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Preface 

We have termed this series "Semantic Web and beyond: computing for hu- 
man experience." Ramesh Jain (co-editor of this series) and I believe that 
semantics is going to be far more pervasive than portrayed by the current vision 
of the Semantic Web. Its role and values will certainly not be limited to the 
traditional Web. Semantics will also be one of the important components of 
a continuum leading to perception and experience, albeit one that will mature 
earlier in computational context. We also believe that computation, supported 
by techniques and technologies that deal with perception, semantics, and expe- 
riences, will improve and benefit human experience. Such a computation will 
have a far broader impact than the traditional drivers of information technol- 
ogy, such as improving efficiency, lowering cost, or productivity gains. In this 
context, we expect that this series intends to offer additional books covering 
topics in perception, semantics, and experiential computing as they relate to 
improving human experience involving interactions with computing devices 
and environments. Our series intends to offer research monographs, books for 
professional audiences, as well as text books for advance graduate courses. 

This premier book in our series by Daniel Oberle is a good example of 
what we hope to cover in this series. It discusses the role of semantics in 
middleware - arguable the most important segment of the enterprise software 
market. This work demonstrates that semantics and the semantic (and Semantic 
Web) technologies have pervasive applications and uses. It is also an excellent 
training companion for active practitioners seeking to incorporate advanced and 
leading edge ontology-based approaches and technologies. It is a necessary 
preparation manual for researchers in distributed computing who see semantics 
as an important enabler for the next generation. 

Middleware systems are complex. They need to integrate and manage mul- 
tiple heterogeneous software systems. Just as semantics has been recognized 
as a key enabler of heterogeneous information integration, can semantics be 
a key enabler in integrating heterogeneous software systems? Daniel believes 
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that is indeed the case, and he goes on to provide a detailed road map on how 
semantics and Semantic Web technologies can play a significant role in cre- 
ating a middleware system and their use in managing heterogeneous software 
systems. 

The first step in the road map is modelling which centers around using on- 
tologies for specifying semantic models. This leads to the development of a 
semantic model for software components and Web services. We are introduced 
to the basics of middleware technology where technologies and design patterns 
from the past, such as message-oriented middleware or object monitors, help 
readers who are not familiar with the area to get the necessary background 
information. The discussion on ontologies achieves the same. 

The subsequent part of this book offers a detailed discussion on the different 
ontology frameworks which can be used as a modelling basis. The requirements 
for the ontology are well laid out and each ontology framework is analyzed with 
respect to the requirements. DOLCE is chosen since it meets most of the re- 
quirements. The discussion on the semantic modelling of software systems is 
particularly interesting to read. The author addresses the different modelling is- 
sues at different phases of software component design. The modelling captures 
the intricate details and differences between fundamental concepts, such as data 
and software, and continues with component profiles, policies, and many more 
aspects. The modelling also captures the API of components and proposes a 
technique to discover dependent and conflicting libraries. Also presented is a 
model to capture workflows. A discussion on how such a modelling can meet 
the requirements and the advantages of using such an approach are presented 
in detail. 

The next part provides a technical look at the different solutions. This in- 
cludes discussing each aspect of the middleware system and the techniques to 
realize them as actual systems. The requirements of such a semantic middle- 
ware are presented and the system design is discussed with that central per- 
spective. The system architecture along its different constituting components 
are discussed in detail. The application and reuse of the proposed ontology 
in the middleware system is also presented. The book ends with relating this 
approach to application management, Semantic Web Services and MDA. 

Potentially, the most lasting engineering progress in this book, in my per- 
sonal view, is that of taking semantics to the application server level. I foresee 
an emergence of Semantic Aware Networking, in which semantics not only fa- 
cilitates network functions but significantly enhances its capability by pushing 
more functions. With the industry already taking initial steps in this direction, 
such as in CISCO's Application Oriented Networking products, the next step is 
quite likely the interplay between routers and application servers with semantics 
providing a bridge. 



PREFACE xix 

While there is plenty of work related to semantics of information and even 
Web services, this effort stands out in its attention to modelling the semantics of 
software components. In this context, it is a unique offering that goes beyond 
the mainstream Semantic Web research, while demonstrating a detailed and 
pervasive use of semantics in larger software systems context. This series will 
endeavor to offer more such books and for wider audiences. 

Amit P. Sheth 
Director, Large Scale Distributed Information Systems lab 

Professor, Computer Science Department, University of Georgia 
CTO and Cofounder, Semagix, Inc. 

Athens, Georgia, 
U.S.A. 



Foreword 

Which topic in computer science has been attracting researchers and de- 
velopers from artijicial intelligence, business process modelling, conceptual 
modelling, databases, distributed systems, information systems, programming 
systems, security, sofhvare engineering, Web services and Web systems and 
engineering (and probably many others whom I forgot to mention here)? It 
is the specification, development and management of component- and service- 
oriented architectures (SOAs). 

The topic has become important to all of them. While the development of 
individual software systems is reasonably well understood and reasonably well- 
established practice (even when thousands of issues of such systems are and 
will have to be dealt with in more detail), the specification, development and 
maintenance of distributed software systems has in generalnot been understood 
to an extent that let their stakeholders gain the intended economic network ben- 
efits. On the upside, organizations that establish networking of their numerous 
distributed systems with the ones of other organizations may save costs, gain 
new customers or increase customer satisfaction. On the downside, if each mi- 
nor change or minor disruption in one software system leads to a trickle down 
effect that results in expensive reprogramming of another system, all the po- 
tential positive network effects are overshadowed by the costs for joining and 
remaining in the network. 

As the spectrum of interests indicates, the solution to this dilemma may 
require a multi-faceted approach. This book by Daniel Oberle significantly 
contributes towards this objective. Hence, the methods he proposes, revises and 
extends contribute to the plentiful, seminal research of several communities. I 
will name the ones that are most immediately affected, though I strongly believe 
that all of the above cited interest groups may benefit from building on his 
contribution: 
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Distributed Systems: Current middleware systems, such as application servers, 
are complex beasts that are very hard to tame because of the intricacies of 
distributed interactions. Hence, it has been a long-established practice to 
factorize configuration aspects of distributed interactions into correspond- 
ing declarative description files and - more recently - into XML files that 
follow the specification given by the various Web service standards. 

Unfortunately, the semantics of these files is either given by the code of the 
concrete middleware system or - probably worse -by thousands of pages 
of specification documents consisting of raw textual explanations. We all 
know what went wrong with compilers in the 1960ies when programming 
language specifications were still at that stage. 

Daniel here builds a rigorous approach towards giving the declarative de- 
scriptions of software components/Web services a well-defined meaning by 
defining ontological foundations and by showing how such foundations may 
be realized in practical, up-and-running systems. 

Artificial Intelligence - Ontologies: Though all software developers use pro- 
gramming languages, only few specialists are actually able to formally de- 
fine a programming language and develop a corresponding compiler: the 
formal foundation is not used to tutor the beginner, but to clarify the dis- 
cussion and development by experts. The same is true for ontologies that 
underly a software management approach. They need to outlive many soft- 
ware development cycles, i.e., they need to have a formal foundation, yet 
one must also tutor the domain experts how to use them. 

It is one of the successes of this work that it shows how to develop and 
use the ontological foundations of this work in a concrete software envi- 
ronment. This is done in a way that the usage of the resulting middleware 
infrastructure seems amenable to a sophisticated software developer even 
though the development of a complex foundational ontology may have to 
be left to some few specialists. 

Web Services -Semantic Web Services: The analysis of the ontologies 
Daniel develops makes evident that very few concepts actually differ when 
"upgrading" from conventional middleware to Web services. It also makes 
clear that the use of declarative specifications, such as done in Web ser- 
vices, or formal declarative specifications, such as done for Semantic Web 
Services comes with economic modelling costs that need to be justified by 
savings in other places. This lets us presume that formal specifications with 
the objective of fully automatic Web service composition and orchestration 
remain a valid research topic - but one that will find its applications in 
niches rather than in wide-spread adoption by software developers. 
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Thus, the book covers an incredible depth and breadth of approaches. Its 
value lies in revising and extending existing methods thereby providing the 
cornerstones for specifying, developing and managing distributed applications 
in the coming decades - using semantics. 

Prof. Dr. Steffen Staab 
ISWeb - Information Systems and Semantic Web 
Institute for Computer Science 
University of Koblenz-Landau 
Germany 
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