Skip to main content

Data Space Oriented Scheduling

  • Chapter
Embedded Software for SoC
  • 376 Accesses

Abstract

With the widespread use of embedded devices such as PDAs, printers, game machines, cellular telephones, achieving high performance demands an optimized operating system (OS) that can take full advantage of the underlying hardware components. We present a locality conscious process scheduling strategy for embedded environments. The objective of our scheduling strategy is to maximize reuse in the data cache. It achieves this by restructuring the process codes based on data sharing patterns between processes.Our experimentation with five large array-intensive embedded applications demonstrate the effectiveness of our strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. “The SUIF Compiler for Scalable Parallel Machines.” In Proceedings of the 7th S1AM Conference on Parallel Processing for Scientific Computing, February, 1995.

    Google Scholar 

  2. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and David Wonnacott. “The Omega Library Interface Guide.” Technical Report CS-TR-3445, CS Department, University of Maryland, College Park, MD, March 1995.

    Google Scholar 

  3. I. Kodukula, N. Ahmed, and K. Pingali. “Data-Centric Multi-Level Blocking.” In Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1997.

    Google Scholar 

  4. C-G. Lee et al. “Analysis of Cache Related Preemption Delay in Fixed-Priority Preemptive Scheduling.” IEEE Transactions on Computers, Vol. 47, No. 6, June 1998.

    Google Scholar 

  5. Y. Li and W. Wolfe. “A Task-Level Hierarchical Memory Model for System Synthesis of Multiprocessors.” IEEE Transactions on CAD, Vol. 18, No, 10, pp. 1405–1417, October 1999.

    Google Scholar 

  6. WARTS: Wisconsin Architectural Research Tool Set. http://www.cs.wisc.edu/∼larus/warts.html

  7. W. Wolfe. Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufmann Publishers, 2001.

    Google Scholar 

  8. A. Wolfe. “Software-Based Cache Partitioning for Real-Time Applications.” In Proceedings of the Third International Workshop on Responsive Computer Systems, September 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kandemir, M., Chen, G., Zhang, W., Kolcu, I. (2003). Data Space Oriented Scheduling. In: Jerraya, A.A., Yoo, S., Verkest, D., Wehn, N. (eds) Embedded Software for SoC. Springer, Boston, MA. https://doi.org/10.1007/0-306-48709-8_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-48709-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7528-5

  • Online ISBN: 978-0-306-48709-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics