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Abstract—Smart Wireless Body Sensor Nodes (WBSNs) are
a novel class of unobtrusive, battery-powered devices allowing
the continuous monitoring and real-time interpretation of a
subject’s bio-signals. One of its most relevant applications is the
acquisition and analysis of Electrocardiograms (ECGs). These
low-power WBSN designs, while able to perform advanced
signal processing to extract information on hearth conditions
of subjects, are usually constrained in terms of computational
power and transmission bandwidth. It is therefore beneficial
to identify in the early stages of analysis which parts of an
ECG acquisition are critical and activate only in these cases
detailed (and computationally intensive) diagnosis algorithms. In
this paper, we introduce and study the performance of a real-time
optimized neuro-fuzzy classifier based on random projections,
which is able to discern normal and pathological heartbeats on an
embedded WBSN. Moreover, it exposes high confidence and low
computational and memory requirements. Indeed, by focusing
on abnormal heartbeats morphologies, we proved that a WBSN
system can effectively enhance its efficiency, obtaining energy
savings of as much as 63% in the signal processing stage and
68% in the subsequent wireless transmission when the proposed
classifier is employed.

I. INTRODUCTION

Wireless Body Sensor Nodes (WBSNs) are miniaturized,
wearable systems able to measure and wirelessly transmit
biological signals of patients. A major field of application of
WBSNs is the ambulatory acquisition of electrocardiograms
(ECGs), which evaluates the electrical activity of the heart.
In this context, these devices allow long time monitoring of
subjects producing little discomfort and requiring minimal
medical supervision.

A recent trend in WBSNs, driven by the progress in semi-
conductor technologies, has been the emergence of “smart”
wireless nodes [1]. These smart WBSNs (Figure 1) can, in
addition to acquiring and transmitting data wirelessly, perform
advanced digital signal processing filtering noise typically cor-
rupting the signals and/or executing an automated diagnosis.

In the field of ambulatorial electrocardiography, an impor-
tant early diagnosis step is to separate normal and pathological
heartbeats. The benefit of this separation is two-fold: first, it
can provide helpful information for speeding up the visual
inspections of lengthy recordings by medical staff; second, it
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can be used to activate a more detailed analysis of only those
beats presenting pathological characteristics.

The second scenario, investigated in this paper, can lead to
two non-obvious, yet substantial, benefits. On the one hand, if
a detailed diagnosis is performed off-node, it can be desirable
to transmit or store only pathological beats on the WBSN,
greatly reducing either the energy employed for wireless
transmission or the data storage requirements, respectively. On
the other hand, even if the analysis of beats is executed on the
wireless node, computation effort can be reduced by activating
it only when abnormal beats are detected, increasing energy
efficiency.

While off-line algorithms have been proposed to classify the
different heartbeat morphologies [2][3], their real-time imple-
mentation poses a considerable challenge on WBSN platforms,
due to their high computational requirements. A neuro-fuzzy
classifier (NFC) approach [4] is instead potentially a good
candidate for this application. Its simple feed-forward structure
makes it eligible to be optimized for, and executed on, the
constrained resources typically present on WBSNs.

An important factor to consider is the high dimensionality
of the heartbeat representation problem as, for every beat, tens
of samples before and after the peak have to be considered to
perform a reliable classification. To effectively address this
problem, we propose and evaluate a methodology based on
random projections (RPs) [5] to reduce the input size of
the classifier. The approximation error introduced by random
projections is theoretically bounded, nonetheless empirical
evidence shows that certain projections perform better than
others. Our experiments show that even a rather simple opti-
mization, such as the one performed by a genetic algorithm
[6] in few generations, can find a proper projection to obtain
optimal classification results.

!"#$%&''

(#)'*+,'

-&%."$$%&' /"0%&1'

234"&5#6' )5(6#%$5$'

(7735.(8%#$'

05.&%.%#4&%33"&'

9()5%'

Fig. 1. Block scheme of a WBSN platform.



To evaluate real-time performance of the trained and op-
timized classifier on a resource-constrained WBSN, we ex-
ecuted it on the IcyHeart System-on-Chip (SoC) [7]. This
platform integrates a wireless transmitter, a multi-channel
ADC converter and a low-power microprocessor (featuring a
clock frequency of 6 MHz and an embedded RAM of 96 KBs),
on a single die.

The resulting embedded software includes the RP-classifier,
a filtering stage and a peak detector, used to isolate beats.
Three-lead delineation has been instead adopted as an example
of detailed analysis, and is activated by the classifier only for
beats identified as pathological.

Test heartbeats were retrieved from the MIT-BIH Arrhyth-
mia database [8], considering all beats presenting three differ-
ent morphologies: normal sinus rhythms, left bundle branch
blocks and premature ventricular contractions. Experimental
results show that the proposed methodology can identify more
than 97% of abnormal beats, while using a small fraction of
the available SoC memory and computing resources.

Main contributions of this paper are the following:
• We explore the effectiveness of random projections to

reduce the heartbeat representation dimensionality and
therefore the classification problem complexity.

• We propose a complete design methodology to derive
a real-time, lightweight heartbeat classifier based on a
neuro-fuzzy structure. Moreover, we detail the required
optimizations to efficiently execute it on a WBSN.

• We evaluate the accuracy and run-time performance of
the resulting application targeting the state-of-the-art Icy-
Heart platform.

The paper proceeds as follows: Section II acknowledges
related efforts in the field, Section III describes the imple-
mentation of the training and test phases of the NFC and the
RP, detailing the optimizations performed to embed the trained
application on a WBSN. Classification performance is reported
in Section IV, while Section V concludes the paper.

II. RELATED WORK

Neuro-fuzzy classifiers (NFCs) [9] have been extensively
studied in the literature. Their ability to explicitly express
uncertainty in classification, given by the employed fuzzy
values, makes them particularly well-suited to the problem
of heartbeat classification, as proposed in [10].

NFCs can be effectively trained using established methods,
the most common being the gradient descent algorithm de-
scribed in [9] and the scale conjugate gradient introduced in
[11] and [12], which is employed in this work. The approach
is both computationally simpler and presenting lower memory
requirements than comparable methods, like the ones based
on support vector machines [2] and linear discriminants [13].
Therefore, it is more suitable for execution in embedded
WBSNs.

Several state-of-the-art strategies for neuro-fuzzy classifica-
tion of ECGs can be distinguished based on the methodology
employed to extract the features of individual heartbeats gen-
erating the classifier input. Solutions to the features extraction
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Fig. 2. RP-based fuzzy classification framework: PC-based training (top)
and WBSN execution (bottom).

problem include the ones based on Independent or Principal
component analysis (ICA [14] / PCA, [3]), Discrete Wavelets
Transform (DWT [15]) and Discrete Cosine Transform (DCT
[4]). As opposed to our work, these methods demand a
computation effort not compatible with WBSN resources.
A different approach, based on detection of morphological
features, is presented in [16]; it nevertheless requires a detailed
analysis of heartbeats before classification, conversely to our
goal of early identification of pathological beats.

Random Projections (RPs) [17] offer an efficient solution
for representing heartbeats with few coefficients. In particular,
Achlioptas projections [5], employing matrices consisting only
of the elements 0, 1 and -1, can be adopted to project
ECG samples, while guaranteeing an upper bound on the
approximation error and lowering computational complexity.
An early work exploring RPs [18] for heartbeat classification
gives a hint of their effectiveness. This results served as
inspiration to investigate the methodology presented in the
current manuscript.

III. CLASSIFICATION METHODOLOGY

The training and test phases of the classification framework,
which are illustrated in Figure 2, have multiple and different
constraints. On the one side, the training phase is performed
off-line, on a host (PC) platform and using high-precision
(floating-point) data representation to obtain the most accurate
framework set-up. On the other side, the test phase is executed
on an embedded WBSN, being therefore tightly constrained
in memory footprint and run-time, admitting only integer
arithmetic and avoiding exponential operations.



It is therefore mandatory to transform the classifier, after
training and before execution, to lower its computational
requirements according to the embedded platform capabilities.
Our proposed methodology to realize this step is detailed in
Section III-B, while Section III-A describes the algorithm used
for off-line training of the RP matrix and the NFC. Finally,
the result of our complete framework is a classifier which is
both accurate and efficient.

A. Training phase

Random Projection. The first step of our proposed training
phase is the generation of a k×d Achlioptas matrix (P), where
d is the number of digital samples acquired for each heartbeat
and k is the number of desired coefficients in the random
projection, with k � d. P elements are defined [5] as:

Pk,d =


+1 with probability 1

6

−1 with probability 1
6

0 with probability 2
3

Each line of P indicates which elements of an input vector v
have to be added (possibly negated) to derive the correspond-
ing vector u of randomly-projected coefficients: u = Pv.

Neuro-fuzzy classifier. The coefficients are the inputs to
the multi-layered NFC (Figure 3). Its first membership layer
employs Membership Functions (MFs) to compute, for each
coefficient k, a membership grade µ for each of the three
classes l: normal beats (N ), left branch block (L) and pre-
mature ventricular contraction (V ). During the training phase,
MFs are gaussian curves, defined by their center c and variance
σ:

µk,l(uk) = exp

(
−(uk − ck,l)2

2σ2
k,l

)
where l ∈ {N,V, L}.
In the subsequent fuzzification layer, the membership grades

of all coefficients for each class are multiplied: fl =
∏
k

µk,l.

The resulting fuzzy value expresses how strongly an examined
heartbeat belongs to that specific class: the larger the value
(with respect to the values of the other classes), the higher the
confidence in the correctness of the assignment.

The third defuzzification layer of the NFC marks each
beat as either normal or pathological, by considering the first
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Fig. 3. Three-layers neuro-fuzzy classifier.

and second maximum of the fuzzy values (M1f , M2f ) and
their sum S =

∑
l

fl. If (M1f − M2f ) ≥ αtrainS (with

αtrain ∈ [0, 1]), the beat is assigned to the class with the
maximum fuzzy value (N,V, L). Otherwise, the beat is marked
as Unknown (U ). V,L, U beats are considered as possibly
pathological, while N beats are marked as normal.

The choice of a proper defuzzification coefficient αtrain

gives the flexibility to unbalance the classifier training process,
fixing the percentage of abnormal beats incorrectly classified
as N . The performance (score) of the trained classifier is
then the corresponding percentage of normal beats correctly
detected.

Two-step training. The aim of the training is to search
for high-performance P matrix and MFs. The algorithm starts
from an initial population of random projection matrices Ppop,
optimizing the MFs of the related classifier over a first set of
projected heartbeats (training set 1) using the scale conjugate
method [11]. The performance of the random projection is then
the score of the associated NFC over a second training set of
beats (training set 2).

To optimize the projection, we use a genetic algorithm that
considers each P ∈ Ppop as chromosomes and, performing
crossover and mutation operations on them, derive higher-
performance candidates. For the experiments presented in
Section IV, we employed an initial population of 20 matrices
and let the algorithm run for 30 generations.

B. Resource-constrained optimization phase

The optimized projection and the trained classifier cannot
be employed “as they are” in a WBSN platform. A first
consideration is that data must be represented as integers, as
opposed to the floating point format used in the training phase.

Then, several other elements are particularly critical. First,
gaussian MFs employed in the NFC make use of exponential
operations, which are not easily (or not at all) implementable
in embedded platforms. Second, the NFC fuzzification layer
must be analyzed to prevent overflows when performing the
product operation. Finally, the memory required to store the
random projection matrix can exceed the WBSN resources.

Membership functions linearization. Given their center c
and standard deviation σ, gaussian MFs are approximated to
the integer range [0, (216 − 1)] during the optimization step
using four segments:

MFlin(x) =


0 if |c− x| ≥ 4S

1 if 4S > |c− x| ≥ 2S

lin.approx1 if 2S > |c− x| ≥ S
lin.approx2 if S > |c− x|

where MFlin is the linearized MF and S = 2.35σ. The
linear approximation segments are graphically represented in
Figure 4. This formulation has the desirable property to be
positive in a large range; hence, it is rare that a fuzzy value
becomes 0 after the defuzzification (product) classifier stage.
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Fig. 4. Linear approximation of gaussian MFs in the range [−4.7σ, 0],
compared to a gaussian curve and a simpler triangular interpolation.

Fuzzification/defuzzification. Only the ratio between the
fuzzy coefficients fl, as opposed to their value, is relevant
for the defuzzification layer. From this observation stems the
opportunity to optimize the fuzzification step, retaining the
maximum precision given the 32-bit representation used for
the results of the defuzzification products. In our proposed
implementation, the membership grades µk,l related to the two
first coefficients are multiplied for each of the three classes.
The three resulting numbers are left-shifted to the maximum
amount so that none of them overflow and then the rightmost
16 bits are discarded. All subsequent membership grades are
then processed in a similar fashion, obtaining the fuzzy values
of the beats for the different classes.

Defuzzification marks each beat as normal or pathological,
much like in the training phase. The chosen implementation
does not employ divisions, and can therefore be efficiently
implemented in WBSNs. Moreover, it is possible to tune the
defuzzification coefficient αtest independently of the αtrain

chosen during the training phase (described in Section III-A),
giving the opportunity to adjust the ratio of detected normal
and abnormal beats.

Random Projection matrix representation. The P matrix
is generated in such a way that its elements only assume three
values (+1,−1 and 0). We therefore use a compact repre-
sentation where each element is coded using two bits, which
requires 1/4 of the memory with respect to a corresponding
matrix of 8-bits values.

Downsampling can also be applied to reduce the memory
occupied by the random projection matrix. If, for example,
one every four samples of the acquired signal is considered,
the size of the matrix is reduced by a factor of four.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the proposed RP-based ECG classifier, we
investigated its performance when evaluating the normal (N ),
ventricular contraction (V ) and left branch block (L) beats
present in the MIT-BIH Arrhythmia Database recordings,
available on the Physiobank website [8].

For each beat, classification in either the normal or patho-
logical classes is performed. As mentioned in Section I, the
goal of the classifier is to recognize abnormal beats, activating

N V L Total
training set 1 150 150 150 450
training set 2 10024 892 1084 12000

test set 74355 6618 8039 89012

TABLE I
SIZE AND COMPOSITION OF THE TWO TRAINING SETS AND OF THE TEST

SET OF ECG HEARTBEATS.

only in these cases a detailed analysis such as the three-lead
delineation proposed in Figure 6. In this context, figures of
merit of the classifier are the Normal Discard Rate (NDR)
and Abnormal Recognition Rate (ARR). NDR assesses the
rate of normal beats that are correctly identified as such and
thus discarded. Complementarily, ARR reports the percentage
of abnormal beats that correctly activate the delineation block.

Two randomly-selected excerpts of the database where used
for training the NFC and optimizing the random projection
matrix, respectively. The first training set is smaller than the
second because training of the NFC is more computationally
complex than its evaluation; in this way, it was possible to
retrieve “good” solutions in a reasonable time. The test set
comprises all N,V, L beats present in the database (the com-
position of the sets is shown in Table I). Across experiments,
the defuzzification coefficient αtrain was chosen to have a
minimum ARR of at least 97% on training set 2.

ECG recordings on the database are acquired at 360 Hz;
we define each heartbeat as spanning 100 samples before and
100 samples after its peak. Peaks are automatically detected
using a wavelet-based technique, firstly proposed in [1], which
decompose the input signals in four dyadic scales at different
frequencies, retrieving the peak as the zero-crossing point
on the first scale in-between couples of maximum-minimum
points across scales.

B. Evaluation of a suitable RP coefficients number

A first important design choice is to determine the number
of random projection coefficients. A larger coefficient set
impacts both the size of the random projection matrix and the
complexity of the NFC, the decision being therefore a trade-
off between classification accuracy and real-time performance
(run-time and required memory). To explore this aspect, we
trained and tested the framework with a number of coefficients
ranging from 8 to 32. Table II reports the NDR corresponding
to a minimum ARR of 97% on the test set. For compar-
ison, the table also presents the classification performance
obtained using the off-line Principal Component Analysis
(PCA) algorithm proposed in [3] to reduce the representation
dimensionality.

coefficients 8 16 32
NDR-PC 93.74 95.16 93.05
NDR-WBSN 92.31 92.53 93.04
PCA-PC 93.66 95.78 89.75

TABLE II
NORMAL DISCARD RATE (NDR) ON test set FOR A FIXED ABNORMAL

RECOGNITION RATE (ARR) OF 97%, VARYING THE NUMBER OF
COEFFICIENTS.
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Fig. 5. Pareto fronts of the best NDR/ARR solutions, employing gaussian,
linearly approximated or triangular MFs.

Values in the table are classified in three settings. The first
row (NDR−PC) refers to a PC-based implementation were
no approximation is performed: it therefore uses floating point
data representation and gaussian membership functions. The
second row (NDR−WBSN ) instead shows the performance
of the corresponding WBSN version, employing linearized
MFs, integer data and a sampling rate of 90 Hz (a four-times
downsampling of the original recordings). In the third row
(PCA − PC), coefficients are derived from PCA instead of
random projections.

Two conclusions can be drawn from these experiments.
Firstly, only a small number of randomly-projected coefficients
are sufficient to achieve a NDR of over 90%. Actually, increas-
ing this value from 8 to 32 does not benefit classification in a
tangible way. Secondly, the difference between NDR−PCA,
NDR−PC and NDR−WBSN is rather small, being always
in the range of few percentage points. This shows that the
proposed methodology does not penalise accuracy, even if the
computation effort required in the three cases differs greatly.

C. Impact of MF linearization

The error induced by linearizing the MFs is plotted in
Figure 5. In this set of experiments, we adjusted the αtrain

parameter to have a minimum ARR of 97% in training set 2,
and scaled αtest to obtain different NDR/ARR trade-offs on
test set. In all cases, 50 samples acquired at 90 Hz were
randomly projected on 8 coefficients. The figure compares the
NDR/ARR pareto fronts obtained from gaussian MFs, from
the linear approximation described in Section III-B and from
the simpler triangular approximation shown in Figure 4.

Triangular MFs, even if achieving good results for lower
ARRs, cannot scale well if higher recognition rates of
abnormal beats are desired. Performance of the linearly-
approximated NFC instead closely follows the one of the
gaussian classifier, while still requiring little computational
effort. In the gaussian and linear approximation cases, it is
possible to correctly recognize 98.5% of abnormal beats, with
a NDR of 87%. Using triangular MFs, the NDR figure for the
same recognition rate drops to 62%.

Code Size (KB) Duty Cycle
RP-classifier 1.64 < 0.01

RP + filtering + peak detection (1) 30.29 0.12
Multi-lead delineation (2) 46.39 0.83

Proposed system (3) 76.68 0.30

TABLE III
CODE SIZE AND DUTY CYCLE OF THE SUB-SYSTEMS IDENTIFIED IN

FIGURE 6 USING 8 COEFFICIENTS. TESTS PERFORMED ON THE ICYFLEX
WBSN RUNNING AT 6 MHZ

D. Run-time and memory size evaluation

RP-based detection of pathological beats must not be the
computation bottleneck of a WBSN system during real-time
execution. As described in Section I, the role of the classifier
is to activate a detailed analysis for abnormal beats, therefore,
it should require considerably less effort than performing
analysis over the full signal.

In this section we investigate, as an example of a complete
diagnosis application, a system (system (3) in Figure 6), in
which RP-classification, performed on a single lead (sub-
system (1)), is used to trigger three-leads delineation of
pathological heartbeats (sub-system (2)).

Figure 6 shows that, apart from the RP-classification block,
two additional stages have to be incorporated in the classifi-
cation sub-system (1). Firstly, a filtering stage is required to
remove artifacts caused by respiration and muscle contractions
usually corrupting ECG signals. Secondly, a peak detector has
to be employed to identify heartbeats.

We employ state-of-the-art solutions for the filtering stages,
the peak detector and the delineation block, proposed by
the authors of [1]. Filtering is realized using morphological
operators, a wavelet-based algorithm is used for peak detection
and a delineation algorithm using multi-scale morphological
derivatives (MMDs) is executed over the combination of the
three filtered leads in the subsystem (2). Their implementa-
tion has been highly optimized for execution on embedded
WBSNs. Eight coefficients are used in the RP-classifier stage.

Table III reports the code size and the run-time of the
different parts of the considered system when executed on
the IcyHeart WBSN operating at a 6 MHz. The first row
reports the figures obtained for the RP-classifier alone, while
the second one also considers the filtering and peak detection
stages of sub-system (1).
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abnormality.



In the third row, a system performing multi-lead MMD
delineation on the full input signal is investigated. This setting
reflects the performance of a delineator that is always active,
analyzing both normal and pathological heartbeats. Finally, in
the last row of the table, the values for the complete system
are given, where delineation is performed only on abnormal
beats, as identified by the RP classification.

A first observation that can be derived from these exper-
iments is that the RP classification requires little resources
(less than 1% of the duty cycle and 2 KB of memory). As
an assessment of its efficiency, we observe that most of the
computation performed by sub-system (1) is actually needed
for input data filtering and peak detection, as opposed to the
RP-based NFC itself.

The second, and most important, observation is that the duty
cycle of the complete application is tangibly lower than an
equivalent one that performs a full delineation on all beats.
Indeed, experimental evidence shows that the run-time of sub-
system (3) is 63% lower than that of sub-system (2), while
presenting a memory size overhead of 30 KB, thus justifying
our assumptions on the benefits of early classification.

E. Improvement of energy efficiency

Detection of pathological heartbeats can be exploited to
obtain considerable gains in energy efficiency. In addition to
the reduction in computation effort discussed in the previous
section, a further benefit derives from the optimization of the
data to be transmitted from the WBSN on the power-hungry
wireless link.

Assuming a scenario in which a WBSN reports only the
peak of normal beats, and all fiducial points (onset, peak and
end of the three characteristic waves composing the beat) for
abnormal ones, usage of the wireless link can be substantially
reduced, with respect to the case were all fiducial points of all
beats are communicated. In fact, considering all beats in the
test set described in Table I as input signals, we achieve a 68%
energy consumption reduction in the wireless module and 63%
reduction in the energy consumption of the bio-signal analysis
part. Thus, overall we achieve an estimated 23% total energy
reduction, as computation and wireless communication are
two major contributors to the power budget of smart WBSNs
(their combined figures accounting for approximately 34%
total energy in typical WBSN implementations [1]).

V. CONCLUSION

In this work, we have presented a real-time framework
for detecting pathological heartbeats on an embedded WBSN
platform using a neuro-fuzzy classifier.

The paper addressed two major issues: on the one hand,
a solution based on random projections and optimized off-
line using a genetic algorithm was investigated to reduce the
classifier input dimensionality. On the other hand, we proposed
a strategy for adapting the trained NFC to the constraints
of an embedded platform. The optimized RP-classifier only
uses integer arithmetic and can process heartbeats efficiently,
while still being able to correctly discern normal and abnormal

morphologies with high confidence. Consequently, substantial
savings are achieved in run-time and energy required for
computation and wireless communication.

Experiments carried on the complete set of normal, pre-
mature ventricular contraction and left branch block beats
present in the MIT-BIH Arrhythmia database, showed that the
proposed RP-classifier can successfully detect up to 97% of
the abnormal beats, while only misinterpreting 7% of normal
ones as pathological.
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