Resource Optimization for CSDF-modeled
Streaming Applications with Latency Constraints

Di Liu*, Jelena Spasic*, Jiali Teddy Zhai*, Todor Stefanov*

*Leiden Institute of Advanced Computer Science
Leiden University, Leiden, The Netherlands

Email: {d.liu, j.spasic, j.t.zhai, t.p.stefanov}@liacs.leidenuniv.nl

Abstract—In this paper, we study the problem of minimiz-
ing the number of processors required for scheduling latency-
constrained streaming applications modeled as CSDF graphs,
where the actors of a CSDF are executed as strictly periodic
tasks. We formalize the problem and prove that due to the
strict periodicity of actors the problem is an integer convex
programming problem, that can be solved efficiently by using an
existing convex programming solver. We evaluate our solution
approach on a set of 13 real-life streaming applications modeled
as CSDF graphs and demonstrate that it can reduce the number
of processors in more than 52% of the conducted experiments
in comparison to an existing approach.

1. INTRODUCTION

Streaming applications, such as video/audio processing and
digital signal processing, have become prevalent in embedded
systems. These applications contain ample amount of paral-
lelism which perfectly matches the processing power of Multi-
Processor System-on-Chip (MPSoC) platforms. To efficiently
program MPSoC platforms, Models-of-Computation (MoCs) are
used to specify streaming applications. Prominent examples of
MoCs include Synchronous Data Flow (SDF) [1] and its gen-
eralization Cyclo-Static Dataflow (CSDF) [2], in which actors
representing computation are executed concurrently, thereby nat-
urally exposing parallelism. Furthermore, the strong design-time
analyzability of these MoCs makes them suitable for designing
performance-constrained embedded systems.

Performance constraints of a streaming application are usually
imposed on two principle metrics, throughput and latency. For
many streaming applications, the latency is the main concern,
where latency is the elapsed time between the arrival of a sample
to an application and the output of the processed sample by the
application. For instance, in video conferencing and automatic
pattern recognition applications, a latency that exceeds a certain
limit cannot be tolerated. At the same time, the required number
of processors to execute the application should be minimized for
better resource usage and energy efficiency.

A few efforts have been made to deal with latency of stream-
ing applications specified as SDF/CSDF graphs. The authors in
[3] studied minimizing latency for SDF graphs, where latency
is computed by a state-space traversal which has exponential
complexity. Moreover, they assumed that there is no constraint
on the number of processors required to schedule an application.
However, the number of processors is an important design con-
cern for embedded systems with respect to power consumption
and area. In another effort, the authors in [4] and [5] proposed
a scheduling framework that schedules acyclic CSDF graphs in
a strictly periodic fashion. In this scheduling framework, each
CSDF actor executes strictly periodically and meets a given
deadline. The periodic execution of actors guarantees a certain

978-3-9815370-2-4/DATE14/©2014 EDAA

Gang Chen’
TInstitute of Robotics and Embedded Systems
Technical University of Munich, Munich, Germany
Email: cheng@in.tum.de

throughput and latency. In addition, the latency of the CSDF
graph can be reduced by selecting proper deadlines of actors.
Moreover, [4] and [5] showed that a class of CSDFs scheduled
as a periodic task set can achieve the maximum throughput
and minimum latency. Scheduling a CSDF graph as a periodic
task set makes it possible to benefit from a large amount of
proven theories developed by the real-time systems community,
which provide several efficient and fast approaches to compute
the number of processors instead of performing complex design
space exploration. Due to the advantages, we mentioned above,
we use the CSDF model to specify a streaming application and
schedule the CSDF graph as a periodic task set.

In a real-time embedded system, computing the minimum
number of processors needed to execute a periodic task set
depends on the deadline of each task in the set. When CSDF
actors are scheduled as periodic tasks, the deadline of each actor
can be varied in a well-defined bounded interval (see Section
III-B), thereby controlling the application latency and the number
of processors needed to schedule the application. This means that
selecting a proper deadline value for each actor is an important
issue for reducing the latency and minimizing the number of
processors. In [5], the authors give a method to select deadlines
of the task set to reduce latency. However, their method is not
optimal in terms of the required number of processors. Therefore,
in this paper, we study the problem of minimizing the number of
processors required to schedule a streaming application modeled
as a CSDF, while satisfying a given latency constraint, when the
actors of the CSDF are executed as strictly periodic tasks. We
formalize this problem and prove that it is an integer convex
programming problem such that it can be solved efficiently by
an off-the-shelf convex programming solver, e.g., CVX [6]. The
novel contributions of our work can be summarized as follows:

« We present a new method to compute the earliest starting
time of actors in a CSDF graph when the actors are executed
as strictly periodic tasks.

» Based on the above contribution, we formalize the problem
of minimizing the number of processors for a latency con-
strained CSDF graph and prove that it is an integer convex
programming (ICP) problem.

o We carry out experiments by solving the ICP problem
on 13 real-life streaming applications and demonstrate the
effectiveness and efficiency of our solution approach in
comparison to the deadline selection approach [5] in terms
of the minimum number of processors required to schedule
an application. By applying our approach, we obtain reduc-
tion in the number of processors in more than 52% of the
conducted experiments.

The rest of the paper is organized as follows: Section II
gives an overview of the related work. Section III introduces



TABLE I

NotaTiOoNs
G A CSDF graph
M Number of processors
1% Set of actors (tasks) in G
T The ;™ actor in G
C Worst-case execution time of the j® actor
S; Earliest start time of the j® actor
T; Period of the ;™ actor
D; Deadline of the ;™ actor
Usum The total utilization Ug,y, = erev C;/T;
3 Density of the j™ actor 6; = C;/min(T;, D))
Osum The total density dgym = ZTFV 0
L Latency Constraint

the necessary background to better understand the paper. Section
IV shows a motivational example and Section V presents our
proposed solution approach. Evaluation of the proposed approach
is presented in Section VI. Finally, Section VII concludes the

paper.
II. RELATED WORK

In the context of real-time systems, several works deal with
period and/or deadline selection for periodic tasks in order to
achieve certain goals. The authors in [7] optimize periods for
dependent tasks on hard real-time distributed automotive systems
in order to meet a latency constraint. In [8], Hong et al. propose
a distributed approach to assign local deadlines for each task
on distributed systems to meet a latency constraint. In contrast
to [7] and [8], our work selects deadlines for data dependent
tasks in order to meet a latency constraint while minimizing the
number of processors required for scheduling the application.
Such minimization is not considered in [7] and [8]. Balbastre
et al. [9] propose an analysis to select deadlines for periodic
tasks on a uniprocessor to reduce the output jitters. Comparing
to [9], our work differs in that we select deadlines in order to
reduce the required number of processors in a multiprocessor
system while guaranteeing the latency constraint. Chantem et al.
[10] optimize the periods and deadlines simultaneously for an
infeasible independent task set such that it can be scheduled on
a uniprocessor. Their work concentrates on the schedulability of
a system rather than optimizing the resources while meeting the
latency constraint which is the main goal of our work.

In another aspect, only a few works deal with latency of
streaming applications specified as dataflow/task graphs. Given
latency or throughput constraints, Javaid et al. [11] optimized the
area of MPSoCs which are comprised of Application Specific
Instruction set Processors (ASIP). The problem is formulated
as an integer linear programming (ILP) problem. In their work,
the area is optimized by setting different configurations for each
ASIP. In contrast to their work, we consider to minimize the
number of processors and our problem is not linear and thus not
amenable to an ILP formulation. The authors in [12] proposed
a framework to synthesize homogeneous multiprocessor system
for streaming applications with throughput constraints while
optimizing latency and resources. However, their framework can
not take the latency as a constraint. As a result, the framework in
[12] is not applicable to our problem. It is worth noting that the
throughput constraint in [11] and [12] can be trivially added into
our approach.

III. PRELIMINARIES

In this section, we provide an overview of the CSDF MoC, in-
troduce the real-time scheduling of a CSDF and the system model
we use, and briefly describe the deadline selection approach in
[5] which we use as a baseline approach for comparison. For the
sake of the discussion, we list all the notations used in this paper

[1]

Fig. 1.

A CSDF graph G
in Table 1.

