Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 18))

  • 498 Accesses

Abstract

This paper presents a decomposition scheme for a large class of greyscale structuring elements from mathematical morphology. In contrast with many existing decomposition schemes, our method is valid in the continuous domain. Conditions are given under which this continuous method can be properly discretized. The class of functions that can be decomposed with our method contains the class of quadratic functions, that are of major importance in, for instance, distance transforms and morphological scale space. In the continuous domain, the size of the structuring elements resulting from the decomposition, can be chosen arbitrarily small. For functions from the mentioned class, that can be separated along the standard image axes, a discrete decomposition in 3 × 3 elements can be guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Borgefors. Chamfering: A fast method for obtaining approximations of the Euclidian distance in n dimensions. In Third Scandinavian Conference on Image Analysis, Copenhagen, 1983.

    Google Scholar 

  2. P. Danielsson. Euclidian distance mapping. Computer Graphics and Image Processing, 14:227–248, 1980.

    Google Scholar 

  3. L. Dorst and R. van den Boomgaard. Morphological signal processing and the slope transform. Signal Processing, 38:79–98, 1994.

    Article  Google Scholar 

  4. E. Engbers, R. van den Boomgaard, and A. Smeulders. Decomposition of separable concave structuring functions. Technical report, ISIS, University of Amsterdam, 1999.

    Google Scholar 

  5. P. Gader. Separable decompositions and approximations of greyscale morphological templates. CVGIP: Image Understanding, 53(3):288–296, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Gader and S. Takriti. Decomposition techniques for grey-scale morphological templates. In P. Gader, editor, Image Algebra and Morphological Image Processing, Proceedings of SPIE, pages 431–442, 1990.

    Google Scholar 

  7. H._J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.

    Google Scholar 

  8. C. Huang and O. Mitchell. A Euclidean distance transform using greyscale morphology decomposition. IEEE PAMI, 16(4):443–448, 1994.

    Google Scholar 

  9. P. Jackway and M. Deriche. Scale-space properties of the multiscale morphological dilation-erosion. IEEE PAMI, 18:38–51, 1996.

    Google Scholar 

  10. J. Xu. Decomposition of convex polygonal morphological structuring elements into neighborhood subsets. IEEE PAMI, 13(2):153–162, 1991.

    MATH  Google Scholar 

  11. E._J. Kraus, H. J. A. M. Heijmans, and E. R. Dougherty. Gray-scale granulometries compatible with spatial scalings. Signal Processing, 34:1–17, 1993.

    Article  Google Scholar 

  12. D. Li and G. Ritter. Decomposition of separable and symmetric convex templates. In P. Gader, editor, Image Algebra and Morphological Image Processing, Proceedings of SPIE, pages 408–418, 1990.

    Google Scholar 

  13. P. Maragos. Max-min difference equations and recursive morphological systems. In Mathematical Morphology and its Applications to Signal Processing, Barcelona, 1993.

    Google Scholar 

  14. G. Matheron. Random Sets and Integral Geometry. Academic Press, London, 1975.

    Google Scholar 

  15. J. Pecht. Speeding up successive Minkowski operations. Pattern Recognition Letters, 3(2):113–117, 1985.

    Article  MATH  Google Scholar 

  16. P. Sussner and G. Ritter. Decomposition of gray-scale morphological templates using the rank method. IEEE PAMI, 19(6):1–10, 1997.

    Google Scholar 

  17. G. Ritter, J. Wilson, and J. Davidson. Image algebra: An overview. CVGIP: Image Understanding, 49:297–331, 1990.

    Google Scholar 

  18. J. Serra. Image Analysis and Mathematical Morphology. London: Academic, 1982.

    Google Scholar 

  19. S. Sternberg. Language and architecture for parallel image processing. In E. Gelsema and L. Kanal, editors, Pattern Recognition in Practice. North Holland Publishing Company, 1980.

    Google Scholar 

  20. S. Takriti and P. Gader. Local decomposition of greyscale morphological templates. Journal of Mathematical Imaging and Vision, 2:39–50, 1992.

    Article  Google Scholar 

  21. R. van den Boomgaard. Mathematical Morphology: Extensions towards Computer Vision. PhD thesis, University of Amsterdam, 1992.

    Google Scholar 

  22. R. van den Boomgaard. The morphological equivalent of the Gauss convolution. Nieuw. Archief voor Wiskunde (in English), 38(3):219–236, 1992.

    Google Scholar 

  23. R. van den Boomgaard, L. Dorst, S. Makram Ebeid, and J. Schavemaker. Quadratic structuring functions in mathematical morphology. In R. S. P. Maragos and M. Butt, editors, Mathematical Morphology and its Applications in Image and Signal Processing, Proceedings of the 3rd International Symposium on Mathematical Morphology (ISMM’ 96), pages 147–154, 1996.

    Google Scholar 

  24. R. van den Boomgaard and A. W. M. Smeulders. The morphological structure of images, the differential equations of morphological scale-space. IEEE PAMI, 16(11): 1101–1113, 1994.

    Google Scholar 

  25. R. van den Boomgaard and D. Wester. Logarithmic shape decomposition. In Aspects. of Visual Form Processing, Capri, 1994.

    Google Scholar 

  26. B. Verwer. Distance Transform: Metrics, Algorithms and Applications. PhD thesis, Delft University of Technology, 1991.

    Google Scholar 

  27. L. Vincent. Morphological algorithms. In E. R. Dougherty, editor, Mathematical Morphology in Image Processing, chapter 8, pages 255–288. Marcel Dekker, 1993.

    Google Scholar 

  28. X. Zhuang and R. Haralick. Morphological structuring element decomposition. CVGIP: Image Understanding, 35:370–382, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Van Den Boomgaard, R., Engbers, E.A., Smeulders, A.W.M. (2002). Decomposition of Separable Concave Structuring Functions. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol 18. Springer, Boston, MA. https://doi.org/10.1007/0-306-47025-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47025-X_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7862-4

  • Online ISBN: 978-0-306-47025-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics