shared local memory

solution (using a crossbar or directly sharing the local memory).

• All the remaining kernels and local memories use a NoC as interconnect.

• The proposed adaptive mapping function (presented later) will make a

connection topology for the kernels and the local memories to the NoC and

the communication infrastructure so that the number of required routers

and adapters is minimal.

Algorithm 3 shows the pseudo code of the hybrid interconnect design algo-

rithm. The result of the algorithm is a hybrid interconnect with the most opti-

mized communication time while keeping the hardware resource usage for the

interconnect as low as possible. The algorithm, first, selects functions which are

the most computationally intensive and suitable for acceleration on the hard-

ware fabric (i.e., those functions that can be implemented in hardware) (line



6

88 6. AUTOMATED HYBRID INTERCONNECT DESIGN

Algorithm 3 Custom interconnect design

Input: Application source code
Output: The most optimized interconnect

1: Lhw ← List of the most computationally intensive functions suitable to im-
plement on HW;

2: for each HW in Lhw do
3: if HW satisfies the data parallelism in Section 3.2.3 (∆d p > 0) & resource

is available then
4: Duplicate HW in Lhw

5: end if
6: end for
7: G ← Quantitative data communication profiling for functions in Lhw ;
8: for each communication [HWi → HW j : Di j ] in G do
9: if DK

i (out ) = DK
j (i n) = Di j then

10: Apply the shared local memory solution for HWi and HW j

11: Remove HWi from Lhw

12: end if
13: end for
14: Map all HW in Lhw to the NoC using adaptive mapping
15: Apply the instruction parallelism solution in Section 3.2.3 if possible

1). The most computationally intensive functions are considered for data paral-

lelism solution if acceptable (i.e., if the most computationally intensive functions

can be parallelized and the hardware resources are available, they will be repli-

cated) (line 2-6). The algorithm, then, uses the QUAD toolset to generate a quan-

titative data communication profiling of the application (line 7). Based on this

detailed profile, an efficient custom interconnect using the presented solutions

is built. In line 8-14, the hybrid interconnect is built using the above mentioned

ordering. The details of the mapping in line 14 will be discussed in Section 6.2.3.

Finally, the instruction parallelism is considered to further reduce the execution

time if acceptable (line 15).

6.2.3. ADAPTIVE MAPPING FUNCTION

As explained in Section 6.2.1, it is not necessary to map all the kernels and their

local memories remaining after the shared local memory is considered to the

NoC. Depending on the communication patterns, there are different ways to

connect a kernel and its local memory to the NoC (to communicate with other
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kernels) and the communication infrastructure (to communicate with the host).

Therefore, the adaptive mapping function is introduced to define a connection

of a kernel and its local memory to both the NoC and the communication infras-

tructure so that the number of required routers and adapters is minimal. The

proposed adaptive mapping function used in Line 14 of Algorithm 3 is shown in

Equation 6.1.

f : Communi cati on → Inter connect (6.1)

where the Communi cati on and the Inter connect values are defined below.

A kernel can receive data input from three different sources:

1. only from other kernels (R1);

2. only from the host (R2);

3. from both other kernels and the host (R3).

Similarly, a kernel can send data output to three different destinations:

1. only to other kernels (S1);

2. only to the host (S2);

3. to both other kernels and the host (S3).

Therefore, each kernel has nine different data communication topology cases as

in Equation 6.2.

Communi cati on = {R1,R2,R3}× {S1,S2,S3} (6.2)

There are two options for a connection between a kernel and the NoC

1. the kernel is not connected with the NoC (K1);

2. the kernel is connected with the NoC (K2).

Similarly, there are three options for a connection of a local memory with the

communication infrastructure and the NoC

1. the local memory is connected to the communication infrastructure only

(M1);
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2. the local memory is connected to the NoC only (M2);

3. the local memory is connected to both (M3).

Therefore, each kernel and its local memory have six different interconnect topol-

ogy cases as in Equation 6.3.

Inter connect = {K1,K2}× {M1, M2, M3} (6.3)

Table 6.1 shows the mapping of the communication topology to the inter-

connect topology. The interconnect value {K1, M2} (the kernel is not connected

to the NoC while its local memory is only connected to the NoC) is not feasible

as the result of the accelerator kernel will be inaccessible by any other function.

Table 6.1: Adaptive mapping function

Communication Interconnect

{R1,S1} {K2, M2}
{R1,S2}, {R3,S2} {K1, M3}

{R1,S3}, {R3,S1}, {R3,S3} {K2, M3}
{R2,S1}, {R2,S3} {K2, M1}

{R2,S2} {K1, M1}

To reduce the NoC latency, a kernel and its communicating local memories

should be mapped to the NoC routers in such a way that the distance of these

routers is shortest. For instance, if a kernel is mapped to a router at the (x, y) co-

ordinate then the ideal location for the local memory to which it communicates

is either (x −1, y), (x +1, y), (x, y −1), or (x, y +1).

The objective of this mapping function is to define the most optimized topol-

ogy in terms of HW resource usage. An alternative simpler solution is to map all

the kernels and all their local memories to both the NoC and the system commu-

nication infrastructure. However, this mapping solution requires the maximum

number of routers as well as network adapters. Different from other state-of-

the-art mapping algorithms for an FPGA NoC-based system such as [Singh et al.,

2010; Yu et al., 2010] which map application tasks to NoC only, our work con-

siders to map both the kernels and the memory to both the NoC and the system

communication infrastructure of the hardware accelerator system.
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6.3. EXPERIMENTAL RESULTS
In this section, we present our experimental results. We validate our proposed

interconnect design in both embedded systems and high performance comput-

ing systems. The Molen platform [Vassiliadis et al., 2004] is used as our embed-

ded experimental platform while the Convey HC-2ex [Convey Computer, 2012]

is used as the high performance computing system. In order to implement our

proposed hybrid interconnect for the kernels, we develop a 2×2 crossbar for the

shared local memory solution and adapt the NoC presented in [Heisswolf et al.,

2012] into our systems.

The following sections present in detail our experimental result for each sys-

tem.

6.3.1. EMBEDDED SYSTEM RESULTS

Even though, the Zynq board is a nice example of the Molen architecture, it was

not available at the time of these experiments. Therefore, to build the Molen plat-

form, a Xilinx ML510 [Xilinx, 2009] board containing an xc5vfx130t FPGA device

is used. The embedded hardwired PowerPC processor acts as the host processor

while accelerator kernels are mapped onto the reconfigurable area of the device.

SDRAM memory connected directly to the PowerPC through a Xilinx core is the

main memory of the system. While the host processor works at 400MHz, the ker-

nels work at 100MHz. The Xilinx PLB bus is used as the communication infras-

tructure which connects the host processor, the kernels and other modules such

as I/O, Interrupt, Timer, etc., together. The DWARV [Nane et al., 2012] compiler

automatically generates the HDL description for the kernels from their C code.

The system is synthesized with Xilinx ISE 13.2 without any manual optimization.

PERFORMANCE ANALYSIS

To validate the acceleration ability of the Molen platform, we first compare the

execution time of the Molen system to software execution (using the PowerPC

only). Please note that, almost all the embedded accelerator systems presented

in Section 2.3 compare their systems against a host running at a low frequency,

for example, 85MHz in [Lysecky and Vahid, 2009], 125MHz in [Ismail and Shan-

non, 2011], 100MHz in [Pilato et al., 2012], 75MHz in [Canis et al., 2013], etc.,

while the Molen system in this work is compared to a host running at 400MHz.

Four applications are used for the following experiments. Those are the Canny

edge detection application [Canny, 1986], the jpeg decoder application [Scott

et al., 1998], KLT feature tracker [Shi and Tomasi, 1994] and Fluid simulation [Stam,
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2003]. Figure 6.4 presents the Molen speed-up of the kernels and of the overall

application with respect to the software. On average, the Molen system achieves

a 2× improvement in execution time compared to the software. However, the

performance of the Molen system is lower than the software in case of the jpeg

application due to the high data communication. We measured that the ratio be-

tween data communication time and kernel processing time is up to 3.6× in this

application. Therefore, optimal data communication is an essential demand to

improve the system performance.
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Canny jpeg KLT Fluid Average

App. Speed-up

Kernel Speed-up

Figure 6.4: The speed-up of the baseline system compared to the software.

Table 6.2: Speed-up of the proposed system compared to software and the baseline system

App. #Funca #Kernelsb w.r.t Software w.r.t Baseline
Application Kernels Application Kernels

Canny 4 5 3.15× 3.88× 1.83× 2.12×
jpeg 4 5 2.33× 2.5× 2.87× 3.08×
KLT 3 3 3.72× 6.58× 1.26× 1.55×
Fluid 5 5 1.66× 1.68× 1.59× 1.60×
App.: Application;
a The number of functions in the application accelerated by hardware kernels;
b The number of hardware kernels accelerating the computationally intensive functions of the
application;

We then implement our approach for each application on the Molen system.

Beside the PLB bus used as the communication infrastructure, the developed

crossbar and the adapted NoC are also used as the hybrid interconnect. Table

6.2 shows the speed-ups of the overall application and of the kernels of the pro-

posed system with respect to software in Column 4 and Column 5, respectively.

Those speed-ups with respect to the baseline system are also shown in the table.
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Figure 6.5: The overall application and the kernels speed-up of the proposed system compared to
the software and baseline system.

Figure 6.5 compares the speed-up of the proposed system with respect to both

software and the baseline. In each application, the first two chart bars illustrate

the speed-ups of the overall application and of the kernels with respect to soft-

ware while the last two chart bars show speed-ups with respect to the baseline

system. As shown in the table as well as in the figure, when the proposed hy-

brid interconnect and parallelizing kernel processing are exploited, we achieve a

speed-up of the overall application and of the kernels by up to 3.72× and 6.58×
when compared to software, respectively (both in the KLT application). Com-

pared to the baseline system, speed-ups of up to 2.87× for the overall application

and 3.08× for the kernels are obtained (both in the case of the jpeg application).

RESOURCE UTILIZATION

Table 6.3 presents the hardware resource utilization for the whole system of the

baseline, our system and the NoC-only system, in terms of the number of FPGA

look-up tables (LUTs) and the number of FPGA registers. The NoC-only system

is a system in which the parallel solution is applied, but only NoC is used for the

interconnect of kernels (shared local memory solution is not used). Our adaptive

mapping algorithm is also not applied in this system. The table also presents the

components used for the hybrid interconnect in each application. As shown in

the table, our system saves up to 33.1% LUTs and 30.2% registers compared to

the NoC-only system. This result validates our goal that is to optimize the com-

munication time while keeping the resources usage of the interconnect mini-

mal. Without our strategy, the system is either the baseline (bus-based intercon-
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nect) or NoC-only. The baseline system is a low performance system while the

NoC-only system uses more hardware resources than our system. Meanwhile,

our system (where both the shared memory solution and the NoC are used as

interconnect for the kernels) achieves the same performance as the NoC-only

system while using fewer resources. Figure 6.6 presents a comparison between

resources used for interconnect and resources used for the kernels (computing)

in our system normalized to the resources used for computing. As shown in the

figure, the interconnect uses up to 40.7% resources compared to the resources

used for computing at most.

Table 6.3: Hardware resource utilization comparison and the solution in the embedded system

App. Resource Baseline NoC only Proposed Reductiona Solution

Canny
LUT 9,926 17,894 15,227 14.9%

NoC, SM, P
Register 12,707 21,059 18,657 11.4%

jpeg
LUT 11,755 23,180 20,837 10.1%

NoC, SM, P
Register 11,910 23,188 20,900 9.9%

KLT
LUT 4,721 7,358 4,921 33.1%

SM
Register 5,430 8,070 5,631 30.2%

Fluid
LUT 19,125 24,552 24,156 1.6%

NoC
Register 28,793 36,110 36,100 0.0%

aReduction to NoC-only system
App.: Application
SM: Shared local memory
P: Parallelism
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Figure 6.6: Interconnect resource usage normalized to the resource usage for the kernels
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ENERGY CONSUMPTION

Figure 6.7 presents the comparison of the energy consumption between the base-

line system and our proposed system normalized to the energy consumption of

the baseline system. We use the Xilinx XPower Analyzer 13.2 tool to estimate the

power consumption of each application in the two systems. The energy con-

sumption is given by the product of the power consumption and the execution

time. For both systems, the power consumption is almost identical, with a minor

increase in our system (due to the increasing of resource usage for the hybrid in-

terconnect). Therefore, our system consumes less energy per application due to

the reduction in execution time. As shown in the figure, our system outperforms

the baseline in all applications in terms of energy consumption. The maximum

energy saved is 66.5% for the jpeg application.
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Figure 6.7: Energy consumption comparison between the baseline system and the system using
custom interconnect with NoC normalized to the baseline system.

6.3.2. HIGH PERFORMANCE COMPUTING RESULTS

In this section, we present our experimental results in a high performance com-

puting system - the Convey HC-2ex system [Convey Computer, 2012]. The Con-

vey HC-2ex system consists of one Intel Xeon X5670 processor working at 2.93GHz

and four Virtex-6 xc6vlx760 FPGA devices. The host processor and the accelera-

tor kernels, mapped into the FPGA devices, can communicate through a Hybrid-

core Globally Shared Memory (HGSM) controlled by a Convey’s HCMI.

Three applications are used in this experiment. Those are matrix multiplica-

tion, Canny edge detection and KLT feature tracker. We run all the applications

on the host processor to get the software execution time. The accelerated func-

tions are processed by all the 12 cores of the host processor using the OpenMP

library, i.e. the host processor is fully utilized. The application is compiled by
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GCC 4.2 with −O2 optimization level.

PERFORMANCE ANALYSIS

We develop the baseline system using the execution model presented in Sec-

tion 3.2.1. However, it is not a fair comparison when the baseline system in high

performance computing platform just has only one accelerator kernel for each

function. Therefore, we apply the data parallelism solution for the baseline sys-

tem. In other words, one function is accelerated by a number of kernels. The

total number of accelerator kernels for both the baseline system and our pro-

posed system is the same. Those accelerator kernels are mapped onto the FPGA

devices. Because each accelerated function has a number of accelerator kernels,

data input is divided into different segments. Each accelerator kernel processes

one data segment. Vivado high level synthesis [Xilinx, 2014] generates the ker-

nels for the functions from the ANSI C code. The whole system is synthesized

with the Convey’s scripts and Xilinx ISE 13.2 without any manual optimization.

In this system, the kernels (running at 150MHz) communicate together as

well as communicate with the host through the HGSM. FPGA block RAMs are

used as the local memories of the kernels. Segmented data is loaded from the

HGSM to the local memories whenever the kernels are invoked. Segmented out-

put of the kernels is written back to the HGSM right after the kernels finish. Fig-

ure 6.8 shows the speed-up of the baseline system for both the kernels and the

overall application compared to the host processor where the accelerated func-

tions are running on 12 cores at 2.93GHz. According to the figure, the KLT appli-

cation does not have an improvement in performance in the accelerator system

due to the very high data communication.
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Figure 6.8: The speed-up of the baseline high performance computing system w.r.t software.
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Table 6.4: High performance computing system results

App. #Funca #Kernelsb w.r.t Software w.r.t Baseline
Application Kernels Application Kernels

MM.c 2 128 2.61× 2.62× 1.54× 1.55×
Canny 4 64 1.55× 2.20× 1.53× 2.17×
KLT 3 56 1.02× 1.13× 1.20× 2.50×
App.: Application
aThe number of functions in the application are accelerated by hardware kernels
bThe number of hardware kernels accelerating the computationally intensive functions
of the application
c Matrix Multiplication
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Figure 6.9: The overall application and the kernels speed-up of the proposed system compared to
the software and baseline system.

Finally, we modify the baseline system using our proposed hybrid intercon-

nect. Again, the developed 2×2 crossbar and the adapted NoC are used as the

interconnect components for the kernels’ communication. Table 6.4 presents in

detail the speed-up of both the overall application and the kernels in the pro-

posed system with respect to the software as well as the baseline system. The

number of accelerated functions, as well as the number of accelerator kernels

for the functions, are also shown in the table. Figure 6.9 depicts the speed-ups of

the system using the proposed hybrid interconnect compared to both the soft-

ware and the baseline system. As shown in the table as well as the figure, when

the proposed hybrid interconnect is exploited, we achieve speed-ups of the over-

all application and of the kernels by up to 2.61× and 2.32×when compared to the
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software version running on the 12 cores host processor, respectively (both in the

case of the matrix multiplication application). Compared to the baseline system,

the proposed hybrid interconnect system produces speed-ups of up to 1.54× for

the overall application and up to 2.50× for the kernels.

RESOURCE UTILIZATION

Table 6.5 presents the hardware resource utilization for one FPGA device in the

baseline system, our system and the NoC-only system in terms of the number of

FPGA look-up tables (LUTs) and the number of FPGA registers. These values do

not include the resource usage for Convey common components such as mem-

ory controllers, debug modules, etc. The table also presents the solutions used

for the proposed system in each application. The NoC only has the same mean-

ing as explained in the previous section. As shown in the table, our system saves

up to 44.1% LUTs and 45.2% registers compared to the NoC-only system. This re-

sult, again, validates our goal that is to optimize the communication time while

keeping the resources usage of the interconnect minimal. The goal is correct for

both the embedded and the high performance computing platforms. Figure 6.10

presents a comparison between resources used for interconnect and resources

used for the kernels (computing) in our system normalized to the resources used

for computing. As shown in the figure, the interconnect and controller units use

about 55% resources compared to the resources used for computing on average.

However, in the case of the matrix multiplication application, the resource usage

for the interconnect is higher than the resource usage for the computing kernels

because the computing kernels in this application are quite simple.

Table 6.5: Hardware resource utilization comparison and the solution in the high performance
system

App. Resource Baseline NoC only Proposed Reductiona Solution

MM
LUT 28,231 52,886 29,564 44.1%

SM, P
Register 33,281 63,248 34,672 45.2%

Canny
LUT 74,965 93,693 90,789 3.1%

NoC, SM, P
Register 48,994 58,421 54,849 6.1%

KLT
LUT 106,162 118,083 107,919 8.6%

SM, P
Register 95,804 109,116 96,664 11.4%

App.: Application; MM: Matrix Multiplication
aReduction to NoC-only system
SM: Shared local memory
P: Parallelism
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Figure 6.11: Energy consumption comparison between the baseline system and the system using
custom interconnect with NoC normalized to the host processor energy consumption

In order to compare energy consumption for the kernels in the systems, we

first calculate energy consumption of the software as the product of power con-

sumption of the Xeon X5670 CPU (95W) and execution time. We then use Xilinx

Power Analyzer 13.2 to estimate the power consumption of each FPGA device in

both the baseline system and the proposed system. Since the Convey machine

has four FPGAs, energy consumption for each application is approximated by

four times the product of power consumption and execution time. Figure 6.11

shows the comparison of energy consumption of both the baseline system and
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the proposed system normalized to the power consumption of the host proces-

sor. According the figure, our proposed system uses less energy than the host

processor in all application while the baseline system uses more energy than the

host processor in the case of the KLT application due to high execution time. We

manage to save up to 63% energy consumption compared to the host processor

in the case of matrix multiplication application compared to software.

6.3.3. MODEL COMPARISON

In this section, we compare the real execution time and the estimated value cal-

culated using the models presented in Section 3.2.3 and Section 6.2.1. We an-

alyze the Canny edge detection application in both the embedded system and

the high performance computing system for this comparison. We first run the

application on the baseline systems (embedded and high performance comput-

ing) to extract the computing time for accelerated functions, as well as the data

communication time. Based on data communication profiling information, we

calculate the total amount of data input and output of each accelerated kernel

(the UNDVS value). Using that information, the average time for moving one

byte of data through the communication infrastructure (θ) can be estimated.

With our proposed hybrid interconnect, data movement among the kernels

can be hidden. Therefore, we can approximate the reduction in execution time

by the equation ∆c and ∆n in Section 6.2.1 and Section 6.2.1. Finally, based on

the computing time of the accelerator kernels, we estimate the reduction in time

when the parallelism is exploited. We measure the actual execution time in dif-

ferent scenarios and compare the estimated value and the actual value. Those

are the systems with the hybrid interconnect only and the systems with both the

hybrid interconnect and parallelism.

Figure 6.12 depicts the QDU graph for the Canny application with an image

133×100 pixels used as data input which we use to do our experiment in the em-

bedded platform (the image used for the high performance computing platform

is 1024×1024 pixels). The graph in Figure 6.13(a) shows the comparison between

the estimated reduction in time using the presented models and the actual value

measured from the real execution on the corresponding platforms. The first and

second columns of the figure compare the reduction in time of the embedded

system when only our proposed hybrid interconnect is exploited (without paral-

lelism). The third and fourth columns show the estimated reduction in time and

actual reduction in time when parallelism is applied in the embedded system.
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Figure 6.12: QDU graph for the canny application on the embedded platform.

The rest four columns have the same meaning as the first four but for the high

performance computing platform. The graph in Figure 6.13(b) shows the differ-

ence between the estimated value and real execution in percentage. This value

is calculated by Equation 6.4:

Di f f er ence = est i mated −actual

est i mated
×100. (6.4)

As shown in the figure, our proposed estimated model is approaching the actual

data. They are slightly different (16.4% at maximal) where the estimated model

produces a larger reduction than real execution because there are some delays in

system calls, context switching, etc.
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6.4. SUMMARY
In this chapter, we presented an automated design approach to define an ef-

ficient custom interconnect for kernels in heterogeneous hardware accelerator

systems using quantitative data communication profiling of applications. The

hybrid interconnect includes a NoC, shared local memory solution, or both. For

further optimization, parallelizing kernel processing was taken into considera-

tion. We developed our experiments on both the Molen embedded platform and

the Convey high performance computing platform. We compared our proposed

systems with the original systems as well as the software running on the Pow-

erPC at 400MHz in the Molen platform and on the 12 cores Intel Xeon processor

in the Convey platform. The results showed that in both platforms, we achieved

overall application speed-ups by up to 2.87× and by up to 1.55× compared to the

baselines for the Molen platform and the Convey platform, respectively. More-

over, due to the reduction in execution time, our systems also used less energy

compared to the baseline system by up to 66.5% and 63% for the embedded and

high performance system, respectively.