A. Cyclo-Static Dataflow (CSDF)

A CSDF [2] graph is defined as a directed graph G = (V, E),
where V is a set of actors and E is a set of edges. Actors 7; € V
represent computation and edges represent the transfer of data
tokens. An edge e, € E is a FIFO defined as the pair ¢, = (7;,7),
denoting a connection from actor 7; to 7;. Each CSDF actor
may produce/consume a variable but predefined number of data
tokens in consecutive executions, called production/consumption
sequence. Fig. 1 shows an example of a CSDF graph. For in-
stance, the token production sequence on edge e; is [1, 1, 0].

A valid static scheduling of a CSDF graph can be generated at
design-time if the graph is consistent and live. Throughout this
paper, all CSDF graphs are assumed to be consistent and live. A
CSDF graph G is said to be consistent if a non-trivial solution
exists [2] for a repetition vector § = [q1,q2,* "+ ,qn]. An entry
g, represents the number of invocations of an actor 7 in a graph
iteration of G. For graph G shown in Fig. 1, the repetition vector
isqg=103,2,1,3].

B. Real-time Scheduling of CSDF

In [4], a real-time scheduling framework for CSDF graphs is
proposed. In this framework, every actor in a CSDF graph is
characterized by a 4-tuple 7; = {S ;, C;, D}, T} in which § ; is the
start time, C| is the worst-case execution time (WCET), D; is the
relative deadline, and T'; is the period. D; can be selected to take
any value in the bounded interval [C}, T ], thereby controlling
the latency and changing the number of processors needed to
schedule the actors. When D; = T}, the task set is said to be
implicit deadline periodic (IDP) task set. If D; < T, the task set
is called constrained deadline periodic (CDP) task set. In [5], the
value of D; is determined by selecting a global deadline scaling
factor d f as follows:

VT‘/‘ DjZCj-f-df*(Tj—Cj) OSdeI (1)

That is, the scaling factor df is the same for all actors and
found/selected as explained in Section III-D.

To execute a CSDF graph as a peridic task set, a method to
compute the earliest start time S ; of each actor is proposed in [4].

Lemma 1 (From [4]). For an acyclic G, the earliest start time of
an actor T; € V, denoted S j, under a periodic schedule is given
by

ji=

2

0 fQr)=0
MaXr,eq(r)) (S i—»j) Q) #0

where (1) is the set of predecessors of T, and S i, ; is given by
min {¢: prd (1)
1€0Sital [§,max(S ;,0H+k)

> cns (r)Vke[0,al} (3)
[£,max(S;,1)+k]

where S; is the earliest start time of a predecessor actor t;, @ =
qiT: = q;T;, prdy, , (1) is the number of tokens produced by t;
during the time interval [t,,1,), and cnsy,, ,,1(t;) is the number of
tokens consumed by t; during the time interval [, 1.].

Si—>j:



TABLE II TABLE III
Tasks PARAMETERS 1 Tasks PARAMETERS 2
task | S; | C; | D; | T task | S; | C; | D; | T
T 2 6 T 0 6
T 2 3 3 9 T2 2 3 9 9
) 4| 3 3 | 18 ) 4| 3 | 12 | 18
Ty 14 6 6 6 Ty 14 6 6 6

e H e
ol
e

1 4 1
I I

T4 [

=

I
i
1
|

0 2 4 6 8 10 12 14 16

Fig. 2. The schedule of the CSDF graph

18 20 22 24 26 28 30 32

Table II gives an example of the parameters of the periodic task
set corresponding to the CSDF graph in Fig. 1, computed using
the theory in [4], when df = 0, i.e. D; = C;. The time unit is
clock cycles. The strictly periodic schedule of the CSDF graph is
shown in Fig. 2, where gray boxes represent executions of actors.
For instance, according to Table II, actor 7, starts its execution at
time S, = 2 and repeats its execution after 7, = 9 clock cycles,
and every firing of 7 finishes its execution by its relative deadline
D, = C, = 3 clock cycles, shown as the downarrow.

To compute the latency of a CSDF graph G, we have to
introduce the notions of input and output actors. An input ac-
tor 7;, is the actor receiving a stream of data from the external
environment, while an actor producing an output stream to the
external environment is called an output actor 7,,,. [5] gives the
following equation to compute the latency of G:

L(G) = maXW(S out T ggutTout + Dout - (S in t gf; Tin)) (4‘)

Winsout €

where W is the set of all paths from input actor 7;, to output
actor Ty, and Win_,oy 1S one path of the set. S and Sy, are the
earliest start times of 7o, and Ti,, respectively. Toy and Tj, are
the periods of 7o, and T7j,, respectively. Doy is the deadline of
Tour- 85, and g7 are two constants which denote the number of
firings the actor waits for the non-zero consumption/production
of tokens on a path wij,_onx € “W. For example, in Fig. 1, for
the path from input actor 7; to output actor 74 via 73, gf.; =2
because 7| produces to edge e, zero tokens in its first two firings.
Similarly, output actor 74 starts consuming non-zero tokens from
edge ey after its first two firings, so g5, = 2. Given the parameters
in Table II and using (4) to compute the latency, we find that the
latency of the CSDF graph in Fig. 1 is 20 clock cycles.

C. System Model

The platform, we target in this paper, is a homogeneous
multiprocessor platform which consists of identical processors.
As we mentioned in Section I, scheduling a CSDF graph as
a periodic task set (see Section III-B) is able to benefit from
a large amount of proven real-time systems theories to easily
compute the number of processors needed to execute the tasks.
Any real-time scheduling algorithm can be used to schedule the
periodic task set. However, in this paper, we only consider the
Earliest Deadline First (EDF) scheduling algorithm. For the CDP
model, [13] gives a sufficient test for a global scheduling in which
tasks may need to migrate between processors. Here, we use this
sufficient test to compute the required number of processor for
global scheduling as follows:

M = [Ogm] )

For partitioned scheduling, task migration is not required, and
[14] gives a sufficient test for the partitioned EDF scheduling
with First-Fit Decreasing allocation algorithm (EDF-FFD). In our
work, this test is used to compute the number of processors for
partitioned scheduling:

Gsum —Omax 1
M > { 1—6max -l 6max < ? (6)
I—Z(ésum - 6m4x)-| 6max = 2

where Opax = maxyev{0;}.

For both, global and partitioned scheduling, we see that the
total density dsum plays a crucial role in computing the minimum
number of processors needed to schedule a task set.

D. Baseline Approach (BA)

We consider the global deadline scaling factor approach pro-
posed in [5] a baseline approach. This baseline approach uses
Binary Search to find the maximum df which makes the latency
constraint met. Finding this maximum df reduces the required
number of processors to schedule the CSDF actors. Later in Sec-
tion VI, we compare our approach to the baseline approach. We
use this approach for comparison because it considers the same
application model, task scheduling and optimization problem as
we do.

IV. MortrvatioNaL EXAMPLE

In this section, we take the CSDF graph in Fig. 1 as our mo-
tivational example to demonstrate the deficiency of the approach
in [5], where deadlines of actors are computed by (1) with the
global deadline scaling factor df found as explained in Section
III-D. For the sake of simplicity, we consider a global scheduling
and use (5) to compute the required number of processors. Given
a latency constraint of 20 clock cycles, if we use the approach
in [5], it finds that the global deadline scaling factor df should
be set to 0 in order to meet the latency constraint. By using (1),
we compute that D; = Cj, and the parameters of the tasks are
given in Table II. Using these parameters we obtain that the total
density ogym = % + % + % + g = 4. This means that 4 processors
are needed to schedule the task set.

However, larger deadlines can be selected for some actors
without violating the latency constraint, thereby reducing the
total density dgum, Which can decrease the number of processors.
We select new deadlines D, = 9 and D3 = 12 for actors 1, and
73, respectively, and recompute the start time of the tasks using
Lemma 1 in Section ITI-B. We see that in this specific case shown
in Table III, although we have changed two deadlines, the start
times have not changed. By using (4) to compute the latency, we
see that the latency of 20 clock cycles can be met with the new
parameters, but the total density dgym = % + % + 1% + g = 2.58
decreases. This means that three processors are sufficient to
schedule the task set without violating the latency constraint of 20
clock cycles. We can see from the motivational example that the
approach from [5] is not optimal in terms of the required number
of processors.

V. Our APPROACH

As we show in Section IV, although the deadline selection
approach in [5] is able to meet the latency constraint, it is not
optimal in terms of the number of processors. Hence, selecting
deadlines in a proper way is a problem that should be solved in
order to minimize the number of processors while meeting the
latency constraint. To select deadlines properly, we devise the
solution approach presented in this section that formalizes and
formulates the problem as a mathematical programming problem.

According to the relationship given in (4), the latency depends
on the earliest start time and deadline of the output actor, and



the earliest start time of the input actor. The earliest start time
S ; of any actor depends on two conditions: 1) at the earliest
start time, there should be sufficient number of tokens on all
input edges to enable the actor’s firing and 2) once an actor fires
for the first firing, the consequent firings of the actor should be
possible to happen at times t = S; + mT; for each m € N*,
The first condition is imposed by the firing rule [2] of the CSDF
model which is a data-driven model, where a sufficient number
of tokens is the requirement to trigger an actor firing. The second
condition makes sure that the CSDF graph is schedulable as a
periodic task set. Although Lemma 1 in Section III-B is able
to find the earliest start time of an actor, it is impossible to
use its equations into any mathematical programming problem.
Hence, we present a new computation method to calculate the
start time of actors in a CSDF, in which the start times of actors
can be represented as linear items and can be integrated into a
mathematical programming problem.

Lemma 2. For an acyclic CSDF graph G, the earliest start time
ofan actorvj € V, denoted S j, under a periodic schedule is given
by

o iF Q) =0
7\ maxeear){Si + (S;'i’;- —SMn—Cy+ Dy if Q) #0
(7

where Q(t;) is the set of predecessors of T;, S;, C;, and D; are
the earliest start time, WCET, and deadline of the predecessor
actor T;, respectively. S;""" is the earliest start time of T; given
by (2) when D, = C,,V1, € V, and Sﬁ"i is given by (3) when
D,=C,V1,€V. '

Proof: Consider an arbitrary edge e, = (1;,7;) € E. 7; starts
after 7; has started and fired a “certain” number of times. This
number of firings is independent from the execution speed of the
actors and depends only on the production and consumption rates
of 7; and 7; on e,. The production and consumption functions are
given by:

L(t=15)/Ti]

prd(r;) = (X“(((k = 1) mod P;) + 1) - u(t — kT; - D;))
[t0.0) —
IF(t(if.\-)/Tﬂ
cns(t)) = (((k = 1) mod P)) + 1) - u( - kT}))

tt
[t5.1 o

where x{(k) is the k™ element in production sequence of actor
T, y?(k) is the k™ element in consumption sequence of actor 7;,
P; and P; are the execution lengths of 7; and 7}, respectively, as
defined in [2]. u(¢) is the unit step function. Suppose that D, =
C,, V71, € V. The production and consumption curves of 7; and
7; are shown in Fig. 3. Interval A in Fig. 3 depends only on the
production and consumption rates of 7; and 7; on ¢, and can be
calculated as: . '
A=ST -8 -G (8
Now, suppose that D, > C,,VY7, € V. The production curve
will move to the right for certain time units, and the new start time
of 7; is §;. If the consumption curve does not move, the relation
between the production and consumption given by Equation
(3) will be violated, i.e. it will happen in some point in time
that the cumulative consumption is greater than the cumulative
production. This means that we have to move the consumption
curve to the right by the same number of time units such that the
new start time S;_,; is minimum and the relation is preserved.
Because the production and consumption rates are unchanged,
interval A will stay the same, and we can calculate it as follows:
A=Si;j=Si—-D; ©))

— T ——Tj— t
min min
s Ry
Fig. 3. Production and consumption curves on edge e, = (7;,7;)

We can re-write (8) and (9) as: .
S,'ﬂj = Sl‘ +(Sm1n _S}mn —C,')+Di

i—j

(10)
|
Now, we can derive from Equation (7) the following set of

linear inequality constraints, where the number of the linear

inequality constraints is equal to the number of edges in the

CSDF:

S;+ (ST —§mn _C)+D;<S; Ve,€E

i) (11)

Since computing the required number of processors depends
on the total density dsm of the task set (see Section III-C), our
objective is to minimize g, in order to minimize the number
of processors. Therefore, we formulate our density minimiza-

tion (DM) problem as follows:

C
Minimize  Sqm = Z - (12a)
D,
T,€V
subject to: > ot ¥ Dow = Sin <L+ $nTin = 8ouTou 1oy
vWin%out ew
Si+D;=§; < —(S,!Ili,'}—Sﬁni"—Ci) Ve, € E
(12¢)
- Dn < _Cns Dn < Tn VTn ev (lZd)

where (12a) is the objective function and D, is an optimization
variable. We want the objective function (12a) with |V| optimiza-
tion variables to be subject to a latency constraint L. Therefore,
(12b) comes from (4). In addition, (12c) are the constraints
given by (11), and (12d) bounds all optimization variables in the
objective function by the worst-case execution time and period
as explained in Section III-B. S; and S ; (including Sy, S out) are
implicit variables which are not in the objective function (12a),
but still need to be considered in the optimization procedure. L,
8h Tin, 85 Tous S i, S, Cy, and T, are constants.

Theorem 1. The DM problem (12) is an integer convex program-
ming (ICP) problem.

Proof: First, we prove that the DM problem is a convex
programming problem if the values of D and S are continuous.
In a convex programming problem, the objective function and
the constraints both should be convex [15]. We first prove the
convexity of the objective function.

fy =2 (13)
X

Function (13) has been proven to be convex for x € (0, c0) and
a > 0 [15]. Since D, is always greater than 0, all 6,(D,) = g_::
are convex functions, where D,, and C,, are the variable x and the
constant a, respectively. Moreover, if f; and f, are both convex,
so is their sum f; + f>. Hence, dum = X;ev g— is a convex
function.

A closed halfspace which is convex is a set of the form
{xjJa”x < b} [15], where a # 0 and all entries in x are continuous.
Since all constraints (12b), (12¢), and (12d) are in the form of

the closed halfspace, all constraints are convex. Hence, the DM



501

Number of Processors

Number of Processors

I‘:‘ < ) M ry ./j S IJ > % ﬂ = IJ -
& o & o 2 & & & R & o & ‘\@ ¢ & & S & & 5@ B\\m
&G@\&’Q& & \\e& & eff "z@‘boo'ﬁ’v ,g,ﬂ’ Q\@‘” 5 @o@\\\ éps J \\‘q& & eé‘* < ooao&ov Q"}és\” I &k”‘&\\\o“é P 010& ¢ ae&z ,\o@c‘osoo@v ‘\.}‘&@@ (’o\\
& < i & < & & @ < &
& o &
(@ L=1Lo ®) L=L; (© L=L
Fig. 4. The number of processors for global scheduling with different latency constraints L
N ' mBa il HBA 1
oM 0ol oM or -
200 al [
mGD*
% § 80- %50,
150 g S
_gmn é wl gw,
=z 4 =z
201
50| q 20 h ”
10
~f@§é&§@&@%;;g L »@gﬁég&&£35§$
& & ° 0.\@@“’ et o i 00'19 A @é E ¢\\°§\A°° ° 0,\&"6’ &t & <,°‘19 A @\'} $° é~‘°§s°°° o\\@& & 6”"‘? o o&o TE &
Q,g‘b (&@ < P Qa" & < P 0@"’ < < P
& & &
(@ L=1Lo () L=1L (©L=L
Fig. 5. The number of processors for partitioned scheduling with different latency constraints L
. . TABLE IV
problem (12) is a convex programming problem. CHARACTERISTICS OF BENCHMARKS
Given that all D and. S in the DM problem (12). have to Realistic Applications VT T yo— y—
take only integer values in practice, the DM problem is an ICP Beamformer 57 | 70 | 60912 1469
problem. ] ChannelVocoder 55 70 284000 106755
. . . DCT 8 7 380928 | 121672
In mathematical programming, a convex programming prob- Data Encryption Standard (DES) | 33 | 60 | 46080 | 15602
lem can be solved efficiently to find a global optimum. If the FilterBank 85 | 99 | 158368 | 34638
variables have to only take integer values, the problem becomes o EG? 12230 12263 gg;gg 14292415028
. . . . erpen
an integer convex programming problem. This Integer prgblem 18 Time Delay Equalization (IDE) | 29 | 28 | 1071840 | 628151
an NP-hard problem that can not be solved efficiently using only Vocoder 114 | 147 | 291360 | 21554
the conventional convex programming. Fortunately, the combi- CD2DAT 6 > 829 258
. £ th tional ing [15] and H263 7 3 | 996697 | 369508
nation of the conventional convex programming ‘and some Samplerate 6 5 3797 531
algorithms for solving mixed integer linear programming can be Satelite 22 | 26 11746 5484
used to find a global optimal solution for ICP. In Section VI-B,
the evaluation shows the efficiency of the existing CVX solver [6] TABLE V
to solve our DM problem. LaTENcY CONSTRAINTS
V1. EVALUATION Constraint Latency
LO Linin
In this section, we evaluate our DM approach and compare L 0.4(Linax = Linin) + Linin
it with the Baseline Approach (BA) proposed in [5] and briefly L 0.9(max = Lyin) + Lmin

explained in Section III-D. The DM problem is solved by us-
ing mixed integer disciplined convex programming (MIDCP) in
CVX [6]. All experiments are performed on an Intel 17 dual-core
processor running at 2.7GHz with 4 GB RAM.

