Skip to main content

From Integrated Circuits Technology to Silicon Grey Matter: Hardware Implementation of Artificial Neural Networks

  • Conference paper
Information Processing and Security Systems

Abstract

A very large number of works concerning the area of Artificial Neural Networks deal with implementation of these models as software but also hardware solutions. However, hardware implementations of these models and issued solutions have essentially concerned the execution speed aspects. Today, a new question becomes unavoidable: taking into account the actual computers operation speeds (exceeding several Giga-operations per second), the specific hardware implementation of Artificial Neural Networks is it still an pertinent subject? This paper deals with two main goals. The first one is related to ANN's hardware implementation showing how theoretical bases of ANNs could lead to electronic implementation of these intelligent techniques. The second aim of the paper is to discuss the above formulated question through learning plasticity and robustness of ANN hardware implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. C.A. Mead, "Analogue VLSI and neural systems", Addison Wesley 1989.

    Google Scholar 

  2. R.F. Lyon and C.A. Mead, "An Analog electronic cochlea". IEEE transactions on Acoustic, Speech and signal Processing, Vol. 36, No7, pp. 1119–1134, 1988.

    Article  Google Scholar 

  3. L. Jackel, "Electronic neural networks". In NATO ARW, Neuro-algorithms, architecture and applications, Les Arcs, 1989.

    Google Scholar 

  4. M. Chiaberge, L. M. Reyneri, "Cintia: A Neuro-Fuzzy Real-Time Controller for Law-Power Embedded Systems", IEEE Micro Vol. 15, pp. 40–47, June 1995.

    Google Scholar 

  5. Bazoon M., Stacey D. A., and Cui C., ‘A hierarchical artificial neural network system for the classification of cervical cells', IEEE Int. Conf. On Neural Networks, Orlando, July 1994.

    Google Scholar 

  6. G. Mercier, K. Madani, "CMAC Real-Time Adaptive Control Implementation on a DSP Based Card",, From Natural to Artificial Neural Computation, LNCS Vol. 930, Springer Verlag, pp. 1114–1120, 1995.

    Google Scholar 

  7. K. Madani, P. Garda, E. Belhaire, F. Devos, Two Analog Counters for Neural Network Implementation, IEEE Journal of Solid-State Circuits, VOL. 26, No 7, JULY 1991, pp. 966–974.

    Article  Google Scholar 

  8. J.L. Wyatt and D.L. Standley, "Circuit design criteria for stable lateral inhibition neural networks" In IEEE International Symposium Circuits and systems, IEEE pp 997–1000, June 1988.

    Google Scholar 

  9. M.A. Sivilotti, M.R. Emerling, and C.A. Mead, "VLSI Architectures for implementation of Neural Network". In AIP conference Proceedings on Neural Network for computing, J.S. DENKER, American Institute of physic, Snowbird, UTAH pp408–413, 1986.

    Google Scholar 

  10. M. Verleysen and P. Jespers, "precision of sum-of-product in Analog Neural Network". In Proceedings of the first International workshop on Microelectronics for Neural Networks, Dortmund, RFA, June 1990.

    Google Scholar 

  11. P. Garda E. Belhaire, An Analog chip set with digital I/O for synchronous Boltzmann Machine, VLSI for Artificial Intelligence and Neural Network, Kluwer Academic, J.G.Delgado-frias and W.R. Moore, BOSTON, 1990.

    Google Scholar 

  12. P. Lalanne, J.C. Rodier, H. Richard, P. Chavel, E. Belhaire, K. Madani, P. Garda, 2-D optical generator of updating probabilities for VLSI implementation of Boltzmann Machines, International Journal of Optical Computing, Vol. 1, pp. 25–30, 1990.

    Google Scholar 

  13. R David, E. Williams, G. De Trémiolles, P. Tannhof, Description and Practical Uses of IBM ZISC-036, VI-DYNN'98-Virtual Intelligence-Dynamic Neural Networks Stockholm-Sweden-June 22–26, 1998.

    Google Scholar 

  14. J. Alspector, B. Gupta, R.B. Allen, performance of a stochastic learning microchip, Neural Information Processing Systems, Ed. David Touretzky, Morgan-Kaufmann, pp; 748–760, 1989.

    Google Scholar 

  15. M.A. Arbib (ed.), “Handbook of Brain Theory and Neural Networks” 2ed. M.I.T. Press. 2003.

    Google Scholar 

  16. S. Hebb, The Organization of Behaviour, Wiley and Sons, New-York, U.S.A., 1949.

    Google Scholar 

  17. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, Germany, 1984.

    Google Scholar 

  18. D. Rumelhart, G. Hinton, R. Williams, Learning Internal Representations by Error Propagation", Rumelhart D., McClelland J., "Parallel Distributed Processing: Explorations in the Microstructure of Cognition", I & II, MIT Press, Cambridge MA, 1986.

    Google Scholar 

  19. H.P. Graf, L.D. Jackel, Analog electronic Neural Network Circuits, IEEE Circuit & Devices Magazine July 1989, pp.44–49.

    Google Scholar 

  20. H.P. Graf, L.D. Jackel, W.E. Hubbard, VLSI implementation of a Neural Network model, Computer, IEEE 1988, pp.34–41.

    Google Scholar 

  21. M. Bogdan, H. Speakman, W. Rosenstiel, Kobold: A neural Coprocessor for Back-propagation with on-line learning, Proc. NeuroMicro 94, Torino, Italy, pp. 110–117.

    Google Scholar 

  22. Reyneri L.M., 1995. Weighted Radial Basis Functions for Improved Pattern Recognition and Signal Processing. Neural Processing Letters, Vol. 2, No. 3, pp 2–6, May 1995.

    Article  Google Scholar 

  23. Trémiolles G., Madani K., Tannhof P., 1996. A New Approach to Radial Basis Function's like Artificial Neural Networks. In NeuroFuzzy'96, IEEE European Workshop, Vol. 6 No 2, pp 735–745, April 16 to 18, Prague, Czech Republic, 1996.

    Google Scholar 

  24. De Tremiolles G. I., "Contribution to the theoretical study of neuromimetic models and to their experimental validation: use in industrial applications" (Contribution à l'étude théorique des modèles neuromimétiques et à leur validation expérimentale: mise en œuvre d'applications industrielles), Ph.D. thesis report, University Paris XII, 05 March 1998.

    Google Scholar 

  25. Madani K., Tremiolles G., Tanhoff P., 2003-a. Image processing using RBF like neural networks: A ZISC-036 based fully parallel implementation solving real world and real complexity industrial problems. In Journal of Applied Intelligence No 18, 2003, Kluwer Academic Publishers, pp. 195–231.

    Article  Google Scholar 

  26. R. Azencott, "Synchronous Boltzmann Machines and their learning algorithms". In NATO ARW, Springer-Verlag, les arcs, February 1989.

    Google Scholar 

  27. G.E. Hinton and T.J. Sejnowski, "learning in Boltzmann machines". In Cognitive 85, PARIS, PP 283–290, 1985.

    Google Scholar 

  28. V. Lafargue, "Contribution à la réalisation électronique de Réseaux de Neurones formels: Intégration mixte de l'apprentissage des machines de Boltzmann"; Ph. D. Report, thèse de doctorat en science de l'université PARIS XI, Orsay, January 1993.

    Google Scholar 

  29. E. Belhaire, "Contribution à la réalisation électronique de réseaux de Neurones Formels: Intégration Analogique d'une machine de BOLTZMANN"; Ph.D. report, thèse de doctorat en science de l'université Paris XI, Orsay February 1992.

    Google Scholar 

  30. J.J. Hopfield, "Neurons with graded response have collective computational properties like those of two state neurones". Proceedings of the national Academy of science of U.S.A., vol 81 pp 3088–3092, 1984.

    Article  Google Scholar 

  31. K. Madani, I. Berechet, G. De Tremiolles, Analysis of limitations in Analog Implementation of stochastic Artificial Neural Network V, Orlando, Floride, U.S.A., 4–8 April 1994.

    Google Scholar 

  32. K. Madani, G. De Tremiolles, Global Perturbation Effects Analysis in a CMOS Analogue Implementation of Synchronous Boltzmann Machine, 3-rd. International Workshop on Thermal Investigations of Integrated Circuits and Microstructures, IEEE-CNRS, Cannes-Côte d'Azur, September 21–23, 1997.

    Google Scholar 

  33. K. Madani, G. De Tremiolles, Effects of Global Perturbations on Learning Capability in a CMOS Analogue Implementation of Synchronous Boltzmann Machine, Lecture Notes in Computer Science — Biological and Artificial Computation: From Neuroscience to Technology, Edited by: Jose Mira, Roberto M. Diaz and Joan Cabestany-Springer Verlag Berlin Heidelberg 1999, NoISBN: 3-540-66069-0, pp. 107–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Madani, K. (2005). From Integrated Circuits Technology to Silicon Grey Matter: Hardware Implementation of Artificial Neural Networks. In: Saeed, K., Pejaś, J. (eds) Information Processing and Security Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-26325-X_31

Download citation

  • DOI: https://doi.org/10.1007/0-387-26325-X_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25091-5

  • Online ISBN: 978-0-387-26325-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics