
SEMANTIC
MANAGEMENT OF

MIDDLEWARE

SEMANTIC WEB AND BEYOND
Computing for Human Experience

Series Editors:

Ramesh Jain Amit Sheth
University of California, Irvine University of Georgia
http://jain.faculty.gatech.edu/ http://lsdis.cs.uga.edu/-amit

As computing becomes ubiquitous and pervasive, computing is increasingly becoming
an extension of human, modifying or enhancing human experience. Today's car reacts to
human perception of danger with a series of computers participating in how to handle the
vehicle for human command and environmental conditions. Proliferating sensors help
with observations, decision making as well as sensory modifications. The emergent
semantic web will lead to machine understanding of data and help exploit
heterogeneous, multi-source digital media. Emerging applications in situation
monitoring and entertainment applications are resulting in development of experiential
environments.

SEMANTIC WEB AND BEYOND
Computing for Human Experience

addresses the following goals:

brings together forward looking research and technology that will shape our
world more intimately than ever before as computing becomes an extension of
human experience;

covers all aspects of computing that is very closely tied to human perception,
understanding and experience;

brings together computing that deal with semantics, perception and experience;

serves as the platform for exchange of both practical technologies and far
reaching research.

Additional information about this series can be obtained from
http://www.springer.com

SEMANTIC
MANAGEMENT OF

MIDDLEWARE

Daniel Oberle
University of Karlsruhe, Germany

Q - Springer

Daniel Oberle

University of Karlsruhe

Institute of Applied Informatics and

Formal Descriptions Methods

D-76128 Karlsruhe

Germany

Library of Congress Control Number: 2005908104

Semantic Management of Middleware

by Daniel Oberle

ISBN-10: 0-387-0-387-27630-0 e-ISBN-10: 0-387-0-387-27631-9

ISBN-13: 978-0-387-27630-4 e-ISBN-13: 978-0-387-27631-1

Printed on acid-free paper.

Dissertation, genehmigt von der Fakultät für Wirtschaftswissenschaften der

Universität Fridericiana zu Karlsruhe, 2005. Referent: Prof. Dr. Rudi Studer,
Korreferenten: Prof. Dr. Bruno Neibecker, Prof. Dr. Steffen Staab

Cover art by Daniel Oberle, showing the architecture of the ontology-based

application server, from another perspective. The green object is a common

symbol for an ontology.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or

in part without the written permission of the publisher (Springer

Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,

USA), except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and

retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and

similar terms, even if the are not identified as such, is not to be taken as

an expression of opinion as to whether or not they are subject to

proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springeronline.com

Dedicated to ...

... the Supervisors

Steffen Staab
Andreas Eberhart

Pascal Hitzler
Rudi Studer

... the Reviewers

Ed Curry
Robert Delaney
Aldo Gangemi

Peter Haase
Stefan Tai

Denny Vrandecic
Clare Waibel

... the Colleagues @ Semantic Karlsruhe

Andreas Abeckel; Sudhir Agarwal, Stephan Bloehdorn, Saartje Brockmans,
Philipp Cimiano, Christian Drumm, Marc Ehrig, Stephan Grimm, Siegfried

Handschuh, Jens Hartmann, Andreas Hotho, StefSen Lampartel; Jens Lemcke,
Alexander Madche, Boris Motik, Kioumars Namiri, Gisela Schillingel; Lars

Schmidt-Thieme, Christoph Schmitz, Ljiljana & Nenad Stojanovic, Gerd
Stumme, York Sure, Julien Tune, Bernhard Tausch, Christoph Tempich, Max

Volkel, Johanna Volkel; Raphael Volz, Susanne Wintel; Valentin Zacharias

... the Colleagues @ World

Sean Bechhofel; Bettina Berendt, Jorge Gonzalez, Nicola Guarino, Frank van
Harmelen, Ian Horrocks, Hans-Arno Jacobsen, Holger Knublauch, Deborah

McGuinness, Sheila Mcllraith, Peter Mika, Christof Momm, Doug Lea, Jeff
Pan, Helena Sojia Pinto, Debbie Richards, Marta Sabou, Jorge Santos, Rick

Schantz, Luc Schneidel; Swaminathan Sivasubramanian, Heiner
Stuckenschmidt, Phil Tetlow, Peter Spyns, Mike Uschold, Werner Vogels,

Frank Wolff

... and last but not least to my family &friends!

Contents

List of Figures
List of Tables
Preface
Foreword
Acknowledgments

Part I Fundamentals

1. INTRODUCTlON

1 Motivation

2 Research Questions

3 Contributions

2. MIDDLEWARE

1 Middleware for Distributed Application Development

2 Middleware for Enterprise Application Integration

3 Middleware for B2B Application Integration
3.1 Application Servers
3.2 Web Services

4 Summary

3. ONTOLOGIES

1 Definition
1.1 What is a Conceptualization?
1.2 What is an Ontology?
1.3 A Suitable Representation Formalism

2 Classification

xiii
xv

xvii
xxi
xxv

viii SEMANTIC MANAGEMENT OF MIDDLEWARE

2.1 Classification according to Purpose
2.2 Classification according to Expressiveness
2.3 Classification according to Specificity

3 The Role of Foundational Ontologies

4 Ontological Choices
4.1 Descriptive vs. Revisionary
4.2 Multiplicative vs. Reductionist
4.3 Possibilism vs. Actualism
4.4 Endurantism vs. Perdurantism
4.5 Extrinsic Properties

5 Summary

4. TOWARDS SEMANTIC MANAGEMENT
1 Scenarios

I. 1 An Application Server for the Semantic Web
1.2 Web Services in SmartWeb

2 Use Cases
2.1 Application Servers
2.2 Web Services

3 Summary

Part I1 Design of a Management Ontology

ANALYSIS OF EXISTING ONTOLOGIES

1 OWL-S

2 Initial Ontology of Software Components

3 Problematic Aspects
3.1 Conceptual Ambiguity
3.2 Poor Axiomatization
3.3 Loose Design
3.4 Narrow Scope

4 Summary

6. THE APPROPRIATE FOUNDATIONAL ONTOLOGY

1 Requirements for Ontological Choices

2 Alternatives
2.1 BFO
2.2 DOLCE
2.3 OCHRE

Contents ix

2.4 OpenCyc
2.5 SUMO

3 Summary

7. AN ONTOLOGICAL FORMALIZATION OF SOFTWARE
COMPONENTS AND WEB SERVICES
1 Modelling Basis

1.1 DOLCE
1.2 Descriptions & Situations
1.3 Ontology of Plans
1.4 Ontology of Information Objects

2 Core Software Ontology
2.1 Software vs. Data
2.2 API Description
2.3 Semantic API Description
2.4 Workflow Information
2.5 Access Rights and Policies

3 Core Ontology of Software Components
3.1 Formalization of the Term "Software Component"
3.2 Libraries and Licenses
3.3 Component Profiles and Taxonomies
3.4 Example

4 Core Ontology of Web Services
4.1 Formalization of the term "Web service"
4.2 Service Profiles and Taxonomies
4.3 Example

5 Proof of Concept
5.1 Meeting the Modelling Requirements
5.2 Higher Quality
5.3 Enabling Reuse

6 Summary

Part I11 Realization of Semantic Management

8. DESIGN OF AN ONTOLOGY-BASED APPLICATION SERVER 149

1 General Design Issues 150
1.1 Possible Platforms 150
1.2 Obtaining Semantic Descriptions 152
1.3 How to Integrate the Inference Engine? 154

x SEMANTIC MANAGEMENT OF MIDDLEWARE

2 Semantic Management of Software Components
2.1 Requirements
2.2 The Microkernel Design Pattern
2.3 Integration of an Inference Engine
2.4 Architecture

3 Semantic Management of Web Services

4 Summary

9. IMPLEMENTATION

1 The JBOSS' Application Server
2 The KAON Tool Suite
3 KAONSERVER

3.1 Server Core
3.2 Connectors
3.3 Interceptors
3.4 Functional Components
3.5 Management Console

4 Example
4.1 Modelling the Ontology
4.2 Definition of Rules
4.3 Setting up the Portal

5 Summary

10. APPLYING THE MANAGEMENT ONTOLOGY

1 From Core to Domain
1.1 MBeans
1.2 Profiles

2 From Reference to Application

3 From Heavyweight to Lightweight
3.1 The KAON Language
3.2 Adaptation of Definitions and Axioms

4 Assessment
4.1 Application Server Use Cases
4.2 Web Services Use Cases

5 Summary

Contents

Part IV Finale

1 1. RELATED WORK
1 Enterprise Application Management

1.1 Application Management Systems
1.2 Application Management Schemas

2 Model-Driven Architectures
3 Web Services

4 Semantic Web Services
4.1 OWL-S
4.2 METEOR-S
4.3 WSMO
4.4 IRS
4.5 KDSWS
4.6 Other Approaches

5 Miscellaneous
5.1 Software Reuse Systems
5.2 DL IDL
5.3 Microsoft SDM
5.4 Integration of Software Specifications
5.5 Other Ontologies