Note. The content of this chapter is partially based on the following papers:

1. C. Pham-Quoc, J. Heisswolf, S. Wenner, Z. Al-Ars, J.A. Becker, K.L.M. Ber-

tels, Hybrid Interconnect Design for Heterogeneous Hardware Accelera-

tors, Design, Automation & Test in Europe Conference & Exhibition (DATE

2013), 18-22 March 2013, Grenoble, France

2. C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, Automated Hybrid Interconnect

Design for FPGA Accelerators Using Data Communication Profiling, 28th

International Parallel & Distributed Processing Symposium Workshops (IP-

DPSW 2014), 19-23 May 2014, Phoenix, USA

3. C. Pham-Quoc, I. Ashraf, Z. Al-Ars, K.L.M. Bertels, Data Communication

Driven Hybrid Interconnect Design for Heterogeneous Hardware Accel-

erator Systems, (submitted), ACM Transactions on Reconfigurable Tech-

nology and Systems





7
ACCELERATOR ARCHITECTURE FOR

STREAM PROCESSING

T HIS chapter proposes a heterogeneous hardware accelerator architecture to

support streaming image processing. Each image in a data-set is prepro-

cessed on a host processor and sent to hardware kernels. The host processor

and the hardware kernels process a stream of images in parallel. The Convey hy-

brid computing system is used to develop our proposed architecture. We use the

Canny edge detection algorithm as our case study. The data-set used for our ex-

periment contains 7200 images. Experimental results show that the system with

the proposed architecture achieved a speed-up of the kernels by 2.13× and of the

whole application by 2.40× with respect to a software implementation running

on the host processor. Moreover, our proposed system achieves 55% energy re-

duction compared to a hardware accelerator system without streaming support.

7.1. INTRODUCTION
Stream processing is a computing paradigm in which a series of operations is

applied to each element in a set of data. Stream processing not only can ad-

dress the memory accessing bottlenecks by decoupled computation and mem-

ory accesses [Benjamin and Kaeli, 2007] but also can be used for applications in

which data is continuously generated during the computation. Streaming image

processing is one domain of stream processing. It is widely used in many ap-

plication domains such as digital film processing [Bove and Watlington, 1995],

105
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medical image diagnosis [Davis et al., 2007], real-time detection of changes in

environmental phenomena [Rueda-Velasquez, 2007], video-based driver assis-

tance [Claus and Stechele, 2010]. The computation in these systems is intensive

especially when the resolution of data images is increased. A pure software im-

plementation usually does not satisfy the real time performance requirement.

Therefore, hardware acceleration for such systems is a necessity.

Meanwhile, with the rapid development of technology, more and more tran-

sistors can be integrated into one system. The more transistors a system has,

the more power the system offers. However, we need to solve a couple of chal-

lenges such as power consumption, thermal emission, etc., when more transis-

tors are integrated. Moreover, it is not easy and straightforward to develop all

such above systems by using only hardware technologies such as FPGAs, ASICs,

or integrated circuits. Hence, heterogeneous hardware acceleration represents

one approach to overcome the challenges. A hardware accelerator system usu-

ally contains a host processor to execute some software functions of the applica-

tion and some hardware fabric such as FPGA to accelerate some computationally

intensive functions of the application. Another approach is homogeneous mul-

ticore systems. However, compared to homogeneous multicore systems, hetero-

geneous multicore systems offer more computation power and efficient energy

consumption [Kumar et al., 2005].

In this chapter, we propose an architecture for a hardware accelerator sys-

tem to support streaming image processing. In this architecture, streams are se-

quences of images which are processed by some software functions on the host

processor and hardware kernels implemented on the hardware fabric. Our pro-

posed system contains a host processor (a general purpose processor) and hard-

ware kernels (accelerating computationally-intensive functions of the applica-

tion) with controllers that support stream processing (in our experimental im-

plementation, we use FPGA as hardware accelerator fabric). The host processor

is responsible for receiving or sending the input or output image from or to other

devices such as camera recorder or secondary hard disk, respectively. It also exe-

cutes some functions of the application which cannot be executed on hardware.

The hardware accelerator fabric consists of different kernels that implement the

computationally intensive functions of the application. These kernels execute in

parallel with the input streams. A shared memory is used for data communica-

tion of the host and the hardware kernels.

We implement our proposed architecture on the Convey hybrid computing
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system HC-1 [Convey Computer, 2012] that contains an Intel Xeon 5408 CPU as

the host processor and four Xilinx FPGAs as the hardware accelerator fabric. We

use the Canny edge detection algorithm as our case study. A data-set containing

7200 images is used to test the performance of the proposed system. The experi-

mental results show that our system achieve a speed-up of the overall application

by 2.40× compared to a pure software implementation on the host processor and

by 2.20× compared to a hardware accelerator system without streaming support.

The main contributions of the chapter are as follows: (1) propose a hardware

accelerator architecture for streaming image processing; (2) present a speed-up

estimation model for a streaming image processing application using a hardware

accelerator system; (3) analyze the results of the synthesized implementation of

the Canny edge detection algorithm, a well-known edge detection algorithm, in

the proposed system.

The rest of the chapter is organized as follows. Section 7.2 introduces re-

lated work on hardware accelerator systems and streaming image processing

and discusses the Canny edge detection algorithm. Section 7.3 presents our pro-

posed architecture in detail. Section 7.4 illustrates how we implement the Canny

edge detection algorithm on the proposed system. Our experimental results are

shown and analyzed in Section 7.5. Finally, Section 7.6 concludes the chapter.

7.2. BACKGROUND AND RELATED WORK

In this section, we present the background and research related to hardware ac-

celerator for streaming image processing. Beside the generic hardware accelera-

tor systems in the literature presented in Section 2.3, here we summarize stream-

ing image processing with hardware acceleration in the literature and introduce

the Canny edge detection algorithm which we use as our case study.

7.2.1. STREAMING IMAGE PROCESSING WITH HARDWARE ACCELERATION

There are two approaches for streaming image processing. The first approach

uses sequences of image-pixels as the streams while the second one uses se-

quences of images as the streams. The first approach introduces some overhead

for segmenting the input image and combining the result after the processing.

However, this approach does not require a large memory to store the image. The

work in [Benderli et al., 2003] proposed an FPGA implementation of low latency

2-D wavelet transforms for streaming image processing in which a stream is a

sequence of image-rows. The work in [Caarls et al., 2006] implemented an algo-



7

108 7. ACCELERATOR ARCHITECTURE FOR STREAM PROCESSING

rithm skeleton to support streaming image processing on a heterogeneous plat-

form containing an SIMD and an ILP processor.

The second approach of streaming image processing does not introduce the

segmentation and combination overhead, but it requires a large memory to con-

tain the images. The work in [Ha et al., 2012] proposed an Image-Set Processing

streaming framework that uses the power of a heterogeneous CPU/GPU plat-

form. In that work, the CPU is responsible for reading and writing an image while

all image processing steps are done by the GPU. In contrast to that work, we use

FPGA as accelerator and the host processor is responsible not only for reading

and writing image but also for processing.

7.2.2. CANNY EDGE DETECTION ALGORITHM

Canny edge detection [Canny, 1986] is a well-know and powerful edge detec-

tion algorithm. In this work, we use the Canny edge detection algorithm as our

case study. The program flow can be clearly partitioned into four main steps:

(i) using the gaussian filter to remove noises (gaussian function); (ii) determining

the edge strength (derrivative_x_y and magnitude_x_y functions); (iii) applying

non-maximal suppression (non_max_supp function); and (iv) applying hystere-

sis (hysteresis function). The most computationally intensive function is gaus-

sian. The size of a filter matrix used by gaussian affects the execution time of this

function and the quality of the result. Figure 7.1 shows the results of the Canny

algorithm with different size of the filter matrix.

(a) (b) (c)

Figure 7.1: (a) Original; (b) 6×6 filter matrix; (c) 3×3 filter matrix



7.3. ARCHITECTURE

7

109

7.3. ARCHITECTURE
This section presents the execution model of the host processor and hardware

kernels, our proposed architecture, and our proposed multiple clock domains.

7.3.1. HARDWARE-SOFTWARE STREAMING MODEL

Figure 7.2 illustrates the hardware-software streaming model for a streaming im-

age processing application using three hardware kernels named kernel_1, ker-

nel_2, and kernel_3. In the rest of the chapter, we use the following terminology

for our explanation:

- A step is a processing phase of the algorithm, e.g., the image processing algo-

rithm in Figure 7.2 has five steps: an initializing step done by the host, three

following steps done by kernel_1, kernel_2, and kernel_3 and a finalizing step

done by the host;

- A stage is an execution phase in which one or more steps are executed in par-

allel on different input data, e.g., at stage 0 in Figure 7.2, kernel_1 processes

image 1 while the rest of kernels are idle; at stage 1, kernel_1 processes image

2 and kernel_2 processes image 1 while kernel_3 is still idle.

Host

kernel_1

kernel_2

kernel_3

...

...

...

...
Stage 0 Stage 1 Stage 2 Stage 3 Stage n Stage n+1 Stage n+2In

iti
al

 s
ta

ge

Figure 7.2: The streaming model

In this work, a shared double buffer mechanism is used for data communi-

cation between the host processor and the hardware kernels as well as among

the hardware kernels. Assume that the data dependency between the host pro-

cessor and hardware kernels follows the arrows in Figure 7.2 where the kernel at

the top of an arrow consumes data produced by the kernel at the root of the ar-

row. For data communication between the host processor and kernel_1, we need

two buffers (named k1_i 1 and k1_i 2 meaning that the input buffer 1 and 2 for

kernel_1). During the initial stage, the host processor transfers the pre-processed
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image 1 to k1_i 1. During stage 0, while kernel_1 processes data located on k1_i 1,

the host processor pre-processes and transfers image 2 to buffer k1_i 2. During

stage 1, while kernel_1 processes data located on k1_i 2, the host processor pre-

processes and transfers image 3 to buffer k1_i 1. The same procedure is applied

for the next stages. Similarly, we also need two buffers for each data communi-

cation between two hardware kernels such as k2_i 1 and k2_i 2 for data commu-

nication between kernel_1 and kernel_2. Two buffers named k3_o1 and k3_o2

are used for data communication between kernel_3 and the host processor. At

stage 2, kernel_3 processes image 1 and writes its output to k3_o1. During the

next stage, kernel_3 writes the result of image 2 to k3_o2 while the host proces-

sor does the post-processing for image 1 located in k3_o1. When the first hard-

ware kernel is started by a function call in the host processor (stage 0), the host

processor sends the addresses of all the buffers to the corresponding kernels.

Due to the fact that we accelerate the most computationally intensive func-

tions in hardware, the execution time of functions on the host is usually not

longer than of the kernels. Assume that the execution time of kernel i for each

image is t k
i (∀i ∈ {1,2,3} - in the case presented in Figure 7.2) and of functions on

the host for each image is t s (we also assume that t s < mi n( t k
i

∣∣
i=1..3

)), the total

execution time for the data-set in the case when stream processing is not applied

(Tnostr ) is as follows:

Tnostr = n × (t s +
3∑

i=1
t k

i ) (7.1)

where n is the number of image in the data-set.

In the case when stream processing is applied as described above, the total

execution time (Tstr ) for the data-set is as follows:

Tstr = t k
1 +max( t k

i

∣∣∣
i=1,2

)+(n−2)×max( t k
i

∣∣∣
i=1..3

)+max( t k
i

∣∣∣
i=2,3

)+ t k
3 + t s (7.2)

Hence, the performance speed-up of stream processing compared to non-

stream processing, Sp , is as follows:

Sp = Tnostr

Tstr
=

n × (t s +
3∑

i=1
t k

i )

t k
1 +max( t k

i

∣∣
i=1,2

)+ (n −2)max( t k
i

∣∣
i=1..3

)+max( t k
i

∣∣
i=2,3

)+ t k
3 + t s

(7.3)
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The speed-up (Sp ) can be transformed as follows:

Sp <
n × (t s +

3∑
i=1

t k
i )

n ×max( t k
i

∣∣
i=1..3

)
<

t s +3×max( t k
i

∣∣
i=1,3

)

max( t k
i

∣∣
i=1..3

)
(7.4)

< t s

max( t k
i

∣∣
i=1..3

)
+3 (7.5)

In general, the speed-up of a stream processing algorithm where m steps

are accelerated by hardware compared to non-stream processing is lower than

( t s

max( t k
i |i=1..m

)
+m). Therefore, to improve the speed-up, we should reduce the ex-

ecution time of the longest kernel and increase the number of accelerated steps.

7.3.2. SYSTEM ARCHITECTURE
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Figure 7.3: The system architecture supporting pipeline for streaming applications

Figure 7.3 depicts our proposed architecture with three hardware kernels rep-

resenting three kernel types: input kernel (kernel_1), intermediate kernel (ker-

nel_2), and output kernel (kernel_3). The input kernel receives data from the host

and processes the first accelerated step while the output kernel processes the fi-

nal accelerated step and transfers the results of the kernels to the host. The in-

termediate kernel is responsible for the intermediate accelerated step. An image

processing algorithm may require one or more intermediate accelerated steps

corresponded to one or more intermediate kernels.

The shared buffers in the shared memory such as k1_i 1, k2_i 1 are explained
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in the previous section. Due to the shared memory, data does not need to be

transferred from buffer to buffer. At each kernel, the control unit selects the right

buffer for the current stage based on the number of images the kernel processed.

Based on the number of images of the data-set, the control unit also determines

if the kernel should continue executing or not. The host sends the addresses of

the shared buffers and the number of images of the data-set to the kernels. This

information is transferred through the dispatch interface unit.

The core unit in each kernel is responsible for the main task of the kernel. The

core units process data stored in their local buffers, usually the on-chip memory.

The load/store unit in each kernel is responsible for loading data from the corre-

sponding shared buffer (the shared memory) to the local buffer when the kernel

is started. The load/store unit writes the result from the local buffer to the corre-

sponding shared buffer when the core finishes (end_op signal is asserted). The

core unit is started (start_op signal is asserted) when input data is ready.

The kernel is launched whenever its start signal is asserted. The starting of

the kernels is synchronous with each other. A kernel is going to be started if

other kernels which are responsible for the previous steps, are executed before.

In other words, the kernel can be started if and only if all the done signals (the

signal used for synchronization) of all the kernels are active and input data for

the kernel is ready. The done signal is active if no workload needs to be done by

the corresponding kernel. For example, in the first stage, kernel_1 (in Figure 7.3)

is invoked by the start signal from the dispatch interface (function call from the

host) while the other kernels are idle because their input data is not yet ready

(their done signals are active). When kernel_1 finishes, its done signal and next

signal are asserted to notify kernel_2 that input data is ready. During the next

stage, kernel_1 and kernel_2 process the next image and the output of kernel_1,

respectively, while kernel_3 is not executed due to the de-asserted next signal of

kernel_2.

7.3.3. MULTIPLE CLOCK DOMAINS

Because we separate the shared memory access operation and the computa-

tional operation, we can use different clock domains for the system. The load/sto-

re unit, control unit and dispatch interface use a default system clock frequency,

which is usually at a moderate level. Meanwhile, the core can execute with a

higher clock frequency to improve the performance. Assume that the system

clock frequency is fs y s and the clock frequency for the core is fcor e . The speed-
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up estimation in Equation 7.3 is modified as follow:

S′
p ≈

n(t s +
3∑

i=1
t k

i )

[t k
1 +max( t k

i

∣∣
i=1,2

)+ (n −2)max( t k
i

∣∣
i=1..3

)+max( t k
i

∣∣
i=2,3

)+ t k
3 ]

fs y s

fcor e
+ t s

(7.6)

Compared to Equation 7.3, we have S′
p > Sp due to the assumption fcor e > fs y s .

7.4. CASE STUDY: CANNY EDGE DETECTION

This section presents the implementation of the Canny edge detection algorithm

(presented in Section 7.2.2) using our proposed architecture. We use the ANSI

C implementation version provided by the University of South Florida [Florida,

1999] in our experiment.

The gprof profiling tool [Graham et al., 1982] is used to identify the most

computationally intensive functions. We accelerate four functions of the Canny

application by hardware kernels. Those are gaussian, derrivative_x_y, magni-

tude_x_y and non_max_supp. The DWARV compiler [Nane et al., 2012] is used to

generate a VHDL description for those functions (the core units in our architec-

ture). We simulate those kernels to estimate their execution time by ModelSim.

The simulation result shows that the most computationally intensive function,

gaussian, takes about 2.2× longer than the total execution time of the three other

kernels, derrivative_x_y, magnitude_x_y, and non_max_supp. Therefore, we de-

cide to implement two hardware kernels for the gaussian function, i.e., two im-

ages are processed by the gaussian kernels at each stage. Moreover, the kernels

of the magnitude_x_y and non_max_supp functions can be started right after the

finishing of derrivative_x_y kernel because their input data is ready right after the

derrivative_x_y kernel finishes. Therefore, we modify the proposed architecture

such that the three kernels derrivative_x_y, magnitude_x_y and non_max_supp

can be started asynchronously with the gaussian kernel as depicted in Figure 7.4.

During a stage (except Stage 0, Stage n and Stage n +1), while two gaussian ker-

nels process two images (k and k +1 where 2 < k < 2n −1; 2n is the number of

images of the data-set), the rest three kernels are executed two times to process

the results of the gaussian kernels in the previous stage (the image k−2 and k−1).

We use the Convey hybrid computing system HC-1 [Convey Computer, 2012]

as a hardware accelerator platform to develop our architecture. The Convey sys-

tem consists of one Intel Xeon 5408 CPU, working at 2.14GHz, as host processor
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Host
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Figure 7.4: The execution model and data dependency between kernels for the Canny algorithm

and four Xilinx Virtex 5 LX330 FPGA as the hardware accelerator fabric (so-called

co-processor). Figure 7.5 depicts the Convey system architecture. The commu-

nication between the host and the co-processors is done by the HCMI bus. The

shared memory consists of 128GB for the host processor and 64GB for the co-

processors.
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Figure 7.5: The Convey hybrid computing system

In this case study, we configure each FPGA device with two gaussian kernels,

one derrivative_x_y kernel, one magnitude_x_y kernel and one non_max_supp

kernel. Therefore, we can process 8 images at one stage following the execution

model in Figure 7.4. FPGA devices run independent from each other. The kernels

in Device 0 process image i and (i +1) in data set where i is multiple of 8. Con-

sequently, the kernels in Device 1 process image (i +2) and (i +3); the kernels in

Device 2 process image i +4 and i +5; and the kernels in Device 3 process image

i +6 and i +7.
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7.5. EXPERIMENTAL RESULT

This section presents our experimental results with the Canny application using

a data-set containing 7200 images extracted from a 5 minutes video. The image

size is 152× 114 pixels. We set the standard deviation gaussian, low and high

thresholds to 2.0, 0.5 and 0.5, respectively (i.e., we use an 11× 11 filter matrix

for the guassian function). Beside the system presented in the previous section,

we develop two other accelerator systems for a comparison. Firstly, we run the

software version on the host processor (Intel Xeon 5408 Quad-core working at

2.14GHz). Secondly, we develop a hardware accelerator system for the applica-

tion without streaming but with multiple clock domains, i.e., following the non-

streaming model presented in Section 7.3.1 and using fcor e for the cores while

fs y s for the rest units in the kernels. We, then, build another hardware accelerator

system with streaming model but all units use the system clock frequency ( fs y s).

Finally, we implement the system with streaming model and multiple clock do-

mains (the proposed architecture). All the systems have two hardware kernels for

the gaussian function and one hardware kernel for each another function. In the

multiple clock domains systems, the cores of the kernels are executed 225MHz

( fcor e ) while other units run at 150MHz ( fs y s).

Table 7.1 shows the execution time of the application with different systems

and the speed-up compared to the pure software execution (System 1). The

streaming system with multiple clock domains achieves a speed-up of the over-

all application by 2.40× compared to the software execution and by 2.20× com-

pared to the non-streaming system (System 2). Moreover, the proposed system

achieves a speed-up of the overall application by 1.47× compared to the stream-

ing system without multiple clock domains (System 3).

In System 3 and System 4, the speed-up of the kernels are lower than the

speed-up of the whole application (1.45× compared to 1.63× and 2.13× com-

pared to 2.40×, respectively) due to the fact that we execute software hardware

streaming model. In other words, the software task for n − 1 image is done in

parallel with the hardware tasks (the kernels). The execution time of the whole

application is the sum of the execution time of hardware kernels, software initial-

izing step for image 1 and finalizing step for image n. Therefore, the execution

time for the whole application is slightly longer than the kernels. Figure 7.6 shows

the speed-up of both kernels and the whole application of the three last systems

with respect to the first system - the software implementation only.

Table 7.2 shows the resource usage of the kernels in the streaming system
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Table 7.1: Application execution time and speed-up of different systems

System Kernel time App. time Kernel speed-up App. speed-up

System 1 46.88s 52.85s 1.0× 1.0×
System 2 40.46s 48.43s 1.16× 1.09×
System 3 32.44s 32.46s 1.45× 1.63×
System 4 21.97s 21.99s 2.13× 2.40×

App.: Application

System 1: Software only

System 2: Non-streaming model with multiple clock domains

System 3: Streaming with the same clock frequency for all units

System 4: Streaming with multiple clock domains (the proposed architecture)

0

0.5

1

1.5

2

2.5

3

System 4 System 3 System 2

Kernel Speed-Up
Application Speed-up
Energy Consumption

System 1

Figure 7.6: The speed-up and energy consumption comparison between the systems

with multiple clock domains (the proposed architecture) in term of the number

of LUTs, the number of registers, and the number of DSPs for each kernel (in-

cluding the core, the load/store unit and the control unit). It also presents the

total resource usage for the whole system (including other modules used by the

Convey system such as the memory controller and the dispatch interface). Each

kernel has 132KB buffer implemented by block RAM (11.45% FPGA BRAM). The

number of block RAMs used for the whole system is 904KB (78%).

We use Xilinx XPower Analyzer to estimate the power consumption for each

FPGA device. The total power consumption of the hardware fabric in the three

systems is almost identical. Table 7.3 shows the power consumption distribution
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Table 7.2: The resource usage for each kernel and the whole streaming system with multiple clock
domains

Kernel #LUTs #Registers #DSP

gaussian 10,231 (5%) 13,438 (6.3%) 7 (3.6%)
derrivative_x_y 2,907 (1%) 2,246 (1%) 0
magnitude_x_y 4,058 (1%) 3650 (1%) 5 (2%)
non_max_supp 8,571 (4.1%) 10,020 (4.9%) 5 (2%)

System 104,534 (50.4%) 113,781 (54%) 24 (12%)

Xilinx Virtex 5 LX330 contains 207,360 LUTs, 207,360 Register, 192 DSP and 1152 KB block RAM

of one FPGA device as well as the amount of resource usage (LUTs and FFs) for

each system. The amount of resource usage for all three systems is almost iden-

tical. However, the power consumption of each resource type (clock, logic and

BRAM) of System 3 is smallest because System 3 uses clock frequency at 150MHz

for all component while the two other systems use a 225MHz clock frequency for

some components. The power consumption of System 4 is larger than of Sys-

tem 2 because System 4 uses more logic elements (LUTs and FFs) than System 2.

These logic elements are used for the streaming controllers.

We compute the energy consumption of the hardware fabric (without energy

consumed by the host processor) by the product of power consumption and the

execution time. Due to the short execution time, the system using streaming

model with multiple clock domains (System 4) uses less energy than the non-

streaming model system (System 2) and the streaming model system without

multiple clock domains (System 3). Figure 7.6 shows the energy consumption

normalized to energy consumption of the system with non-streaming and mul-

tiple clock domains. As shown in the figure, System 4 achieves 55% energy re-

duction compared to System 2.

7.6. SUMMARY

This chapter presented a heterogeneous hardware accelerator architecture with

multiple clock domains for a streaming image processing application. The work

also introduced a model to estimate the speed-up of a streaming image process-

ing system compared to a non-streaming one. The Canny edge detection algo-

rithm was used as a case study. Experimental results show that the streaming

system achieved a speed-up of the overall system by 2.40× and of the kernels
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Table 7.3: Power consumption (W) and resource usage of the systems

Resource System 2 System 3 System 4

Power

Clock 0.501 0.383 0.502
Logic 0.695 0.798 0.827

BRAM 1.721 1.456 1.721
System 18.334 18.038 18.481

Amount
FF 112,384 113,781

LUT 102,836 104,534

The systems are explained in Table 7.1

only by 2.13× compared to the software implementation executed on Intel Xeon

5408 CPU. The experiment also compared the proposed system to the stream-

ing system without multiple clock domains. The streaming system with multiple

clock domains consumes less energy than the stream system without multiple

clock domains although the system without multiple clock domains has a lower

power consumption.

Note. The content of this chapter is based on the following paper:

C. Pham-Quoc, Z. Al-Ars, K.L.M. Bertels, Heterogeneous Hardware Accelerator

Architecture for Streaming Image Processing, International Conference on Ad-

vanced Technologies for Communications (ATC 2013), 16-18 October 2013, Ho

Chi Minh City, Vietnam
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CONCLUSIONS AND FUTURE WORK

I N this dissertation, we addressed the challenges related to hybrid intercon-

nect design for heterogeneous hardware accelerator systems. In this chapter,

we summarize the work presented in this dissertation. We also emphasize our

contributions in this chapter. Finally, we present the future work to extend our

current work.

8.1. SUMMARY

The work presented in this dissertation is divided into the following chapters:

Chapter 1 introduces an overview of the challenges that we address in this

dissertation. Five different research questions are presented in this chapter, in

addition to a list of our contribution.

Chapter 2 shows the background and the related work. In this chapter, we

present the on-chip interconnects in the literature as well as five different tax-

onomies to classify the on-chip interconnects. Advantages and disadvantages of

some well-known interconnects are also analyzed. A survey on the hybrid inter-

connects in the literature is given, where we classify hybrid interconnects in the

literature into two categories: mixed topologies hybrid interconnect and mixed

architecture hybrid interconnect. This chapter also presents the state-of-the-art

hardware accelerator systems in both academia and industry; and we zoom in

on their interconnect aspects. Finally, data communication techniques in the

literature for such systems are also discussed.

119
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In Chapter 3, an overview of our approach using data communication pro-

filing to define a custom interconnect for a specific application is presented. We

also propose a data communication driven quantitative execution model. Fi-

nally, to further improve the system performance, parallelizing kernel processing

is also analyzed.

Chapter 4 analyzes different alternative interconnection solutions including

direct memory access (DMA), crossbar, a combination of DMA and crossbar, and

NoC to improve system performance of a bus-based hardware accelerator. In this

chapter, we also propose the analytical models to predict performance for these

solutions and implement them in practices. We profile the application to extract

data input for the analytical models. A comparison between the analytical mod-

els and real execution is done to validate the analytical models. Experimental

results show that the proposed analytical models match closely the measured

data from execution using an embedded platform.

In Chapter 5, a heuristic-based approach to design an application specific

hardware accelerator systems with a custom interconnect using quantitative data

communication profiling is proposed. A number of solutions are considered to

define the most optimized system in term of system performance. Those are

crossbar-based shared local memory, DMA support parallel computing, local

buffer, and hardware duplication. Experimental results with different applica-

tions are analyzed to validate the proposed heuristic approach as well as the con-

tribution of each solution.

Chapter 6 proposes an automated hybrid interconnect design strategy to cre-

ate an efficient custom interconnect for accelerator kernels in a hardware accel-

erator system. The aim of the hybrid interconnect is to improve system per-

formance by reducing data communication overhead. Our custom intercon-

nect includes a NoC, shared local memory solution, or both. Depending on

the quantitative data communication profiling of each application, the intercon-

nect for the application is built using the automated strategy. An adaptive data

communication-based mapping is proposed to map the computing cores to the

system interconnect to obtain the most optimized hardware resource usage. Ex-

periments on both an embedded hardware accelerator system as well as a high

performance computing platform are performed to validate the proposed auto-

mated design strategy.

In Chapter 7, we present a case study of a heterogeneous hardware acceler-

ator architecture supporting streaming image processing. Each image in a data-
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set is pre-processed by the host processor and sent to the hardware kernels. The

host processor and the hardware kernels process a stream of images in parallel.

Convey hybrid computing system is used to implement the proposed architec-

ture. The Canny edge detection is considered as our case study in this chapter.

8.2. CONTRIBUTIONS
As already discussed in Chapter 1, interconnect in a multicore system plays an

important role in system design. During this work, we focus on designing a hy-

brid interconnect that helps the systems improve performance while keeping the

hardware resource overhead minimal. Figure 8.1 shows that hybrid interconnect

can achieve high performance, scalability, and area-efficiency when compared

to standard interconnects. This dissertation has three different contributions:

1) Modeling, 2) Automation, 3) and Demonstration. The detailed contributions

of this dissertation are summarized as follows.
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Figure 8.1: Interconnects comparison.

Contribution 1 Modeling

We introduce an efficient execution model, which takes data communication

profiling into account, for a heterogeneous hardware accelerator system. Based

on a detailed and quantitative data communication profiling, an accelerator ker-

nel knows exactly which subsequent kernels will consume its data output. There-

fore, instead of sending data output back to the main memory, the kernel can

deliver its data output to the consuming kernels through our proposed appli-

cation specific hybrid interconnect in parallel with its execution. The consum-

ing kernels, then, do not need to wait for data movement to complete. Conse-

quently, system performance is improved because data communication time is

alleviated.
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Contribution 2 Automation

We proposed a heuristic approach taking data communication patterns inside

an application into consideration to design a hardware accelerator system for

the application with an optimized custom interconnect. The main goal of this

approach is to achieve the most optimized system performance. The approach

mainly focuses on data communication optimization since this is a primary an-

ticipated bottleneck for system performance. A number of solutions are consid-

ered in this heuristic approach. Those are crossbar-based shared local memory,

DMA, local buffer, and hardware duplication. An analytical model is proposed to

estimate system performance improvement with the solutions. The approach is

mainly useful for embedded systems.

We propose an automated approach using a detailed and quantitative data

communication profiling to define a hybrid interconnect for each specific ap-

plication, resulting in the most optimized performance with a low hardware re-

source usage and energy consumption. Evidently, kernels and their communi-

cation patterns are different from one application to the other. Each application

should have a specific interconnect to get data efficiently to the kernels that need

it. Therefore, we propose this automated hybrid interconnect design approach.

We call it hybrid interconnect because ultimately the entire interconnect will

consist of not only a NoC but also uni- or bi-directional communication chan-

nel or shared local memory for data exchanges between the kernels. The design

approach results in an optimized hybrid interconnect in term of system perfor-

mance while keeping the hardware resource usage for the interconnect minimal.

Contribution 3 Demonstration

We demonstrate our proposed approach in both an embedded platform and a

high performance computing platform, to validate the benefits of the hybrid in-

terconnect. The results in both platforms, the Molen architecture implemented

on a Xilinx ML510 board and the Convey high performance computing system,

show that the hybrid interconnect improves system performance and reduces

energy consumption compared to the systems without the hybrid interconnect.

8.3. FUTURE WORK
In this dissertation, we addressed the challenges related to interconnect design

to improve system performance because interconnect plays an important role in

multicore systems. We identify five followup open issues for future research.
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First, runtime reconfigurability is an issue to be considered. An application

can change dynamically while running. Depending on user input, application

can be in different processing modes. Therefore, runtime reconfigurability can

be used such that each application can deploy its best interconnect infrastruc-

ture leading to faster execution and less overall energy consumption. However,

overheads such as performance overhead incurred by reconfiguration should be

taken into account. This approach is beneficial if system performance improve-

ment by the hybrid interconnect can compensate the reconfiguration overhead.

System/architecture-based approach is another future topic in this research

direction. In this work, we focus on heterogeneous hardware accelerator sys-

tems in which accelerator kernels are usually dedicated circuits. However, future

accelerator systems may consist of some other processing types such as VLIW

processors or DSP processors. Moreover, the memory hierarchy may be different

when those types of processing cores are used. Therefore, a more generic ap-

proach that also takes the system architecture into consideration is still an open

issue.

When VLIW or DPS processors are used as accelerators instead of dedicated

circuits, bringing computation to data is an interesting topic. Those processors

usually have two local memory types: data cache and instruction cache. In con-

temporary approaches, we usually move output data from one computing core

to other computing cores. However, the amount of data that needs to be pro-

cessed is continuously growing while the instructions for processing data do not

often change. Therefore, instead of developing the hybrid interconnect for data

communication between the cores, we can design the interconnect to transfer

instructions from core to core while keeping data local.

In this work, different tools including profiling tools such as gprof and QUAD,

high level synthesis tools such as DWARV and Vivado, and system design tools

such as ISE are used. However, they are used separately and called manually.

Therefore, a fully automated design framework, that links these tools automat-

ically together, is an open issue. In such a proposed framework, all the steps

presented in Section 3.1.2 would be performed automatically without any inter-

action with designers.

Finally, merging and partitioning functions are interesting future research

approaches. In this work, we are considering to choose the most computation-

ally intensive functions that can be accelerated by the hardware fabric first. We,

then, design the hybrid interconnect for those accelerators. However, in some
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cases, there exists a large data communication between some non-computationa-

lly intensive functions, that are executed by the host, and the accelerator kernels.

This large amount of data is transferred from the host to the kernels and vice

versa through the system communication infrastructure. This data movement

significantly affects system performance. Therefore, considering to merge these

functions to the computationally intensive functions to reduce data communi-

cation is one solution that should be taken into consideration. Besides, a com-

plicated dedicated circuit may require a low frequency. This can lead reducing

the system frequency to satisfy timing issues. Therefore, considering to partition

a complicated function to simpler functions before designing the hybrid inter-

connect is also an interesting future work.
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SAMENVATTING

Heterogene multicore-systemen worden steeds belangrijker naar mate de be-

hoefte aan rekenkracht groeit, vooral nu we het big data tijdperk betreden. Hard-

ware accelerator systemen zijn een van de belangrijkste trends binnen heteroge-

neous multicore en bieden applicatie specifieke hardware schakelingen, waar-

door deze schakelingen energie-efficiënter zijn en hogere prestaties bieden dan

general purpose processors, terwijl ze toch een grote mate van flexibiliteit bie-

den. Echter, de systeemprestaties zijn niet schaalbaar wanneer processing cores

worden toegevoegd, wat is te wijten aan de communicatie overhead die sterk

toeneemt met het toenemend aantal cores. Alhoewel datacommunicatie een

primair verwacht knelpunt is voor de systeem prestaties, is het ontwerp van in-

terconnects voor datacommunicatie tussen de hardware accelerator kernels nog

niet goed behandeld voor hardwareversneller systemen. Meestal wordt een een-

voudige bus of gedeeld geheugen gebruikt voor de datacommunicatie tussen de

accelerator kernels. In dit proefschrift behandelen we het probleem van het in-

terconnect ontwerp voor heterogene hardwareversneller systemen.

Het is duidelijk dat er afhankelijkheden zijn tussen berekeningen, aangezien

gegevens geproduceerd door de ene kernel nodig kunnen zijn voor een andere.

Datacommunicatie patronen kunnen specifiek zijn voor elke toepassing en kun-

nen leiden tot verschillende interconnects. In dit proefschrift gebruiken we ge-

detailleerde datacommunicatie profilering om een geoptimaliseerde hybride in-

terconnect te ontwerpen dat de meest geschikte ondersteuning biedt voor het

communicatie patroon binnen een applicatie, terwijl we het gebruik van hard-

ware resources voor de interconnect proberen te minimalizeren. Ten eerste stel-

len we een heuristische benadering voor waarbij rekening wordt gehouden met

de datacommunicatie profilering van de toepassing om een hardware accelera-

tor systeem te ontwerpen met een aangepaste interconnect. Een aantal oplos-

singen worden beschouwd, waaronder op crossbar-gebaseerd gedeeld lokaal ge-

heugen, Direct Memory Access (DMA)-ondersteund parallel processing, lokale

buffers, en hardware duplicatie. Deze aanpak is vooral nuttig voor embedded

systemen waar de hardware resources beperkt zijn. Ten tweede stellen we een
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geautomatiseerde hybride interconnect ontwerp voor om met behulp van data-

communicatie profilering een geoptimaliseerde interconnect te definiëren voor

accelerator kernels van een generieke hardware accelerator systeem. De hybride

interconnect bestaat uit een netwerk-op-chip (NOC), gedeelde lokaal geheugen,

of beide. Om hardware resource gebruik voor de hybride interconnect te mini-

maliseren, stellen we ook een adaptief mapping algoritme voor om computing

kernels en hun lokale geheugens te verbinden aan de voorgestelde hybride in-

terconnect. Ten derde stellen we een hardwareversneller architectuur voor ter

ondersteuning van streaming beeldverwerking. Voor alle gepresenteerde bena-

deringen implementeren we de aanpak met behulp van een aantal benchmarks

op relevante herconfigureerbare platforms om hun effectiviteit te tonen. De ex-

perimentele resultaten laten zien dat onze benadering niet alleen de systeem-

prestaties kunnen verbeteren, maar ook kunnen leiden tot een vermindering van

het totale energieverbruik ten opzichte van de baseline systemen.
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dịch DWARV và Vlad về hệ thống Molen mà dựa trên đó tôi đã thực hiện
những thí nghiệm của tôi.

Cuộc sống không phải chỉ có làm việc và nghiên cứu. Không có những
khoảng thời gian thư giản thì chúng ta sẽ không có năng lượng để làm việc
cũng như chẳng có những ý tưởng để thành công. Do đó, tôi muốn cảm
ơn các anh em trong nhóm ANCB về những khoảng thời gian rất thoải mái
mà chúng ta đã cùng tạo nên. Những bữa tiệc và những khoảng thời gian
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thư giãn đó đã giúp tôi nạp đầy năng lượng sau những ngày làm việc căng
thẳng. Tôi không thể nào nêu hết ra đây những người đã giúp đở tôi trong
suốt bốn năm qua vì sẽ mất hàng trăm trang nếu tôi làm như thế; nhưng
tôi cũng chắc chắn rằng tôi không bao giờ có thể quên. Xin cho phép tôi
giữ những điều tốt đẹp đó trong đầu mình.

Một lời cảm ơn sâu sắc xin gửi tới gia đình tôi và gia đình bên vợ tôi,
đặc biệt là ba và mẹ vợ tôi vì đã chăm sóc con tôi trong thời gian tôi xa
nhà. Không có ông bà ngoại tôi đã không thể bình yên để làm việc.

Cuối cùng nhưng là lời quan trọng nhất, ngàn lời cảm ơn vợ và con. Hai
mẹ con là nguồn động viên và giúp ba thêm sức mạnh. Không có tình yêu
thương từ hai mẹ con thì ba không hoàn thành công việc đúng thời hạn.
Gia đình chúng ta sắp đoàn tụ trong một vài tháng tới sau khoảng thời
gian dài phải sống bên nhau bằng các cuộc điện thoại, thư điện tử, mạng
xã hội, và qua những chuyến đi.

Phạm Quốc Cường
Delft, Mùa xuân 2015
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