Introduction
Kerchoff's laws (see maxim's) recommend basing cryptographic security solely on the secrecy of the key and not on the concealment of the encryption algorithm. A cryptosystem that uses some specific encryption method may, however, be imperfect as to its physical implementation. One or several leakages of all possible kinds may in that case provide an attacker with relevant information. Physical signals can often be used as a leakage source to conduct side channel cryptanalysis [9] (see also side-channel attacks) Time, power consumption or electromagnetic radiations can, for instance, be used. Electromagnetic radiation leakage has been known for a long time now, [6] and it also constitutes the subject of very recent research [11]. When analysing cryptographic implementations, the near and far field of cryptographic processors may offer a leakage source that should be seriously taken into account.
History
It is quite difficult to fix with precision the advent of side channel...
References
Agrawal, D., B. Archambeault, J.R. Rao, and P. Rohatgi (2002). “The EM side-channel(s).” Proc. of the Cryptographic Hardware and Embedded Systems, CHES 2002, Redwood City, Lecture Notes in Computer Science, vol. 2523, ed. B. Kaliski. Springer-Verlag, Berlin, 29–45. Also available on http://ece.gmu.edu/crypto/ches02/talks.htm
Agrawal, D., J.R. Rao, and P. Rohatgi (2003). “Multi-channel attacks.” Proc. of the Cryptographic Hardware and Embedded Systems, CHES 2003, Cologne, Germany, Lecture Notes in Computer Science, vol. 2779, ed. C. Walter. Springer-Verlag, Berlin, 2–16.
Biham, E. and A. Shamir (1997). “Differential fault analysis of secret key cryptosystems.” Proc. of Advances in Cryptology—CRYPTO'97, Lecture Notes in Computer Science, vol. 1294, ed. B.S. Kaliski Jr. Springer-Verlag, Berlin, 513–525. Also available on http://citeseer.nj.nec.com/biham97differential.html
Boneh, D., R.A. Demillo, and R.J. Lipton (1997). “On the importance of checking cryptographic protocols for faults.” Advances in Cryptology—EUROCRYPT'97, Lecture Notes in Computer Science, vol. 1294, ed. B.S. Kaliski Jr. Springer-Verlag, Berlin, 37–51. Also available on http://citeseer.nj.nec.com/boneh97importance.html
Chari, S., J.R. Rao, and P. Rohatgi (2002). “Template Attacks.” Proc. of the Cryptographic Hardware and Embedded Systems, CHES 2002, Redwood City, USA, Lecture Notes in Computer Science, vol. 2523, ed. B. Kaliski. Springer-Verlag, Berlin, 13–28. Also available on http://ece.gmu.edu/crypto/ches02/talks.htm
Gandolfi, K., C. Mourtel, and F. Olivier (2001). “Electromagnetic attacks: Concrete results.” Proc. of the Cryptographic Hardware and Embedded Systems, CHES 2001, Paris, France, Lecture Notes in Computer Science, vol. 2162, ed. D. Naccache. Springer-Verlag, Berlin, 251–256. Also available on http://www.gemplus.com/smart/r_d/publications/pdf/GMO01ema.pdf
Hess, E., N. Jansen, B. Meyer, and T. Schutze (2000). “Information leakage attacks against smart card implementations of cryptographic algorithms and countermeasures.” Eurosmart, Proc. of the Eurosmart Conference, Nice, France, 55–63.
Kelsey, J., B. Schneier, D. Wagner, and C. Hall (1998). “Side channel cryptanalysis of product ciphers.” Proc. of ESORICS'98, Lecture Notes in Computer Science, vol. 1485, eds. Quisquater, Deswarte, Meadows, and Gollmann. Springer-Verlag, Louvain la Neuve, Belgium, 97–110. Also available on http://www.schneier.com/paper-side-channel.html
Kocher, P., J. Jaffe, and B. Jun (1999). “Differential power analysis.” Advances in Cryptology—CRYPTO'99, Lecture Notes in Computer Science, vol. 1666, ed. M. Wiener. Springer-Verlag, Berlin, 388–397. Also available on http://www.cryptography.com/resources/whitepapers/DPA.html
Kuhn, M., G. and Ross J. Anderson (1998). “Soft tempest: Hidden data transmission using electromagnetic emanations.” Proc. of Information Hiding, Second International Workshop, IH'98, Portland, Oregon, USA, 124–142. Also available on http://www.cl.cam.ac.uk/~mgk25/ih98-tempest.pdf
Messerges, T.S., E.A. Dabbish, and R.H. Sloan (1999). “Investigations of power analysis attacks on smartcards.” USENIX Workshop on Smartcard Technology, 151–162. Also available on http://www.usenix.org/publications/library/proceedings/smartcard99/full_papers/messerges/messerges.pdf
Muccioli, J.P. and M. Catherwood (1993). “Characteristics of near-field magnetic radiated emissions from VLSI microcontroller devices.” EMC Test and Design.
Quisquater, J-J. and D. Samyde (2000). “A new tool for non-intrusive analysis of smart cards based on electro-magnetic emissions: The SEMA and DEMA methods.” Eurocrypt Rump Session, Bruges, Belgium.
Quisquater J.-J. and D. Samyde (2001). “Electromagnetic analysis (EMA): Measures and countermeasures for smart cards.” Proc. of the International Conference on Research in Smart Cards E-Smart 2001, Cannes, France, Lecture Notes in Computer Science, vol. 2140, ed. I. Attali and T. Jensen. Springer-Verlag, Berlin, 200–210.
Quisquater, J.-J. and D. Samyde (2002). “Eddy currents for magnetic analysis with active sensor.” Eurosmart, Proc. of the ESmart Conference, Cannes, France, 185–194.
Rao J.R. and P. Rohatgi (2001). {EMpowering} Side-Channel Attacks, preliminary technical report. Available on http://citeseer.nj.nec.com/cache/papers/cs/22094/http:zSzzSzeprint.iacr.orgzSz2001zSz037.pdf/rao01empowering.pdf
Rao, J.R., P. Rohatgi, H. Scherzer, and S. Tinguely (2002). “Partitioning attacks or how to rapidly clone some GSM cards.” IEEE Symposium on Security and Privacy, Berkeley, CA. Available on http://www.research.ibm.com/intsec/gsm.ps
Skorobogatov, S. and R. Anderson (2002). “Optical fault induction attacks.” Proc. of the Cryptographic Hardware and Embedded Systems, CHES 2002, Redwood City, USA, Lecture Notes in Computer Science, vol. 2523, ed. B. Kaliski. Springer-Verlag, Berlin, 2–12. Also available on http://ece.gmu.edu/crypto/ches02/talks.htm
Slattery, K.P., J.P. Muccioli, and T. North (2000). “Modeling the radiated emissions from microprocessors and other VLSI devices.” IEEE 2000 International Symposium on Electromagnetic Compatibility.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 International Federation for Information Processing
About this entry
Cite this entry
Quisquater, JJ., David, S. (2005). Electromagnetic Attack. In: van Tilborg, H.C.A. (eds) Encyclopedia of Cryptography and Security. Springer, Boston, MA . https://doi.org/10.1007/0-387-23483-7_120
Download citation
DOI: https://doi.org/10.1007/0-387-23483-7_120
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-23473-1
Online ISBN: 978-0-387-23483-0
eBook Packages: Computer ScienceReference Module Computer Science and Engineering