Skip to main content

Idiotypic Networks as a Metaphor for Data Analysis Algorithms

  • Conference paper
Information Processing and Security Systems

Abstract

This paper was intended as a tutorial presentation of different models used to reproduce and analyze main immune functions. An express tour over vast literature devoted to the subject is offered. The choice of corresponding bibliographic positions was motivated by their relevance in current researches, computational simplicity, and richness of behavior of the model suggested by given source of information. Particularly, some remarks on discrete models are given, and general hints concerning designing of artificial immune systems are given.

This paper was partly supported by Białystok Technical University grant W/WI/5/04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. Bagley, R.J., et al. Modeling adaptive biological systems. BioSystems 23: 113–138, 1989.

    Article  Google Scholar 

  2. Bersini, H. Self-assertion vs. self-recognition: A tribute to Francisco Varela. Proc. of the 1st International Conference on Artificial Immune Systems, ICARIS'2002, University of Kent at Canterbury, 2002, pp. 107–112

    Google Scholar 

  3. Bersini, H., Calenbuhr, V. Frustrated chaos in biological networks. J. theor. Biol., 188: 187–200, 1997

    Article  Google Scholar 

  4. Bonabeau, E. A simple model for the statistics of events in idiotypic networks. BioSystems, 39: 25–34, 1996

    Article  Google Scholar 

  5. Burgos, J.D. Fractal representation of the immune B cell repertoire. BioSystems, 39: 19–24, 1996

    Article  Google Scholar 

  6. Calenbuhr, V., Bersini, H., Stewart, J., Varela, F.J. Natural tolerance in a simple immune network. J. theor. Biol., 177: 199–213, 1995

    Article  Google Scholar 

  7. Carter, J.H. The immune system as a model for pattern recognition and classification. J. of the American Medical Informatics Assoc. 7: 28–41, 2000

    Google Scholar 

  8. Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, McGraw-Hill 1999

    Google Scholar 

  9. De Boer, R., Kevrekidis, I.G., Perelson, A.S. Immune network behavior I: from stationary states to limit cycle oscillations. Bull. Math. Biol. 55: 745–780, 1993

    Article  Google Scholar 

  10. De Boer, R., Kevrekidis, I.G., Perelson, A.S. Immune network behavior I: from oscillations to chaos and stationary states. Bull. Math. Biol. 55: 745–780, 1993

    Article  Google Scholar 

  11. De Boer, R., Segel, L.A., Perelson, A.S. Pattern formation in one-and two-dimensional shape space models of the immune system. J. theor. Biol., 155: 295–333, 1992

    Google Scholar 

  12. De Castro, L.N., Timmis, J. Artificial Immune Systems: A New Computational Intelligence Approach, Springer-Verlag 2002

    Google Scholar 

  13. Farmer, J.D. A Rosetta stone for connectionism. Physica D, 42: 153–187, 1990

    Article  MathSciNet  Google Scholar 

  14. Farmer, J.D., Packard, N.H., Perelson, A.S. The immune system, adaptation, and machine learning. Physica D, 22:187–204, 1986

    Article  MathSciNet  Google Scholar 

  15. Faro, J., Velasco, S. Studies on a recent class of network models of the immune system. J. theor. Biol., 164: 271–290, 1993

    Article  Google Scholar 

  16. Faro, J., Carneiro, J. Velasco, S. Further studies on the problem of immune network modelling. J. theor. Biol., 184: 405–421, 1997

    Article  Google Scholar 

  17. Gilbert, C.J., Routen, T.W. Associative memory in an immune-based system. Proc. of 12th Nat. Conf. on Artiff. Intelligence, AAAI Press 1994, 852–857

    Google Scholar 

  18. Hart, E., Ross, P. Studies on the implications of shape-space models for idiotypic networks. In: Nicosia et. al. ICARIS 2004, LNCS 3239, Springer-Verlag 2004, pp. 413–426

    Google Scholar 

  19. Hunt, J. Cooke, D. Learning using an artificial immune system. J. of Network and Computer Applications. 19: 189–212, 1996

    Article  Google Scholar 

  20. Hofmeyr, S.A. Introduction to the immune system. In: L.A. Segel, I. Cohen (eds.) Design Principles for the Immune System and Other Distributed Autonomous Systems, Santa Fe Institute Studies in the Sciences of Complexity. New York: Oxford University Press 2001

    Google Scholar 

  21. Itaya, S., Uezu, T. Analysis of an immune network dynamical system model with a small number of degrees of freedom. Progress in Theoretical Physics, 104: 903–924, 2000

    Article  Google Scholar 

  22. Jerne N.J. Idiotypic networks and other preconceived ideas. Immunol. Rev. 79:5–25,1984

    Article  Google Scholar 

  23. Neal, M. Meta-stable memory in an artificial immune network. In: J. Timmis et al. (eds.), ICARIS 2004, LNCS 2787, Springer-Verlag 2003, pp. 168–180

    Google Scholar 

  24. Perelson, A.S., Oster, G.F. The shape space model. J. theor. Biol., 81: 645–670, 1979

    Article  MathSciNet  Google Scholar 

  25. Perelson, A., Weisbuch, G. Immunology for physicists. Reviews of Modern Physics, 69: 1219–1265, 1977

    Article  Google Scholar 

  26. Stauffer D., Weisbuch, G. High-dimensional simulation of the shape-space model for the immune system. Physica A, 180: 42–52, 1992

    Article  Google Scholar 

  27. Stewart, I., Varela, F. Exploring the connectivity of the immune network. Immunol. Rev. 110: 37–61, 1989

    Article  Google Scholar 

  28. Tieri, P., et al. Memory and selectivity in evolving scale-free immune networks. In: J. Timmis et al. (eds.) ICARIS 2003, LNCS 2787, Springer-Verlag 2003, pp. 93–101

    Google Scholar 

  29. Varela, F., Coutinho, A. Second generation immune networks. Immunol. Today, 12: 159–167, 1991

    Google Scholar 

  30. Wierzchoń, S.T. Kużelewska, U. Stable cluster formation in an artificial immune system. Proc. of the 1st Internat. Conference on Artificial Immune Systems, ICARIS '2002, University of Kent at Canterbury, 2002, pp. 68–75

    Google Scholar 

  31. Younsi, R., Wang, W. A new artificial immune system algorithm for clustering. In: Z.R. Yand et al. (eds.) IDEAL 2004, LNCS 3177, Springer-Verlag 2004, pp. 58–64

    Google Scholar 

  32. Zorzenon dos Santos, R.M., Bernardes, A.T. The stable-chaotic transition on cellular automata used to model the immune repertoire. Physica A, 219: 1–19, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Wierzchoń, S.T. (2005). Idiotypic Networks as a Metaphor for Data Analysis Algorithms. In: Saeed, K., Pejaś, J. (eds) Information Processing and Security Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-26325-X_35

Download citation

  • DOI: https://doi.org/10.1007/0-387-26325-X_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25091-5

  • Online ISBN: 978-0-387-26325-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics