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Abstract 
Timetable regularity is an important measure for service quality in high frequency public transit sys-

tems, assuring an evenly distributed passenger load as well as improving product attractiveness and 

appreciation. However, to be feasible during daily operation a timetable may also have to adhere to 

other planning requirements, e.g. limitations to permitted departure times to better coordinate with 

other service providers like schools or long-distance transportation networks. 

In this paper a disjunctive program formulation is proposed to generate regular timetables adhering 

to planning requirements. The modeled requirements not only allow for the consideration of feasibility 

constraints from daily operations, but also for the consideration of simultaneous departures for trans-

fer connections, an objective traditionally opposed to regularity. To show its applicability the approach 

is applied to two models of artificial transit networks as well as to a model of the bus network of Co-

logne, Germany.  

The results show that the proposed formulation can be used to generate timetables for network 

instances of realistic size in acceptable time using CPLEX. For networks consisting of multiple connected 

components it is shown that a divide and conquer approach can significantly reduce run times.       

1. Introduction 
Timetable generation is a complex task and a well-known optimization problem (see [6]). It can be 

subject to different objectives, ranging from achieving good transfer connections, to equidistant head-

ways, to robustness in general. However, to be feasible during daily operation a timetable may also 

have to adhere to other planning requirements, e.g. specific departure sequences to accommodate 

frequent transfer connections. A significant portion of published optimization approaches for timeta-

ble generation seems to ignore such planning requirements and the resulting timetables subsequently 

may need to be further modified by hand to be feasible during daily operations. 

In this paper a disjunctive program formulation is proposed, to generate regular timetables adhering 

to planning requirements. The modeled requirements not only allow for the consideration of feasibility 

constraints from daily operations, but also for the consideration of simultaneous departures for trans-

fer connections, an objective traditionally opposed to regularity. To show its applicability the approach 



 
 

is applied to two models of artificial transit networks as well as to a model of the bus network of Co-

logne, Germany. 

The remainder of this paper is organized as follows: section 2 gives a brief overview of the back-

ground of timetable generation as well as related research. Section 3 deals with the problem formula-

tion, a first basic description of a mixed integer program to generate regular timetables, and an exten-

sion of this model to incorporate planning requirements. In section 4 the applicability of the model is 

shown, before section 5 concludes the paper with a summary of the results and some proposals for 

further research directions. 

2. Background 

2.1. Timetable generation 
Timetable generation is the process of combining the results of the network and line planning phase 

with the defined service frequencies to transform them into a feasible schedule, i.e. a set of trips with 

departure times (see [6]). What exactly makes a timetable feasible depends, amongst other things, on 

the transit system under consideration, the potential passenger group to be targeted, and other oper-

ational, political, and societal conditions. As a result, there exist different equally suitable objectives 

for timetable generation. 

A frequently used objective is service regularity (see e.g.  [1], [9], [11], [12], [17], and [20]), a measure 

for the equability of headways. It can be used for static evaluation of a timetable during the planning 

phase as well as for dynamic assessment of operational performance. As shown by van Ort and van 

Nes in [20], a timetable with high regularity during daily operation results in a more even distribution 

of passengers across vehicles, lowering spikes in passenger load and making the transit system more 

attractive. Ullrich et al. showed in [19] that in systems where vehicles of different lines share common 

resources with limited capacity (i.e. most tram systems), regularity can also be used as a measure for 

the capability of a timetable to contain consequences of small delays, subsequently heightening the 

overall punctuality of the system.  

Another frequently used objective for timetable generation is synchronization (see e.g. [4], [8], [11], 

[12], [14], and [22]), which is a measure for the number of (almost) simultaneous vehicle depar-

tures/arrivals and as such is opposed to regularity. Timetables with a high synchronization help to as-

sure attractive transfer connections for passengers by minimizing waiting time, which is especially im-

portant in transit systems with low service frequencies where passengers otherwise may need to wait 

for a prolonged time. 

A third frequently used objective is robustness (see e.g. [2], [3], [10], [13], [15], and [23]), which is a 

universal measure for the capability of a system to withstand dynamically occurring disturbances with-

out changes to its initial stable structure. Because of the generality of this objective, different interpre-

tations can be employed when generating timetables. It is therefore necessary to specify precisely 

what type of disturbance is to be addressed when optimizing for robustness. For example, and as al-

ready explained, a timetable with high service regularity can raise robustness against small disturb-

ances in transit systems where vehicles of different lines share common resources with limited capac-

ity. In contrast, a timetable with buffer times between the planned arrival and departure times of ve-

hicles can raise the robustness of transfer connections by allowing punctual or early vehicles to wait 

on feeder vehicles. 

In addition to the objectives applied during their generation, timetables can be classified by their 

structural characteristics. These characteristics comprise, amongst others, the periodicity of the time-

table (i.e. periodic or aperiodic) as well as the homogeneity of the basic intervals (i.e. one common 

basic interval for all lines or different basic intervals for different lines).  



 
 

2.2. Related research 
A multitude of different optimization approaches for timetable generation exist, which can be roughly 

distinguished by the level of abstraction of the optimization model, the applied solution method, the 

utilized (combination) of objectives, and the structural characteristics of the generated timetable (for 

a general overview see e.g. [6]). 

A fundamental optimization approach was introduced by Ceder et al. in [4] and later extended by 

Eranki in [8]. It enables the generation of aperiodic timetables with maximum synchronization at ded-

icated transfer stops while simultaneously adhering to given minimum and maximum headways for 

vehicles of the same line. The model is based on a graph representation of the transit network with 

reduced sets of nodes and edges, i.e. it contains only nodes and edges associated with previously iden-

tified transfer stops. Ceder et al. then develop a mixed integer linear program (MILP) to maximize the 

number of simultaneous arrivals at the nodes of the graph. To solve the MILP the authors develop a 

constructive algorithm, which first identifies the most promising node at any given moment and then 

tries to schedule as many simultaneous arrivals there as possible. If no more (synchronous) arrivals can 

be scheduled, the next promising node is identified, and the process repeats. Ceder et al. show the 

correctness and applicability of their approach by applying it to models of artificial transit networks as 

well as to a model based on a part of the bus network of Israel. 

More recent approaches for the generation of synchronous timetables are described by Saharidis et 

al. in [14] and Wu et al. in [22]. Saharidis et al. propose a MILP with several extensions to generate bus 

timetables, which minimize cost associated with passenger waiting time at transfer stops and also take 

phases with high passenger demand into account. They show the applicability of their model by using 

CPLEX to generate timetables for the bus network of the Greek island of Crete and comparing the 

simulated waiting times with the observed waiting times. 

Wu et al. also develop a model for the minimization of passenger waiting times at transfer stops. But 

other than Ceder et al. and Saharidis et al. they create periodic timetables and assume stochastic driv-

ing and waiting times. Additionally, Wu et al. differentiate between waiting time of passengers newly 

boarding a vehicle at a transfer stop, waiting time of passenger transferring from one vehicle to an-

other at a transfer stop and waiting time for passengers just passing through a transfer stop without 

changing vehicles. To mitigate the randomness of travel times they allocate buffer times to vehicle 

departures. To solve their model Wu et al. develop a Genetic Algorithm (see [7]) whose probabilistic 

search strategy they replace with a simple local search strategy to assure a quick and reliant conver-

gence. They demonstrate the performance and applicability of their approach by generating timeta-

bles for randomly generated network instances and comparing the waiting times resulting from time-

tables generated using their approach with waiting times of timetables generated under the assump-

tion of deterministic driving times. The results show that the usage of stochastic driving times during 

optimization results in timetables which are better suited to conditions found during daily operations: 

They show a reduction in average waiting time for newly boarding passengers as well as in average 

waiting time for passengers transferring between vehicles, while raising the average waiting time for 

passengers just passing the transfer stop. 

Optimization models to generate regular timetables are for example proposed by Genç in [9], Bam-

pas et al. in [1] and Ullrich et al. in [17] and [19]. Genç develops an integer linear programming formu-

lation to generate periodic timetables with variable basic intervals, maximizing the minimum headway 

between consecutive departures at stops shared by multiple lines. This results in timetables which 

distribute all planned departures as equidistantly in their common basic interval as possible, thus rais-

ing the robustness of the system against small disturbances. Genç solves his model using a self-devel-

oped Branch-and-Bound solver (see [5]) and applies it to the generation of timetables for the tram 

network of Cologne, Germany. To assess the performance of his solver he compares it with CPLEX. The 

results show that the Branch-and-Bound solver quickly generates good solutions, but with increasing 



 
 

run time CPLEX is able to find better solutions. Furthermore, Genç shows that the optimization prob-

lem of generating timetables with maximum service regularity can be traced back to the edge coloring 

problem, and thus is an NP hard optimization problem.     