We selected 13 real-life streaming applications modeled as
CSDF graphs from the Streamlt [16] benchmark suit. We use the
application parameters as specified in [4]. The characteristics of
these benchmarks are given in Table 1V, including the number
of actors (]V]), the number of edges (|E|), the maximum latency
(Lmax) and the minimum latency (Lu;,) in clock cycles. The
maximum latency is the latency obtained by using the IDP model,
i.e. df = 1, whereas the minimum latency is the latency obtained
when df = 0. To demonstrate the effectiveness of our DM
approach, the latency constraints of the graphs are varied during

the experiments. We evaluate our DM approach in terms of the
number of processors needed for each benchmark and compare
it to BA for three latency constraints per benchmark, shown in
Table V, while the achieved throughput of each benchmark is the
same in both BA and DM approaches.

A. The effectiveness of the DM approach

First, we evaluate the effectiveness of the DM approach in
terms of the number of required processors. Fig. 4 shows the re-
sults under global scheduling. The number of processors needed
to schedule a task set is computed using (5).

Fig. 4(a) shows the results with latency constraint Ly;,. Under
such stringent latency constraint, the intervals in which deadlines
of actors may vary are limited. Our DM approach is still capable



TABLE VI
THE EXECUTION TIME OF THE DM APPROACH (IN SEC.)

Applications Ly Ly L

Beamformer 0.05 0.18 0.11
ChannelVocoder 0.07 0.11 0.11
DCT 0.05 0.07 0.06
DES 59 14.7 0.23
FilterBank 0.1 0.32 0.17
MPEG2 12.9 0.13 0.07
Serpent 20.59 | 900.98 | 4751
TDE 0.13 0.1 0.24
Vocoder 1909 2256 0.31
CD2DAT 0.11 0.21 0.1

H.263 0.22 11.72 0.23
Samplerate 0.14 0.1 0.06
Satelite 0.14 0.08 0.24

of reducing the number of processors compared to the BA for
8 out of 13 benchmarks. The largest reduction is obtained for
the Vocoder benchmark, with a reduction of 66 processors.
The DCT, TDE and H.263 benchmarks have only a single data
path in the corresponding CSDF graphs. The Beamformer and
Filterbank benchmarks have symmetric graph structures, i.e.,
multiple paths consist of the same type of actors. Therefore,
for all these benchmarks, small intervals in which deadlines of
actors may vary restrict the possibility to reduce the total density,
consequently the required number of processors is not reduced.

Fig. 4(b) presents the results for a relaxed latency constraint
for each benchmark. There are 6 benchmarks for which our DM
approach reduces the number of processors. The Beamformer
and Filterbank benchmarks with symmetric structure, also benefit
from the DM approach. That is because the redistribution of
deadlines on a path makes it possible to decrease the densities o;
of some tasks. For DCT, TDE, and H.263, although we can see a
reduction in the total density dy, of the task set, the reduction
is insufficient for decreasing the number of processors. The
Samplerate and ChannelVocoder benchmarks keep unchanged
on the number of processors because the total density is very
close to the total utilization which is the lower bound of dgy,. Fig.
4(c) shows the results for a very relaxed latency constraint, where
only 5 benchmarks get reduction on the number of processors.

In Fig. 5, the number of processors required for partitioned
scheduling to schedule a streaming application is shown. From
(5) and (6) we can see that scheduling the task set in partitioned
scheduling requires more processors than in global scheduling.
For partitioned scheduling, the benchmarks can get larger re-
duction in the number of processors and the reduction can be
obtained for more benchmarks compared to the global scheduling
case in Fig. 4. As shown in Fig. 5(a), the Vocoder benchmark
gets the larger reduction of 141 processors comparing to 66
processor reduction in global scheduling. Fig. 5(b) shows that
the ChannelVocoder and TDE benchmarks which do not benefit
from the DM approach for global scheduling get reduction in
number of processors for partitioned scheduling. The rationale
behind is that since in (6) the density is always multiplied with a
number greater than 2, the reduction on the total density dgyn, is
scaled up by at least 2 times. Hence, we can see more and larger
reduction in the number of processors for the benchmarks when
partitioned scheduling is used.

From the experimental results shown in Fig. 4 and Fig. 5, we
can see that by applying our DM approach we obtain reduction
in the number of processors in more than 52% of the conducted
experiments. For the rest of the experiments, both approaches
give the same number of processors.

B. The time complexity of solving the DM problem

Next, we evaluate the efficiency of our approach in terms of the
execution time of CVX [6] for solving our DM problem. We set

a maximum runtime of 4 hours for the solver, and all results are
summarized in Table VI where the time unit is seconds. We can
see that the runtime of CVX is not a function of the number of
actors and edges in the corresponding application CSDF graph.
For example, the FilterBank benchmark with more actors and
edges than the DES benchmark just needs 0.32 second to find
the optimal solution for L;, while the DES benchmark needs
14.7 seconds. Additionally, even for the same benchmark with
different latency constraints, the runtime for finding the optimal
solution is fluctuating significantly. The execution times of our
DM approach with the Vocoder benchmark for L; and L, is 2256
seconds and 0.31 second, respectively. According to Table VI
most of the problems can be solved in a second. However, for
the two very complex benchmarks, Serpent and Vocoder which
have the largest number of constraints, the solver spent a long
time to find the optimal solution. A method to speed up solving a
very complex problem is to set an initial solution for optimization
variables which can be obtained from BA, but unfortunately CVX
does not support initialization of the optimization variables.

VII. CoNCLUSION

In this paper, we optimize the number of processors needed to
schedule a streaming application with a given latency constraint
modeled as CSDF and scheduled as a periodic task set. First, a
new computation method is proposed for computing the earliest
start times of the task set in order to integrate them into a
mathematical programming problem. Next, we formulate our
DM problem as a mathematical programming problem and prove
that it is an ICP problem. Our DM approach has been applied
on 13 real-life streaming applications to show its effectiveness
and efficiency. It reduces the number of processors in more than
52% of the conducted experiments, while in most cases the time
needed for solving our DM problem is less than a second.

REFERENCES

[1] E.A.Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

[2] G. Bilsen et al., “Cycle-static dataflow,” IEEE Trans. Signal Process.,
vol. 44, no. 2, pp. 397-408, 1996.

[3] A.H. Ghamarian et al., “Latency minimization for synchronous data flow
graphs,” in DSD, 2007.

[4] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications,” in EMSOFT, 2011.

[S] M. A. Bamakhrama and T. Stefanov, “Managing latency in em-
bedded streaming applications under hard-real-time scheduling,” in
CODES+ISSS, 2012.

[6] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.0 beta,” http://cvxr.com/cvx, Sep. 2012.

[71 A. Davare et al., “Period optimization for hard real-time distributed
automotive systems,” in DAC, 2007.

[8] S. Hong, T. Chantem, and X. S. Hu, “Meeting end-to-end deadlines
through distributed local deadline assignments,” in R7SS, 2011.

[9] P. Balbastre, I. Ripoll, and A. Crespo, “Optimal deadline assignment for
periodic real-time tasks in dynamic priority systems,” in ECRTS, 2006.

[10] T. Chantem et al., “Period and deadline selection for schedulability in
real-time systems,” in ECRTS, 2008.

[11] H. Javaid et al., “Optimal synthesis of latency and throughput
constrained pipelined mpsocs targeting streaming applications,” in
CODES+ISSS, 2010.

[12] J. Cong et al., “Synthesis algorithm for application-specific homoge-
neous processor networks,” IEEE Trans. VLSI Syst., vol. 17, no. 9, pp.
1318-1329, 2009.

[13] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.

[14] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of
sporadic task systems,” in RTSS, 2005.

[15] S. P. Boyd and L. Vandenberghe, Convex optimization.
university press, 2004.

[16] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
PACT, 2010.

Cambridge



