Abstract
In this paper we address bank evaluation of clients in lending credit, based on qualitative attributes. Till now, the banks have dodged to face this part of the lending credit. There are several reasons for this. One is the impossibility of using a statistical approach; the variables are linguistic attributes, not numbers. Another one, which we think really serious, is the difficulty of fixing which qualitative attributes are important. Every bank uses a personal contact with the client, the experts have not a unique behaviour. Here we present a sketch of our work, performed with an Italian bank, in which a fuzzy approach is used. In particular, we have used two different methods: a fuzzy expert system and a fuzzy cluster method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
9 Reference
Bezdek J.C., ”Pattern recognition with fuzzy objectivefunction algorithm”, Plenum New York, 1981.
Duda R.-Hart P., “Pattern classification and scene analysis” Wiley, New York, 1973.
Facchinetti G.-Bordoni S.-Mastroleo G., “Bank Creditworthiness using Fuzzy Systems: A Comparison with a Classical Analysis Tecnique” Risk Assessment and Management in Technology, Environment and Finance. Ruan, Mario Fedrizzi and Janusz Kacprzyk Editors, pp. 472–486, Springer Verlag Press, 2000.
Facchinetti G.-Mastroleo G., “A Comparison between a Score Card and a Fuzzy Approach for Granting Personal Credit” Proceedings of Third Spanish-Italian Meeting on Financial Mathematics, Bilbao 2000.
Facchinetti G.-Cosma S.-Mastroleo G.-Ferretti R., “A fuzzy credit rating approach for small firm creditworthiness evaluation in bank lending. An Italian case.” Proceedings of ICSC 2001, Methods & Applications (CIMA 2001) Bangor, U.K. June 19–22, 2001.
Facchinetti G.-Giove S.-Mastroleo G., “Fuzzy expert systems and data mining for bank credit rating” Proceedings of IV Meeting Italo Spagnolo di Matematica Finanziaria ed Attuariale, pp. 303–311, Alghero 2001.
Gulden R, Rosignoli C, Salcioli G., “L'adozione di sistemi basati sulla conoscenza nell'area fidi degli enti creditizi” in Il Risparmio, n.2, 1994.
Kasabov N.K., “Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering” MIT Press, 1996.
Kosko, B., “Fuzzy Systems as Universal Approximators” Proc. IEEE Int. Conf. On Fuzzy Systems, pp. 1153–1162, 1992.
Ruozi R., “Sull'attendibilità dei bilanci e sulla loro attitudine ai fini di previsione delle insolvenze” in Bancaria, n.l, 1974.
von Altrock C, “Fuzzy Logic and neurofuzzy applications in business and finance.” Prentice Hall, 1997.
Wang L., “Fuzzy systems are universal approximators” Proc. Of Int. Conf. On Fuzzy Engineering, pp. 471–496, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer Science+Business Media, Inc.
About this paper
Cite this paper
Facchinetti, G., Mastroleo, G. (2005). A fuzzy way to evaluate the qualitative attributes in bank lending creditworthiness. In: Saeed, K., Pejaś, J. (eds) Information Processing and Security Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-26325-X_27
Download citation
DOI: https://doi.org/10.1007/0-387-26325-X_27
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-25091-5
Online ISBN: 978-0-387-26325-0
eBook Packages: Computer ScienceComputer Science (R0)