Bampas et al. develop exact and heuristic methods to generate periodic regular timetables for special 

cases of the optimization problem posed by Genç, i.e. they generate timetables with a common basic 

interval for special network structures, like chains, spiders, rings, and trees. As Genç, Bampas et al. 

show that the underlying optimization problem can be traced back to the edge coloring problem of 

graph theory and prove that the generation of maximum regularity timetables with common basic 

interval is NP hard for ring and tree networks. The authors develop exact algorithms for chain, star, 

and spider networks as well as heuristic algorithms to approximate the optimal solutions for ring and 

tree networks. 

Ullrich et al. also solve a special case of the optimization problem formulated by Genç, addressing 

the generation of regular, periodic timetables with a common basic interval. They extend the model 

with the possibility to incorporate transit planning requirements (e.g. guaranteed transfer connec-

tions, amplifier lines serving only the city centers, coordination with intercity rail traffic) during opti-

mization to assure the applicability of the resulting timetables during daily operation. To solve their 

model the authors develop a Branch-and-Bound solver, which is preceded by a Genetic Algorithm sup-

plying initial upper bounds to kick start the solver. Ullrich et al. apply their approach to several models 

of the tram networks of Cologne, Germany and Montpellier, France and show that the resulting time-

tables raise the robustness against small disturbances, while simultaneously respecting formulated 

planning requirements. 

A model combining regularity and synchronization is proposed by Ibarra-Rojas and Rios-Solis in [11] 

and extended by Ibarra-Rojas et al. in [12]. In [11] they develop an Integer Programming formulation 

to generate timetables, which maximize the number of synchronous departures to optimize passenger 

transfers, while also targeting regular departure times to avoid vehicle bunching. To solve the problem, 

they develop a multi-start iterated local search algorithm and apply it to different network models 

based on the bus network of Monterrey, Mexico. They compare timetables generated by their ap-

proach with timetables obtained using CPLEX and find that their algorithm generates good solutions 

very quickly, while CPLEX does not solve to optimality in acceptable time. 

In [12] the authors extend their model with the possibility to consider multiperiod synchronization, 

i.e. synchronization between vehicles departing in different planning periods of the operational day. 

To solve this problem Ibarra-Rojas et al. define several different neighborhood functions to search the 

solution space as well as different heuristic approaches using these neighborhoods to approximate 

solutions for their problem. They apply the resulting approaches to models of different artificial bus 

networks as well as to a model based on part of the bus network of Monterrey, Mexico and again 

compare the obtained solution with solutions computed using CPLEX. Their results show that their 

heuristics can compute good solutions very quickly and that they achieve a higher number of synchro-

nous departures than approaches that merge separately optimized planning periods. 

An approach for the generation of robust timetables is for example described by Bešinović et al. in 

[2] and Goverde et al. in [10]. Bešinović et al. describe a hierarchical two-level framework for the gen-

eration of robust railway timetables, which combines a macroscopic and a microscopic model in an 

iterative process. The macroscopic model generates timetables with minimal travel times and maximal 

robustness by solving an integer linear program for a reduced railway network (i.e. only locations that 

allow interactions between trains are considered) using a randomized multi-start greedy heuristic and 

evaluating them in regards to their ability to absorb delays via different scenarios with randomly gen-

erated delays. The resulting timetables are fed to the microscopic model, which represents the net-

work in more detail, i.e. it considers all locations where section attributes (e.g. speed limit, gradient, 

or curvature radius) change. The model is used to calculate running, blocking, and minimum headway 



 
 

times and to evaluate the timetables for potential train conflicts and infrastructure occupation viola-

tions. Based on these evaluations the constraints of the macroscopic model may be updated and a 

new iteration may be started. This process is repeated until a robust, stable, and conflict-free timetable 

is found. 

The model is extended with a third level by Goverde et al.: a mesoscopic model for fine-tuning train 

trajectories on corridors between the macroscopic nodes of the network, in order to optimize energy-

efficiency. After the iterations between the macroscopic and microscopic models are finished, the 

timetable is given to the mesoscopic model, which uses a dynamic programming approach to optimize 

the departure and arrival times at intermediate stops on corridors in order to lower the energy con-

sumption of trains while travelling on connecting sections. Both Bešinović et al. and Goverde et al. 

apply their framework to a model of the Dutch railway network between Utrecht, Eindhoven, Tilburg, 

and Nijmegen. Their results show that their approach generates conflict-free timetables, which are 

more robust and energy efficient than the currently employed timetable.    

3. Generating regular timetables adhering to planning requirements 
In the following the MILP first described by Genç in [9] will be extended with the capability to incorpo-

rate planning requirements, following the approach described by Ullrich et al. in [17] and [19]. There-

fore, the model by Genç will first be introduced in summary before the extensions for the incorporation 

of planning requirements are described. 

3.1. Modeling regularity 
To generate regular timetables, the transit network is modeled as a network 𝑁(𝑆, 𝐶, 𝑡, 𝐿, 𝑇) with a set 

of stops 𝑆 = {𝑠1, … , 𝑠𝑛}, a set of connections 𝐶 = {𝑐1, … , 𝑐𝑣} ⊆ 𝑆 × 𝑆 with travel times 𝑡: 𝐶 → ℕ0, and 

a set of lines 𝐿 = {𝑙1, … , 𝑙𝑚}. A line 𝑙𝑖 = (𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑘(𝑖)) is a simple directed path in the directed 

graph 𝐺 = (𝑆, 𝐶) with a basic interval 𝑇𝑖 from the set of all basic intervals 𝑇 = {𝑇1, … , 𝑇𝑚}. 

For every line 𝑙𝑖 the departure time at its first stop 𝑠𝑖1 is defined by 𝜆𝑖. A timetable 𝜆 from the set of 

all timetables Λ = ℕ𝑇1 × ℕ𝑇2 × …× ℕ𝑇𝑚 is a vector with 𝑚 entries, one for every line. Because only 

periodic timetables are considered ℕ𝑇𝑖 = {0,… , 𝑇𝑖 − 1} holds and the departure times at the starting 

stops can be limited as shown in equation 1. 

0 ≤ 𝜆𝑖 ≤ 𝑇𝑖 − 1 (1) 

 Assuming that the driving times between consecutive stops are fixed and independent of a given 

timetable, the departure times at all stops 𝑠𝑖𝑝 ∈ 𝑆(𝑙𝑖) served by line 𝑙𝑖 can be calculated by adding up 

𝜆𝑖 and the sum of the travel times for the stops preceding 𝑠𝑖𝑝 (see equation 2). 

𝑎(𝑠𝑖𝑝, 𝑙𝑖 , 𝜆) ≔ 𝜆𝑖 +∑𝑡(𝑠𝑖𝑘 , 𝑠𝑖𝑘+1)

𝑝−1

𝑘=1

1 ≤ 𝑝 ≤ 𝑠𝑖𝑘(𝑖) (2) 

Under this assumption the departure times at any given stop 𝑠 are only dependent on the departure 

times at the starting stops and can also be calculated as shown in equation 3. 

𝑎(𝑠, 𝑙𝑖, 𝜆) = 𝜆𝑖 + 𝑎(𝑠, 𝑙𝑖, 0⃗ ) (3) 

If it is clear to which timetable a departure time belongs the notation 𝑎𝑖
𝑠 is used instead of 𝑎(𝑠, 𝑙𝑖 , 𝜆). 

Before formulating the optimization problem different headway measures have to be defined. 

Definition 1 (Headway between two lines at a stop) 
Let 𝑠 ∈ 𝑆 be a stop of the network served by lines 𝑙𝑖 and 𝑙𝑗. Further let 𝜆 be the timetable under con-

sideration and let 𝑥𝑖𝑗
𝑠 = |𝑎𝑖

𝑠 − 𝑎𝑗
𝑠|𝑚𝑜𝑑 gcd(𝑇𝑖, 𝑇𝑗) be the absolute difference between the departure 

times 𝑎𝑖
𝑠 and 𝑎𝑗

𝑠. Then the headway 𝛿(𝑠, 𝑙𝑖, 𝑙𝑗, 𝜆) between 𝑙𝑖 and 𝑙𝑗 at 𝑠 und timetable 𝜆 can be calcu-

lated as follows, as shown by Vince in [21]: 

𝛿(𝑠, 𝑙𝑖, 𝑙𝑗, 𝜆) ≔ 𝑚𝑖𝑛{𝑥𝑖𝑗
𝑠 , 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 𝑥𝑖𝑗

𝑠 } (4) 



 
 

In the best possible case the departure times of two lines with differing basic intervals can be ar-

ranged equidistantly in the interval defined by the greatest common divisor of their corresponding 

basic intervals. Thus the headway can be bound as shown in equation 5. 

𝛿(𝑠, 𝑙𝑖, 𝑙𝑗, 𝜆) ≤ ⌊
𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗)

2
⌋ (5) 

Definition 2 (Headway at a stop) 
Let 𝑠 ∈ 𝑆 be a stop of the network and let 𝜆 be the timetable under consideration. The headway 𝛿(𝑠, 𝜆) 

at 𝑠 under 𝜆 is the minimum of all headways between all pairs of lines from 𝐿(𝑠), the set of lines serving 

𝑠. It is calculated as shown by equation 6. 

δ(s, λ) ≔ {
min

li,lj∈L(s),li≠lj
δ(s, li, lj, λ) , |L(s)| > 1

TL(s), |L(s)| = 1
 (6) 

As a result of equation 5, the upper bound 𝛿̅(𝑠) for the headway at stop 𝑠 can be determined by 

calculating the minimum of all possible equidistant departure distributions (see equation 7). 

δ̅(s) = ⌊ min
li,lj∈L(s),li≠lj  

gcd(Ti, Tj)

2
⌋ L(s) ≥ 2 (7) 

Definition 3 (Headway of a timetable) 
Let 𝜆 be the timetable for a given network. The headway 𝛿(𝜆) of this timetable is the minimum of all 

headways at the stops 𝑠 ∈ 𝑆 of the network and is calculated as shown in equation 8. 

δ(λ) ≔ min
s∈S

δ(s, λ) (8) 

Definition 4 (Headway sum of a timetable) 
Let 𝜆 be the timetable for a given network. The headway sum 𝛿Σ(𝜆) is the sum of all headways at the 

stops 𝑠 ∈ 𝑆 of the network (see equation 9). 

δΣ(λ) ≔∑δ(s, λ)

s∈S

 (9) 

Obviously, an upper bound 𝛿Σ̅̅ ̅ for the headway sum can be calculated by adding up the upper bounds 

for all stops of the network (see equation 10). 

δΣ̅̅ ̅ =∑δ̅(s)

s∈S

 (10) 

With these headway measures the optimization problem to generate regular periodic timetables can 

be defined. 

Definition 5 (Regular periodic timetabling problem) 
Let 𝑁(𝑆, 𝐶, 𝑡, 𝐿, 𝑇) be a network. Find an optimum timetable 𝜆∗ ∈ Λ with 𝛿Σ(𝜆

∗) = 𝛿Σ
∗, where 𝛿Σ

∗ is the 

optimum headway sum defined as shown in equation 11. 

δΣ
∗ ≔ max

λ∈Λ:δ(λ)=δ∗
δΣ(λ) (11) 

Here 𝛿∗ is the optimum timetable headway over all timetables 𝜆 ∈ Λ (see equation 12). 

δ∗ ≔ max
λ∈Λ

δ(λ) (12) 

Timetables solely satisfying equation 12 would only achieve the best possible headway at highly fre-

quented stops, while stops with lower frequencies would be neglected. Timetables satisfying equation 

11 on the other hand not only achieve the best possible headway at highly frequented stops, but also 

consider other stops. 

The following mixed integer linear program solves this optimization problem: 

 

 

 



 
 

 

 

𝑚𝑎𝑥
𝜆∈𝛬

𝛿(𝜆) ∗ 𝛿𝛴̅̅ ̅ + 𝛿𝛴(𝜆) (13) 

 

s.t. 

𝑎𝑖
𝑠 = 𝜆𝑖 + 𝑎(𝑠, 𝑙𝑖 , 0⃗ ) ∀𝑠 ∈ 𝑆, 𝑙𝑖 ∈ 𝐿(𝑠) (14) 

𝑥𝑖𝑗
𝑠 = 𝑎𝑖

𝑠 − 𝑎𝑗
𝑠 − 𝑧𝑖𝑗

𝑠 ∗ 𝑔𝑐𝑑(𝑇𝑖 , 𝑇𝑗) ∀𝑠 ∈ 𝑆, 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿(𝑠), 𝑙𝑖 ≠ 𝑙𝑗 (15) 

0 ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 1 ∀𝑠 ∈ 𝑆, 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿(𝑠), 𝑙𝑖 ≠ 𝑙𝑗 (16) 

𝛿(𝑠, 𝑙𝑖 , 𝑙𝑗, 𝜆) ≤ 𝑥𝑖𝑗
𝑠  ∀𝑠 ∈ 𝑆, 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿(𝑠) (17) 

𝛿(𝑠, 𝑙𝑖 , 𝑙𝑗𝜆) ≤ 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 𝑥𝑖𝑗
𝑠  ∀𝑠 ∈ 𝑆, 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿(𝑠) (18) 

𝛿(𝑠, 𝜆) ≤ 𝛿(𝑠, 𝑙𝑖, 𝑙𝑗) ∀𝑠 ∈ 𝑆, 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿(𝑠) (19) 

1 ≤ 𝛿(𝑠, 𝑙𝑖, 𝑙𝑗, 𝜆) ≤ ⌊
𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗)

2
⌋ ∀𝑠 ∈ 𝑆, 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿(𝑠) (20) 

1 ≤ 𝛿(𝜆) ≤ 𝛿(𝑠, 𝜆) ∀𝑠 ∈ 𝑆 (21) 

1 ≤ 𝛿(𝑠, 𝜆) ≤ 𝛿̅(𝑠) ∀𝑠 ∈ 𝑆 (22) 

0 ≤ 𝜆𝑖 ≤ 𝑇𝑖 − 1 ∀𝑖 ∈ 𝐿 (23) 

 𝑥𝑖𝑗
𝑠 , 𝜆𝑖, ∈ ℕ0 (24) 

 𝛿(𝑠, 𝑙𝑖 , 𝑙𝑗 , 𝜆), 𝛿(𝑠, 𝜆), 𝛿(𝜆) ∈ ℕ (25) 

 𝑧𝑖
𝑠 ∈ ℤ (26) 

 

Objective function 13 maximizes not only the headway sum but also the timetable headway, making 

sure every solution satisfies both equation 11 and 12. The timetable headway is weighted by the upper 

bound of the headway sum 𝛿Σ̅̅ ̅ to assure a balanced consideration of both headway measures during 

optimization. 

Constraint 14 defines the departure times for every line at every stop, which is used by constraint 15 

to calculate the distance between pairs of departing lines. Note that the equation used in constraint 

15 differs from the equation used in definition 1. Both formulations are equivalent (as shown by Genç 

in [9]), but the formulation used above does not require the usage of absolute value and modulo op-

erators. Constraint 16 assures the bounds for the distance between departure times. Constraints 17 

and 18 make sure equation 4 is adhered to, while constraint 19 assures the same for equation 6. Con-

straints 20 to 22 assure the headway bounds. All headways have to be at least 1, to assure that no two 

vehicles depart from the same stop simultaneously. The timetable thus is collision free. Constraint 23 

assures that the departure times of all lines stay within their corresponding basic interval. Lastly, con-

straints 24 to 26 define the domains of all variables.  

As can be seen, in order to solve this optimization problem all stops and all possible line pairs at the 

stops have to be examined, resulting in a high number of variables and inequalities. This number can 

be reduced substantially using equivalence relations on the set of stops as well as on the edge set of 

the multi-line conflict graph. 

Definition 6 (Multi-line conflict graph) 
Given a network 𝑁(𝑆, 𝐶, 𝑡, 𝐿, 𝑇) the graph 𝑀𝐿𝐶𝐺(𝑁) = (𝐿,𝑀) defines the multi-line conflict graph. It 

has a vertex for every line 𝑙𝑖 ∈ 𝐿 and edges (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀 between the vertices of 𝑙𝑖 and 𝑙𝑗, if and only 

if both lines serve stop 𝑠, i.e. (s, li, lj) ∈ M ⇔  s ∈ S(li) ∩ S(lj). 

Given the multi-line conflict graph an alternative headway measure can be defined, which will be 

used to define the equivalence relation on the edges of the multi-line conflict graph. 

Definition 7 (Line conflict headway) 



 
 

Let 𝑁(𝑆, 𝐶, 𝑡, 𝐿, 𝑇) be a network and 𝑀𝐿𝐶𝐺(𝑁) = (𝐿,𝑀) the multi-line conflict graph for this network. 

The headway 𝛿(𝑚, 𝜆) of a conflict 𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀 is the headway between the conflicting lines 𝑙𝑖, 𝑙𝑗  

at stop 𝑠 and defined as δ(m, λ) ≔ δ(s, li, lj). 

