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Foreword

The study of information-based actions and processes has been a vibrant in-
terface between logic and computer science for several decades now. Indeed,
several natural perspectives come together here. On the one hand, logical sys-
tems may be used to describe the dynamics of arbitrary computational pro-
cesses – as in the many sophisticated process logics available today. But also,
key logical notions such as model checking or proof search are themselves
informational processes involving agents with goals. The interplay between
these descriptive and dynamic aspects shows even in our ordinary language.
A word like “proof” hdenotes both a static ‘certificate’ of truth, and an activity
which humans or machines engage in. Increasing our understanding of log-
ics of this sort tells us something about computer science, and about cognitive
actions in general.

JOHAN VAN BENTHEM, ILLC Amsterdam & CSLI Stanford

xvii

The individual chapters of this book show the state of the art in current in-
vestigations of process calculi such as linear logic, and
– with mainly two major paradigms at work, namely, linear logic and modal
logic. These techniques are applied to the title themes of concurrency and
synchronisation, but there are also many repercussions for topics such as the
geometry of proofs, categorial semantics, and logics of graphs. Viewed to-
gether, the chapters also offer exciting glimpses of future integration, as the
reader moves back and forth through the book. Obvious links include modal
logics for proof graphs, labeled deduction merging modal and linear logic, Chu
spaces linking proof theory and model theory, and bisimulation-style equiva-
lences as a tool for analyzing proof processes.

The combination of approaches and the pointers for further integration in
this book also suggests a grander vision for the field. In classical computation
theory, Church’s Thesis provided a unification and driving force. Likewise,
modern process theory would benefit immensely from a synthesis bringing
together paradigms like modal logic, process algebra, and linear logic – with
their currently still separate worlds of bisimulations, proofs, and normalisation.
If this Grand Synthesis is ever going to happen, books like this are needed!



Preface

The contributions published in this volume arose in the context of the project
Logic for Concurrency and Synchonisation (LOCUS) which was concerned
with the relationship between proof theory (à la Curry–Howard-like calculi)
and concurrency theory as well as the application
of those formalisms to the verification of group-based protocols.

The project also sought to investigate the possibility of defining a unifying
methodology (algebraic methods vs. logical methods) for the formalisation of
distributed systems, concurrency and synchronisation, using the most recent
techniques coming from mathematical logic (in particular, labelled deduction,
type theory, and modal logic), proof theory and semantics of concurrent pro-
cesses.

Four institutions participated in the project: Universidade Federal de Per-
nambuco (UFPE), Universidade Federal de Alagoas (UFAL), Universidade
Federal da Bahia (UFBA), and Universidade Federal do Rio de Janeiro (UFRJ).

Outline
Chapter 1 reviews a collection of recent and less recent work around graph-

theoretical tools used in proof theory, leading to some ideas for bringing to-
gether the old (e.g., Kneale’s symmetric proof system) and the new (Girard’s
graph-theoretic criterion to check soundness of graphs of proof) in order to
further enhance the tools for the understanding of natural deduction (ND): the
geometry of interaction of ND-proofs, their lack of symmetry and their proof
complexity.

In Chapter 2, Bellin argues that the essential interaction between classical
and intuitionistic features in the system of linear logic is best described in the
language of category theory. The main result is to show that the intuitionistic
translations induced by Girard’s trips determine the functor from the free *-
autonomous category on a set of atoms to where is
the free monoidal closed category with products and coproducts on the set of
atoms (a pair in for each atom P of

xix
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In Chapter 3, Bellin proposes a notion of symmetric reduction for a system
of proof-nets for Multiplicative Affine Logic with Mix (MAL + Mix) (namely,
multiplicative linear logic with the mix-rule the unrestricted weakening-rule),
and proves that such a reduction has the strong normalisation and Church–
Rosser properties.

In Chapter 4, Dam studies the problem of verifying general temporal and
functional properties of mobile and dynamic process networks, cast in terms
of the

In Chapter 5, Déharbe gives a tutorial introduction to CTL model checking
and its symbolic BDD-based version implementation.

In Chapter 6, Benevides presents modal logics for four classes of finite
graphs: finite directed graphs, finite acyclic directed graphs, finite undirected
graphs and finite loopless und irected graphs.

In Chapter 7, Stirling looks at the relationships between bisimulation equiv-
alence and language equivalence.
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