 As shown in equation 27, this headway measure can be used to define an alternative way to calcu-

late the headway of a timetable 𝜆 instead of equation 8. 
δ(λ) = min

m∈M
δ(m, λ) (27) 

Definition 8 (Equivalence relation on the edges of the multi-line conflict graph) 
Let 𝐹(𝑠𝑖, 𝑠𝑗, 𝑙) be the travel time from stop 𝑠𝑖 to stop 𝑠𝑗 of line 𝑙 and let 𝑀 be the edge set of the multi-

line conflict graph of the corresponding network. Define a relation 𝑅𝑀 on 𝑀 as follows: 
𝑚1 = (𝑠1, 𝑙11, 𝑙12)~𝑅𝑀𝑚2 = (𝑠2, 𝑙21, 𝑙22)

⇔ {𝑙11, 𝑙12} = {𝑙21, 𝑙22} ∧ 𝐹(𝑠1, 𝑠2, 𝑙11) = 𝐹(𝑠1, 𝑠2, 𝑙12)
 (28) 

Then the headway for all line conflicts 𝑚1, 𝑚2 ∈ 𝑀 for which 𝑚1~𝑅𝑀𝑚2 holds is equal, i.e. ∀λ ∈

Λ: δ(m1, λ) = δ(m2, λ). 

Let 𝑀0 ⊆ 𝑀 be the set of representatives of 𝑀. Then for any given timetable 𝜆 of a network equation 

29 holds. 

∀λ ∈ Λ: min
m∈M

δ(m, λ) = min
m∈M0

δ(m, λ) (29) 

 As a result, it is sufficient to only examine the set of representatives 𝑀0 when calculating the head-

way of a timetable.  

To further reduce the number of variables and inequalities, another equivalence relation can be de-

fined on the set of stops. 

Definition 9 (Equivalence relation on the set of stops) 
Define a relation 𝑅Σ on the set of stops 𝑆 of a given network as follows: 

s1~RΣs2⇔L(s1) = L(s2) ∧ ∃k ∈ ℤ∀l ∈ L(s1): F(s1, s2, l) = k (30) 

Under equation 30 two stops 𝑠𝑖, 𝑠𝑗 ∈ 𝑆 are equivalent to one another, if and only if both are served 

by the same lines and the travel time between 𝑠𝑖, 𝑠𝑗 is equal for all lines. Because travel times are 

assumed to be fix it is sufficient to only consider the first common stop when calculating the headway 

in this case and the network can be reduced as shown in figure 1. 

Let 𝑆Σ ⊆ 𝑆 be the set of representatives of the factor set 𝑆/𝑅Σ. The headway sum 𝛿Σ(𝜆) for a given 

timetable 𝜆 can be calculated using the factor set and the cardinalities of the equivalence classes as 

shown in equation 31. 

∀λ ∈ Λ: δΣ(λ) =∑δ(s, λ) = ∑|[s]RΣ|

s∈SΣs∈S

∗ δ(s, λ) (31) 

  The number of stops that need to be examined to calculate the headway sum can be reduced fur-

ther, because the headway at stops which are only served by one line is constant as per definition 2. 

Figure 1: Example of stop reduction for two lines serving four common stops. Stops 
s4 s5, and s6 can be represented by stop s3. The equivalence class thus has cardinality 
four 



 
 

Let 𝑆>1 ⊆ 𝑆 be the set of stops served by more than one line and let 𝑆=1 ⊆ 𝑆 be the set of stops served 

by exactly one line. Then equation 31 can be rewritten as follows: 

∀λ ∈ Λ: δΣ(λ) =∑δ(s, λ) = ∑ |[s]RΣ| ∗

s∈SΣ,>1s∈S

δ(s, λ) + ∑ TL(s)
s∈S=1

 (32) 

Because the term ∑ 𝑇𝐿(𝑠)𝑠∈𝑆=1  is constant and independent of the timetable under consideration, it 

does not have to be examined during the optimization run. Instead it can be added to the objective 

function value afterwards. The updated mixed integer linear program to generate regular periodic 

timetables is shown below. 

 

𝑚𝑎𝑥
𝜆∈𝛬

𝛿(𝜆) ∗ 𝛿𝛴̅̅ ̅ + ∑ |[𝑠]𝑅𝛴| ∗ 𝛿(𝑠, 𝜆)

𝑠∈𝑆𝛴,>1

 (33) 

 

s.t. 

𝑎𝑖
𝑠 = 𝜆𝑖 + 𝑎(𝑠, 𝑙𝑖, 0⃗ ) ∀𝑚 = (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀0 (34) 

𝑥𝑖𝑗
𝑠 = 𝑎𝑖

𝑠 − 𝑎𝑗
𝑠 − 𝑧𝑖𝑗

𝑠 ∗ 𝑔𝑐𝑑(𝑇𝑖 , 𝑇𝑗) ∀𝑚 = (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀0 (35) 

0 ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 1 ∀𝑚 = (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀0 (36) 

𝛿(𝑚, 𝜆) ≤ 𝑥𝑖𝑗
𝑠  ∀𝑚 = (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀0 (37) 

𝛿(𝑚, 𝜆) ≤ 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 𝑥𝑖𝑗
𝑠  ∀𝑚 = (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀0 (38) 

1 ≤ 𝛿(𝑚, 𝜆) ≤ ⌊
𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗)

2
⌋ ∀𝑚 = (𝑠, 𝑙𝑖, 𝑙𝑗) ∈ 𝑀0 (39) 

𝛿(𝑠, 𝜆) ≤ 𝛿(𝑚, 𝜆) ∀𝑠 ∈ 𝑆𝛴,>1, ∀𝑚 ∈ 𝑀(𝑠) (40) 

1 ≤ 𝛿(𝜆) ≤ 𝛿(𝑠, 𝜆) ∀𝑠 ∈ 𝑆𝛴,>1 (41) 

1 ≤ 𝛿(𝑠, 𝜆) ≤ 𝛿̅(𝑠) ∀𝑠 ∈ 𝑆𝛴,>1 (42) 

0 ≤ 𝜆𝑖 ≤ 𝑇𝑖 − 1 ∀𝑖 ∈ 𝐿 (43) 

 𝑥𝑖𝑗
𝑠 , 𝜆𝑖, ∈ ℕ0 (44) 

 𝛿(𝑚, 𝜆), 𝛿(𝑠, 𝜆), 𝛿(𝜆) ∈ ℕ (45) 

 𝑧𝑖
𝑠 ∈ ℤ (46) 

 

The first term of the objective function 33 was not changed compared to objective function 13, the 

second term was modified according to equations 31 and 32. Constraints 34 to 46 have not changed 

in context compared to constraints 14 to 26, but now use line conflicts and the reduced stop set instead 

of all stops and all lines. 

3.2. Modeling planning requirements 
As explained earlier, while a timetable with optimum regularity can help to raise punctuality and prod-

uct attractiveness as well as lower peaks in passenger load (see [19], [20]), operational, political, or 

societal requirements may necessitate deviations in order to make the timetable feasible during daily 

operation. Ullrich et al. identify five different types of planning requirements that should be considered 

during optimization: 

 Departure times: Define intervals of (in)admissible departure times for some line 𝑙𝑖 ∈ 𝐿 at a 

stop 𝑠 ∈ 𝑆(𝑙𝑖). This type of requirement can for example be used to incorporate necessary 

coordination between the departure times of public transit systems with already scheduled 

departure times of long distance transit networks. 

 Headways: Define intervals of (in)admissible spacing between the departures of some line 

𝑙𝑖 ∈ 𝐿 at a stop 𝑠𝑖 ∈ 𝑆(𝑙𝑖) and some other line 𝑙𝑗 ∈ 𝐿, 𝑙𝑗 ≠\𝑙𝑖 at a stop 𝑠𝑗 ∈ 𝑆(𝑙𝑗). 



 
 

 Amplifier lines: Trips of a line 𝑙𝑖 ∈ 𝐿 should be scheduled to relieve trips of a line 𝑙𝑗 ∈ 𝐿, 𝑙𝑗 ≠

𝑙𝑖 in areas with very high demand, by defining intervals of (in)admissible spacing between 

the departure times at the beginning of a common network section. 

 Bi-directional tracks: Define intervals of (in)admissible spacing between the departure times 

at stops at opposing sides of a bi-directional track to avoid collisions.  

 Transfer connections: Define intervals of (in)admissible spacing between the departure 

times of two lines 𝑙𝑖, 𝑙𝑗 ∈ 𝐿, 𝑙𝑖 ≠ 𝑙𝑗 at a stop 𝑠 ∈ 𝑆(𝑙𝑖) ∩ 𝑆(𝑙𝑗), e.g. to allow passengers of 

vehicles of the first departing line to transfer to vehicles of the following line. 

As can be seen, with the exception of requirements to departure times all requirement types deal 

with (in)admissible intervals for the spacing between departure times. As a result, Ullrich shows in [16] 

that (a combination of) the requirement types for departure times and headways can be used to ex-

press all other requirement types, subsequently reducing the set of necessary requirement types.   

Furthermore, requirements usually can be categorized by some kind of priority system. E.g. while 

the fulfillment of one requirement could be highly desirable the fulfillment of another requirement 

might still make the timetable feasible but result in a less desirable configuration. 

In order to extend the MILP formulated in section 3.1 with the capability of incorporating prioritized 

planning requirements the following formalization is employed: Every planning requirement 𝜔 in the 

set Ω of all planning requirements that should be considered during optimization refers to at most two 

lines 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿, 𝑙𝑖 ≠ 𝑙𝑗 and two stops 𝑠𝑖 ∈ 𝑆(𝑙𝑖), 𝑠𝑗 ∈ 𝑆(𝑙𝑗), defines exactly one lower bound �̌� and one 

upper bound 𝑡̅ for the corresponding time interval, and holds exactly one priority value 𝜌 from the set 

of all potential priority values Ρ = {𝐻𝐼𝐺𝐻,𝑀𝐸𝐷𝐼𝑈𝑀, 𝐿𝑂𝑊,𝑃𝑅𝑂𝐻𝐼𝐵𝐼𝑇𝐸𝐷}. A priority value of 𝐻𝐼𝐺𝐻 

implies a highly desirable requirement, while a value of 𝑃𝑅𝑂𝐻𝐼𝐵𝐼𝑇𝐸𝐷 signifies an undesirable config-

uration. 

Based on this formalization three different planning requirement types are included into the optimi-

zation model, which slightly deviate from the above mentioned requirement types: departure time 

requirements, headway requirements, and transfer connection requirements. They are formalized as 

follows: 

Definition 10 (Departure time requirement) 
Let Ω𝐷 ∈ Ω be the set of all departure time requirements. A member of this set is a 5-tuple 𝜔 =

(𝑙𝑖, 𝑠, �̌�, 𝑡̅, 𝜌) ∈ Ω𝐷 defining a lower bound �̌� ∈ ℕ𝑇𝑖  and an upper bound 𝑡̅ ∈  ℕ𝑇𝑖  with �̌� ≤ 𝑡̅ as well as a 

priority value 𝜌 ∈ Ρ for the departure time 𝑎𝑖
𝑠 of line 𝑙𝑖 ∈ 𝐿 at stop 𝑠 ∈ 𝑆(𝑙𝑖) as expressed in equation 

47. 

ť ≤ ai
s − zi

s ∗ Ti ≤ t̅ zi
s ∈ ℤ (47) 

Definition 11 (Headway requirement) 
Let Ω𝐻 ∈ Ω be the set of all headway requirements. A member of this set is a 6-tuple 𝜔 =

(𝑙𝑖 , 𝑙𝑗, 𝑠, �̌�, 𝑡̅, 𝜌) ∈ Ω𝐻 defining a lower bound �̌� ∈ {0,… , gcd(𝑇𝑖, 𝑇𝑗)} and an upper bound 𝑡̅ ∈

{0,… , gcd(𝑇𝑖 , 𝑇𝑗)} with �̌� ≤ 𝑡̅ as well as a priority value 𝜌 ∈ Ρ for the absolute departure time differ-

ence 𝑥𝑖𝑗
𝑠  of lines 𝑙𝑖, 𝑙𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 at stop 𝑠 ∈ 𝑆(𝑙𝑖) ∩ 𝑆(𝑙𝑗) as expressed in equation 48. 

ť ≤ xij
s ≤ t̅ (48) 

Definition 12 (Transfer connection requirement) 
Let Ω𝐶 ∈ Ω be the set of all transfer connection requirements. A member of  this set is a 7-tuple 𝜔 =

(𝑙𝑖 , 𝑙𝑗, 𝑠, 𝑟, �̌�, 𝑡̅, 𝜌) ∈ Ω𝐶  defining a lower bound �̌� ∈ {0,… , gcd(𝑇𝑖 , 𝑇𝑗)} and an upper bound 𝑡̅ ∈

{0,… , gcd(𝑇𝑖 , 𝑇𝑗)} with �̌� ≤ 𝑡̅  as well as a priority value 𝜌 ∈ Ρ for the absolute departure time differ-

ence 𝑥𝑖𝑗
𝑠𝑟 = 𝑎𝑖

𝑠 − 𝑎𝑗
𝑟 − 𝑧𝑖𝑗

𝑠𝑟 ∗ gcd(𝑇𝑖, 𝑇𝑗), 𝑧𝑖𝑗
𝑠𝑟 ∈ ℤ of lines 𝑙𝑖 , 𝑙𝑗 ∈ 𝐿, 𝑙𝑖 ≠ 𝑙𝑗 at stops 𝑠 ∈ 𝑆(𝑙𝑖), 𝑟 ∈

𝑆(𝑙𝑗), 𝑠 ≠ 𝑟 as expressed in equation 49. 

ť ≤ xij
sr ≤ t̅ (49) 



 
 

Definition 13 (Connected requirements) 

Let 𝜔𝑖 = (𝑙𝑖, 𝑠𝑖, �̌�𝑖, 𝑡�̅�, 𝜌𝑖), 𝜔𝑗 = (𝑙𝑗, 𝑠𝑗, �̌�𝑗, 𝑡�̅�, 𝜌𝑗) ∈ Ω be planning requirements of equal type. 𝜔𝑖 and 𝜔𝑗 

are said to be connected, if they cover the same lines and the same stops, i.e. 𝑙𝑖 = 𝑙𝑗 ∧ 𝑠𝑖 = 𝑠𝑗. 

Connected requirements describe logical relationships between (in)admissible intervals on the value 

range of the corresponding variables and should be considered together during optimization. As an 

example let 𝜔1, 𝜔2, 𝜔3 be three connected departure time requirements, defined as follows: 𝜔1 =

(1,1,0,2, 𝐻𝐼𝐺𝐻), 𝜔2 = (1,1,3,4,𝑀𝐸𝐷𝐼𝑈𝑀), and 𝜔3 = (1,1,5,9, 𝑃𝑅𝑂𝐻𝐼𝐵𝐼𝑇𝐸𝐷). 

The requirements describe the following logical relationship between the (in)admissible intervals of 

the corresponding variables: 

((0 ≤ 𝑎1
1 − 𝑧1

1 ∗ 𝑇1 ≤ 2) ∨ (3 ≤ 𝑎1
1 − 𝑧1

1 ∗ 𝑇1 ≤ 4)) ∨ ¬(5 ≤ 𝑎1
1 − 𝑧1

1 ∗ 𝑇1 ≤ 9) 

These relationships should be represented in the optimization model. For this purpose, connected 

requirements with priority values of 𝐻𝐼𝐺𝐻, 𝑀𝐸𝐷𝐼𝑈𝑀 or 𝐿𝑂𝑊 are joined using logical OR, while con-

nected requirements with a priority value of 𝑃𝑅𝑂𝐻𝐼𝐵𝐼𝑇𝐸𝐷 are joined using logical AND. The resulting 

partial terms then are combined using a logical OR.  

To calculate how well a timetable adheres to a given planning requirement 𝜔, its priority value 𝜌𝜔 is 

associated with a weight 𝑓: Ρ → ℝ and the optimization model is extended with a binary variable 𝑏𝜔 ∈

{0,1} indicating whether or not 𝜔 is adhered to or not. The overall adherence of a given timetable 𝜆 to 

a set of planning requirements Ω can then be calculated as shown in equation 50. 

Φ(λ, Ω) ≔ ∑ bω ∗ f(ρω)

ω∈Ω

(50) 

Equation 50 cannot simply be added to objective function 35, because their respective value ranges 

are not comparable. Therefore, equation 52 needs to be normalized. This is done by multiplying it by 

the ratio 𝛽 between an upper bound for the regularity value and an upper bound for the requirements 

adherence (see equation 51). 

β ≔
δ̅ ∗ δΣ̅̅ ̅ + ∑ |[s]RΣ| ∗ δ̅(s)s∈SΣ,>1

|Ω| ∗ f(HIGH)
 (51) 

The upper bound for the regularity value can be calculated by inserting the respective upper bounds 

into the single terms of objective function 33. The upper bound for the requirements adherence can 

be roughly approximated by multiplying the number of constraints |Ω| with the theoretically best 

weight 𝑓(𝐻𝐼𝐺𝐻). 

The resulting disjunctive program is shown below. Its objective function combines the maximization 

of regularity with the maximization of normalized requirement adherence and allows to control the 

importance of those two factors using a weight 0 ≤ 𝛼 ≤ 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

𝑚𝑎𝑥
𝜆∈𝛬

 (1 − 𝛼) ∗ (𝛿(𝜆) ∗ 𝛿𝛴̅̅ ̅ + ∑ |[𝑠]𝑅𝛴| ∗ 𝛿(𝑠, 𝜆)

𝑠∈𝑆𝛴,>1

)+ 𝛼 ∗ 𝛽 ∗ (∑ 𝑏𝜔 ∗ 𝑓(𝜌𝜔)

𝜔∈𝛺

) (52) 

 
s.t. 

𝑎𝑖
𝑠 = 𝜆𝑖 + 𝑎(𝑠, 𝑙𝑖 , 0⃗ ) ∀𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀0 (53) 

𝑥𝑖𝑗
𝑠 = 𝑎𝑖

𝑠 − 𝑎𝑗
𝑠 − 𝑧𝑖𝑗

𝑠 ∗ 𝑔𝑐𝑑(𝑇𝑖 , 𝑇𝑗) ∀𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀0 (54) 

0 ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 1 ∀𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀0 (55) 

𝛿(𝑚, 𝜆) ≤ 𝑥𝑖𝑗
𝑠  ∀𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀0 (56) 

𝛿(𝑚, 𝜆) ≤ 𝑔𝑐𝑑(𝑇𝑖, 𝑇𝑗) − 𝑥𝑖𝑗
𝑠  ∀𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀0 (57) 

1 ≤ 𝛿(𝑚, 𝜆) ≤ ⌊
𝑔𝑐𝑑(𝑇𝑖 , 𝑇𝑗)

2
⌋ ∀𝑚 = (𝑠, 𝑙𝑖 , 𝑙𝑗) ∈ 𝑀0 (58) 

𝛿(𝑠, 𝜆) ≤ 𝛿(𝑚, 𝜆) ∀𝑠 ∈ 𝑆𝛴,>1, ∀𝑚 ∈ 𝑀(𝑠) (59) 
1 ≤ 𝛿(𝜆) ≤ 𝛿(𝑠, 𝜆) ∀𝑠 ∈ 𝑆𝛴,>1 (60) 
1 ≤ 𝛿(𝑠, 𝜆) ≤ 𝛿̅(𝑠) ∀𝑠 ∈ 𝑆𝛴,>1 (61) 
0 ≤ 𝜆𝑖 ≤ 𝑇𝑖 − 1 ∀𝑖 ∈ 𝐿 (62) 

  

( ⋁ �̌� ≤ 𝑎𝑖
𝑠 − 𝑧𝑖

𝑠 ∗ 𝑇𝑖 ≤ 𝑡̅

𝜔,𝜌𝜔≠𝑃𝑅𝑂𝐻.

) ⋁( ⋀ ¬(�̌� ≤ 𝑎𝑖
𝑠 − 𝑧𝑖

𝑠 ∗ 𝑇𝑖 ≤ 𝑡̅)

𝜔,𝜌𝜔=𝑃𝑅𝑂𝐻.

) ∀𝜔 𝑐𝑜𝑛𝑛. , 𝜔 ∈ 𝛺𝐷 (63) 

𝑏𝜔 = {
1, �̌� ≤ 𝑎𝑖

𝑠 − 𝑧𝑖
𝑠 ∗ 𝑇𝑖 ≤ 𝑡̅

0, ¬(�̌� ≤ 𝑎𝑖
𝑠 − 𝑧𝑖

𝑠 ∗ 𝑇𝑖 ≤ 𝑡̅)
 ∀𝜔 = (𝑙𝑖 , 𝑠, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐷, 𝜌 ≠ 𝑃𝑅𝑂𝐻. (64) 

𝑏𝜔 = {
1, ¬(�̌� ≤ 𝑎𝑖

𝑠 − 𝑧𝑖
𝑠 ∗ 𝑇𝑖 ≤ 𝑡̅)

0, �̌� ≤ 𝑎𝑖
𝑠 − 𝑧𝑖

𝑠 ∗ 𝑇𝑖 ≤ 𝑡̅
 ∀𝜔 = (𝑙𝑖 , 𝑠, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐷, 𝜌 = 𝑃𝑅𝑂𝐻. (65) 

  

( ⋁ �̌� ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑡̅

𝜔,𝜌𝜔≠𝑃𝑅𝑂𝐻.

)⋁( ⋀ ¬(�̌� ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑡̅)

𝜔,𝜌𝜔=𝑃𝑅𝑂𝐻.

) ∀𝜔 𝑐𝑜𝑛𝑛. , 𝜔 ∈ 𝛺𝐻 (66) 

𝑏𝜔 = {
1, �̌� ≤ 𝑥𝑖𝑗

𝑠 ≤ 𝑡̅

0, ¬(�̌� ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑡̅)

 ∀𝜔 = (𝑙𝑖 , 𝑙𝑗 , 𝑠, �̌�, 𝑡̅, 𝜌) ∈ 𝛺 𝐻 , 𝜌 ≠ 𝑃𝑅𝑂𝐻. (67) 

𝑏𝜔 = {
1, ¬(�̌� ≤ 𝑥𝑖𝑗

𝑠 ≤ 𝑡̅)

0, �̌� ≤ 𝑥𝑖𝑗
𝑠 ≤ 𝑡̅

  ∀𝜔 = (𝑙𝑖 , 𝑙𝑗 , 𝑠, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐻 , 𝜌 = 𝑃𝑅𝑂𝐻. (68) 

  
𝑥𝑖𝑗
𝑠𝑟 = 𝑎𝑖

𝑠 − 𝑎𝑗
𝑟 − 𝑧𝑖𝑗

𝑠𝑟 ∗ 𝑔𝑐𝑑(𝑇𝑖 , 𝑇𝑗) ∀𝜔 = (𝑙𝑖 , 𝑙𝑗 , 𝑠, 𝑟, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐶  (69) 

0 ≤ 𝑥𝑖𝑗
𝑠𝑟 ≤ 𝑔𝑐𝑑(𝑇𝑖 , 𝑇𝑗) − 1 ∀𝜔 = (𝑙𝑖 , 𝑙𝑗 , 𝑠, 𝑟, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐶  (70) 

( ⋁ �̌� ≤ 𝑥𝑖𝑗
𝑠𝑟 ≤ 𝑡̅

𝜔,𝜌𝜔≠𝑃𝑅𝑂𝐻.

)⋁( ⋀ ¬(�̌� ≤ 𝑥𝑖𝑗
𝑠𝑟 ≤ 𝑡̅)

𝜔,𝜌𝜔=𝑃𝑅𝑂𝐻.

) ∀𝜔𝑐𝑜𝑛𝑛. , 𝜔 ∈ 𝛺𝐶  (71) 

𝑏𝜔 = {
1, �̌� ≤ 𝑥𝑖𝑗

𝑠𝑟 ≤ 𝑡̅

0, ¬(�̌� ≤ 𝑥𝑖𝑗
𝑠𝑟 ≤ 𝑡̅)

  ∀𝜔 = (𝑙𝑖 , 𝑙𝑗 , 𝑠, 𝑟, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐶 , 𝜌 ≠ 𝑃𝑅𝑂𝐻. (72) 

𝑏𝜔 = {
1, ¬(�̌� ≤ 𝑥𝑖𝑗

𝑠𝑟 ≤ 𝑡̅)

0, �̌� ≤ 𝑥𝑖𝑗
𝑠𝑟 ≤ 𝑡̅

 ∀𝜔 = (𝑙𝑖 , 𝑙𝑗 , 𝑠, 𝑟, �̌�, 𝑡̅, 𝜌) ∈ 𝛺𝐶 , 𝜌 = 𝑃𝑅𝑂𝐻. (73) 

  

𝛽 =
𝛿̅ ∗ 𝛿𝛴̅̅ ̅ + ∑ |[𝑠]𝑅𝛴| ∗ 𝛿

̅(𝑠)𝑠∈𝑆𝛴,>1

|𝛺| ∗ 𝑓(𝐻𝐼𝐺𝐻)
  (74) 

 𝑥𝑖𝑗
𝑠 , 𝑥𝑖𝑗

𝑠𝑟 , 𝜆𝑖 , ∈ ℕ0 (75) 
 𝛿(𝑚, 𝜆), 𝛿(𝑠, 𝜆), 𝛿(𝜆) ∈ ℕ (76) 

 𝑧𝑖
𝑠, 𝑧𝑖𝑗

𝑠 ∈ ℤ (77) 
 𝑏𝜔 ∈ {0,1} (78) 
 0 ≤ 𝛼 ≤ 1 (79) 

 



 
 

Constraints 53 to 62 handle arrival times, spacing between consecutive arrivals, headways, and de-

parture times at the lines’ first stops as seen before in section 3.1 (see constraints 34 to 43). Constraints 

63 to 65 make sure the arrival times adhere to the bounds defined by the given departure require-

ments, while constraints 66 to 68 assure the same thing for the given headway requirements. Con-

straints 69 and 70 define the variables and domains for the departure spacing between lines at sepa-

rate stops as discussed in definition 12, while constraints 71 to 73 assure the respective variables ad-

here to the bounds specified by the given transfer connection requirements. Lastly, constraint 74 de-

fines the normalizing factor and constraints 75 to 79 establish the domains of the variables. 

3.3. Complexity of the optimization model 
The complexity of the proposed optimization model depends on the number of line conflicts |𝑀0|, the 

number of stops served by more than one line |𝑆Σ,>1|, the number of lines |𝐿| and their basic intervals 

𝑇, and the number of planning requirements |Ω𝐷|, |Ω𝐻|, and |Ω𝐶|. The optimization problem for a 

given transit network contains at least 6 ∗ |𝑀0| + 3 ∗ |𝑆Σ,>1| + |𝐿| + 2 ∗ |Ω𝐷| + 2 ∗ |Ω𝐻| + 4 ∗ |Ω𝐶| +

1 constraints and 5 ∗ |𝑀0| + |𝑆Σ,>1| + |𝐿| + 2 ∗ |Ω𝐷| + |Ω𝐻| + 4 ∗ |Ω𝐶| + 1 variables. The solution 

space of the optimization problem for a given transit network contains ∏ 𝑇𝑙𝑙∈𝐿  potential solutions in 

the worst case.  

Because of the potentially very large solution space the run time required to solve the proposed 

model to optimality for network instances of realistic size can be quite high, as will be seen in the next 

chapter. However, as shown by Genç in [9] the run time can be reduced substantially, if the graph 

representing the network under consideration consists of multiple connected components, which are 

physically independent from each other. Because physically independent connected components do 

not share any lines or stops, a simple divide and conquer approach can be utilized, i.e. for every com-

ponent an individual timetable can be constructed by solving a reduced optimization problem contain-

ing only the lines and stops belonging to the specific component. Afterwards, the partial timetables 

can be consolidated into an overall timetable for the whole network.  

It has to be noted that the divide and conquer approach cannot be utilized if lines and stops of dif-

ferent connected components are linked via planning requirements (e.g. a line of component A has to 

depart after a line of component B). In this case, while the connected components remain physically 

independent from each other, they are logically linked via the planning requirement and subsequently 

need to be considered simultaneously during optimization. 

4. Experiments 
To validate the proposed model, twelve-hour-timetables from 7 am to 7 pm for models of three transit 

networks with differing sizes and characteristics (see table 1) are generated using a self-developed Java 

application which applies the IBM ILOG CPLEX 12.5 Java library to solve the corresponding optimization 

problems. The computer system used is an AMD Athlon 64 X2 Dual Core processor with 2.10 GHz and 

4 GB RAM. If planning requirements are included, the following weights are associated with the priority 

values: 𝑓(𝐻𝐼𝐺𝐻) = 1, 𝑓(𝑀𝐸𝐷𝐼𝑈𝑀) = 0.25, 𝑓(𝐿𝑂𝑊) = 0.125, 𝑓(𝑃𝑅𝑂𝐻𝐼𝐵𝐼𝑇𝐸𝐷) = 0.03125.  

 

 

 

 

 
Table 1: Characteristics of the examined transit networks 

 
 

Network |𝑳| |𝑴| |𝑴𝟎| |𝑺| |𝑺𝚺,>𝟏| 

LCL 6 50 6 20 4 

UCL  8 64 17 40 13 

Cologne  70 313 179 1242 126 



 
 

4.1. Experiments on models of artificial networks 
In a first set of experiments the correctness of the optimization model and the permissibility of the 

generated timetables are verified by applying it to models of two artificial networks, called Linear City 

Link (LCL) and Universal City Link (UCL).  

4.1.1 Linear City Link 
LCL is an artificial network with a very simple structure, allowing for easy manual verification of the 

obtained results (see figure 2). Timetables with a common basic interval of ten minutes are generated.  

Without applying planning requirements an optimum regular timetable 𝜆∗ for LCL can achieve a 

headway of 𝛿̅(𝜆∗) = 3 minutes in the best case, arranging the departure times of lines 1-B01, 2-B01, 

3-B01 and 1-B02, 2-B02, 3-B02 at their common stops in such a way that their headways correspond 

to a permutation of the tuple (3,3,4). The objective function of such a timetable has the following 

upper bound: 

(3 ∗ 78)⏟    
�̅�(𝜆∗)∗𝛿Σ̅̅̅̅

+ (1 ∗ 5 + 1 ∗ 5 + 3 ∗ 8 + 3 ∗ 8)⏟                  
∑ |[𝑠]_𝑅Σ|∗�̅�(𝑠)𝑠∈𝑆Σ,>1

+ (10 + 10)⏟      
∑ �̅�(𝑠)𝑠∈𝑆=1

= 312 

    The optimum timetable computed by our application achieves an objective function value of 310 

and a timetable headway of three minutes. The deviation of one percent between the computed ob-

jective function value and its upper bound can be explained by examining the calculation of the upper 

bound for the stop headway in more detail: When calculating the upper bound for the stop headway 

every stop is considered isolated. This has no consequences as long as the neighboring stops are served 

by the same lines, keeping to the same headways. If this condition is not met, one of the stops will not 

be able to achieve its theoretically optimum headway and subsequently the objective function value 

will not reach its upper bound. As an example consider stops 2 and 3 of network LCL. At stop 2 only 

lines 1-B01 and 2-B01 depart, resulting in an upper bound for the stop headway of 𝛿̅(2) = 5 minutes. 

At stop 3 line 3-B01 joins lines 1-B01 and 2-B01, thus the upper bound for the headway at this stop is 

𝛿̅(3) = 3 minutes. Because the majority of stops (i.e. 2 to 10 and 20 to 13) of LCL are served by the 

same three lines the optimization will prioritize achieving the best possible headway at these stops. 

Thus, it arranges the departures of lines 1-B01 and 2-B01 with a headway of four minutes at stop 3, 

which subsequently results in a headway of four minutes at stop 2 instead of the theoretically optimum 

of five minutes. The same is true for lines 1-B02 and 2-B02 at stop 12. 

To examine the impacts of planning requirements two headway requirements 𝜔1 = (1 − 𝐵01,2 −

𝐵01,2,5,5,𝐻𝐼𝐺𝐻) and 𝜔2 = (1 − 𝐵02,2 − 𝐵02,12,5,5,𝐻𝐼𝐺𝐻) are defined, enforcing the aforemen-

tioned theoretically optimal headways of five minutes between lines 1-B01 and 2-B01 at stop 2 and 

lines 1-B02 and 2-B02 at stop 12, respectively. With a weight of 𝛼 = 0.5 the optimization generates a 

timetable with an objective function value of 0.5 ∗ 218 + 0.5 ∗ 146 ∗ 2 = 255 and a timetable head-

way of two minutes. As expected, the introduction of the planning requirements results in a loss in 

regularity due to the non-optimal distribution of departure times at stops 3 to 10 and 13 to 20. 

 

 

Figure 2: Artificial transit network LCL 



 
 

4.1.2 Universal City Link 
For a second set of experiments the artificial network UCL is employed (see figure 3). Contrary to LCL 

it has a more realistic, i.e. irregular, network structure and with circle lines 2-B01 and 2-B02 includes 

two special line structures. To verify the correctness of the optimization model under varying condi-

tions differing basic intervals for the different lines are employed: lines 1-B01, 1-B02, 3-B01, 3-B02, 4-

B01, and 4-B02 receive a basic interval of ten minutes, while lines 2-B01 and 2-B02 get a basic interval 

of 20 minutes. 

Without applying planning requirements an optimum regular timetable 𝜆∗ for UCL can achieve a 

headway of 𝛿̅(𝜆∗) = 3 minutes at best. The objective function value of such a timetable then has an 

upper bound of 848. 

The optimum timetable computed using the optimization achieves an objective function value of 836 

and a timetable headway of three minutes. Once again the difference of two percent between the 

achieved objective function value and the upper bound can be attributed to the isolated examination 

of stops during the calculation of the upper bounds. E.g. stop 1141 has an upper bound for the stop 

headway of five minutes, but the optimum timetable, which also considers departures at neighboring 

stops, can only achieve a headway of four minutes in the best case. 

To examine a more realistic scenario, eight exemplary transfer connections are modeled (see table 

2, columns 2 to 4). 

 

No. From At To At Priority 

HIGH MEDIUM LOW PROHIBITED 

1 2-B01 1143 1-B01 1141 3 4 5 2 6 7 0 1 8 9 

2 2-B01 1142 4-B01 1141 3 4 5 2 6 7 0 1 8 9 

3 3-B01 1043 2-B01 1041 3 4 5 2 6 7 0 1 8 9 

4 3-B02 1143 1-B01 1141 3 4 5 2 6 7 0 1 8 9 

5 3-B02 1042 2-B01 1041 3 4 5 2 6 7 0 1 8 9 

6 4-B01 1041 2-B02 1043 3 4 5 2 6 7 0 1 8 9 

7 4-B02 1142 2-B01 1143 3 4 5 2 6 7 0 1 8 9 

8 4-B02 1042 2-B02 1043 3 4 5 2 6 7 0 1 8 9 
Table 2: Exemplary transfer connections between lines from one stop to another, UCL 

The specific requirements defined should result in transfer connections with a low waiting time, but 

not so low that passengers may narrowly miss their connection. Thus transfer connections of three to 

four minutes are valued the most (see table 2, column 5), followed by transfer connections of five 

minutes (see table 2, column 6). Transfer connections of two minutes as well as six to seven minutes 

are still tolerable (see table 2, column 7), while transfer connections of zero to one and eight to nine 

minutes have to be avoided (see table 2, column 8). This results in the 48 constraints visible in Table 2, 

i.e. six connected requirements for each transfer connection to be modeled.  

With weight 𝛼 = 0.5 the optimization computes an optimum timetable with an objective function 

value of 0.5 ∗ 600 + 0.5 ∗ 16 ∗ 5.875 = 347 and a timetable headway of two minutes. As shown by 

table 3, the optimization assigns highly prioritized values for five of the eight defined transfer connec-

tions. Only the transfer connections from lines 2-B01 to 4-B01, 3-B02 to 1-B01, and 4-B01 to 2-B02 are 

assigned low priority values. 

 

 

 

 

 

 



 
 

No. From At To At Headway Priority 

1 2-B01 1143 1-B01 1141 4 HIGH 

2 2-B01 1142 4-B01 1141 2 LOW 

3 3-B01 1043 2-B01 1041 3 HIGH 

4 3-B02 1143 1-B01 1141 7 LOW 

5 3-B02 1042 2-B01 1041 3 HIGH 

6 4-B01 1041 2-B02 1043 2 LOW 

7 4-B02 1142 2-B01 1143 3 HIGH 

8 4-B02 1042 2-B02 1043 3 HIGH 
Table 3: Achieved time intervals for connections between lines, UCL 

4.2. Experiments on Cologne’s bus network 
To examine the efficiency of the proposed approach under realistic conditions the optimization is ap-

plied to a model based on data of the bus network of Cologne from 2001. Timetables with a common 

basic interval of ten minutes and no planning requirements are generated. 

Under these conditions an optimum regular timetable 𝜆∗ for the network of Cologne can at best 

achieve a headway of 𝛿̅(𝜆∗) = 2 minutes and an objective function value of 33,729. The optimum 

timetable computed by CPLEX achieves an objective function value of 33,509 (a one percent deviation 

from the upper bound) with a headway of two minutes. Table 4 compares the number of stops with a 

specific stop headway under the optimum timetable generated using the optimization with the maxi-

mum possible numbers if all stops would assume their respective upper bound. Because of the isolated 

consideration of stops when calculating the upper bounds, the generated timetable deviates from the 

theoretically possible numbers. However, the optimization is able to reach the upper bound for at least 

116 (or 55 percent) of the 210 stops served by more than one line. 

 

 

 

 

Figure 3: Artificial transit network UCL 



 
 

Headway 1 2 3 4 5 6 7 8 9 10 

Maximum number 0 13 19 0 178 0 0 0 0 1027 

Optimum timetable 0 36 38 33 103 0 0 0 0 1027 
Table 4: Number of stops with certain headways, Cologne 

4.3. Comparison and discussions 
As discussed earlier, the efficiency of the proposed approach depends highly on the size and structure 

of the transit network under consideration, as can be seen in table 5. It shows average run times over 

ten optimization runs for the three examined transit networks split into the three distinct phases of 

the optimization: preprocessing the network and constraint information into a solvable CPLEX model, 

solving this model with CPLEX, and translating the results from CPLEX into a set of actual trips with 

distinct starting times which can be stored in a database. 

 

Network Preprocessing 
[Sec.] 

CPLEX 
[Sec.] 

Postprocessing 
[Sec.] 

Overall runtime 
[Sec.] 

Gap 
[%] 

LCL 0.90 0.59 18.71 20.20 - 

UCL 0.90 0.78 22.24 23.92 - 

Cologne 7.09 > 8,861.66 185.16 > 9,053.91 0.3 
Table 5: Average times for different phases of the optimization 

The time spent in the preprocessing phase increases with the number of stops and lines, because the 

identification of line conflicts and equivalence classes gets more complex. The time spent in postpro-

cessing increases with the number of lines as well as the length of the planning period, as generating 

timetables for fewer lines and shorter periods results in the generation of fewer trips and subsequently 

requires fewer time consuming database operations. For LCL and UCL the time spent in postprocessing 

is especially significant as it represents 93 percent of the overall run time. The actual optimization 

problem is solved virtually instantaneously for LCL and UCL, but requires more than 2.5 hours for the 

network of Cologne, due to its size. Therefore, a gap, i.e. a relative tolerance between the best integer 

objective and the upper bound calculated by CPLEX, of 0.3 percent was applied in order to obtain so-

lutions in acceptable time. Without the specification of a gap the algorithm was not able to finish in 

acceptable time. 

Nonetheless, the timetable discussed in section 4.2 is an optimum regular timetable for the network 

of Cologne, because fortunately the data for the bus network of Cologne results in a graph consisting 

of five physically independent connected components, enabling the application of the divide and con-

quer approach described in section 3.3. To ensure the optimality of the thusly generated timetable for 

the network of Cologne, the solution obtained by CPLEX leveraging the separation approach was af-

terwards used as start configuration for an optimization run without separation, resulting in no further 

improvement and thus proving the optimality. 

How the separation into connected components affects the run time can be seen in table 6. While 

network UCL cannot be decomposed (and subsequently has no entry in table 6), network LCL, which 

can be decomposed, does not profit from the approach and actually yields an insignificantly higher run 

time. The network of Cologne on the other hand profits significantly from the described approach, 

reducing the runtime by at least 82 percent to about 26 minutes.  

 

Network Preprocessing 
[Sec.] 

CPLEX 
[Sec.] 

Postprocessing 
[Sec.] 

Overall runtime 
[Sec.] 

LCL 0.86 0.73 18.88 20.47 

Cologne 7.36 1,577.68 186.49 1,771.53 
Table 6: Average time of different phases of the optimization with separation 



 
 

5. Conclusions 
In this paper a disjunctive program formulation for the generation of regular transit timetables, which 

also adhere to prioritized planning requirements was proposed. These requirements include fixed de-

parture times, headways at common stops, and transfer connections. 

The approach was applied to models of three different transit networks: two small artificial net-

works, as well as a model of the bus network of Cologne, Germany. The conducted experiments 

showed that the proposed approach can indeed be used to generate regular timetables, which will 

adhere to given sets of planning requirements, although fulfilling given planning requirements may 

result in lower regularity. 

Furthermore, it was shown that the size and structure of the examined transit network heavily influ-

ences the run time, but if the transit network can be separated into physically independent connected 

components, a simple divide and conquer approach can be used to significantly reduce run time, by 

separately optimizing the connected components and merging the resulting partial timetables into an 

overall timetable. 

By including planning requirements during the planning phase, fewer manual adjustments are 

needed to assure feasibility of the generated timetables during daily operation. Although this improve-

ment of practicability is important, it can only be a first step. To further ensure the practicability of the 

generated timetables, they have to be exposed to dynamic conditions, e.g. variations in travel and 

boarding times. One way to achieve this goal without costly trial and error during actual operations is 

to employ simulation methods. For this reason, a new discrete event based simulation framework will 

be developed allowing to evaluate the practicability of generated timetables under dynamic condi-

tions.     
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