12. CONCLUSION & OUTLOOK
1 Summary

2 Contributions

3 Open Issues

Appendices
A Taxonomies

References

Index

List of Figures

Types of middleware and historical overview.
J2EE API's divided into layers.
Example of indirect permission.
Internal vs. external middleware.
Example: Software components and their dependencies.
Intended models vs. models of the ontology.
Example for the equivalence relation A.
Classification of ontologies.
Foundational ontologies and intended models.
Classification of foundational ontologies.
Working hypothesis.
Static and dynamic aspects of the Semantic Web.
Semantic Web example.
Information flow in the research and academia example.
Simplified SmartWeb Architecture.
The goal of Part I1 is to design a management ontology.
The OWL-S Service ontology module as UML class diagram. 82
OWL-S and the initial ontology of software components. 84
The representation of attribute binding in OWL-S. 90
BFO Taxonomy. 99
DOLCE Taxonomy. 100
OCHRE Taxonomy. 102
OpenCyc Taxonomy. 104
SUMO Taxonomy. 105
Overview of the management ontology. 108

SEMANTIC MANAGEMENT OF MIDDLEWARE

Sketch of DOLCE.
The Descriptions & Situations ontology module.
The Ontology of Plans.
The Ontology of Information Objects.
The classification of software and data.
Semantic API description.
The Policy Description.
UML diagram of the software component example.
UML diagram of the Web services example.
Solution to the attribute binding problem.
Wider scope through the Ontology of Information Objects.
The Reverse Engineering Approach.
The Model-Driven Deployment Approach.
The Ontology Run Time Approach.
Architecture of the ontology-based application server.
JMX Architecture.
Basic architecture of JBoss.
KAON tool suite overview.
KAON 01-Modeller screenshot.
Mapping from design to implementation elements.
KAON 01-Modeller as management console.
An instance of KAON SERVER.
Sequence diagram - OilEd with KAON SERVER.
Sequence diagram - OntoEdit with KAON SERVER.
Reuse of the management ontology in the KAON SERVER.
CIM for J2EE Application Servers.
DOLCE.
Descriptions & Situations.
Ontology of Plans.
Ontology of Information Objects.
Core Software Ontology.
Core Ontology of Software Components.
Core Ontology of Web Services.
KAON SERVER Ontology.

List of Tables

Dependencies between requirements and ontology modules. 86
Foundational ontologies and their ontological choices. 106
Foundational ontologies and their extrinsic properties. 106
Meeting the modelling requirements for software components. 141
Meeting the modelling requirements for Web services. 141
Dependencies between requirements and design elements. 166
Dependencies between use cases and design elements. 169
WSDL mapping. 180
WS-BPEL mapping. 181
WS-Policy mapping. 18 1
Definitions kept or removed from the management ontology. 197
Axioms kept or removed from the management ontology. 198
Effort comparison for the Library Dependencies and
Versioning and Licensing use cases. 212

Effort comparison for the Capability Descriptions use case. 213
Effort comparison for the Component ClassiJication and
Discovery and Semantics of Parameters use cases. 213

Effort comparison for the Automatic Generation of Web
Service Descriptions use cases. 214
Effort comparison for the Access Rights use case. 214
Effort comparison for the Exception Handling use case. 214

Effort comparison for the Transactional Settings and
Secure Communication use cases. 215
Effort comparison for the Policy Handling and Relating
Communication Parameters use cases. 216

xvi SEMANTIC MANAGEMENT OF MIDDLEWARE

10.1 1 Effort comparison for the Detecting Loops in Interor-
ganizational Workjlows use case. 216

10.12 Effort comparison for the Monitoring of Changes use case. 217
10.13 Effort comparison for the Aggregating Service Informa-

tion use case. 217
10.14 Effort comparison for the Quality of Service use case. 217

Preface

We have termed this series "Semantic Web and beyond: computing for hu-
man experience." Ramesh Jain (co-editor of this series) and I believe that
semantics is going to be far more pervasive than portrayed by the current vision
of the Semantic Web. Its role and values will certainly not be limited to the
traditional Web. Semantics will also be one of the important components of
a continuum leading to perception and experience, albeit one that will mature
earlier in computational context. We also believe that computation, supported
by techniques and technologies that deal with perception, semantics, and expe-
riences, will improve and benefit human experience. Such a computation will
have a far broader impact than the traditional drivers of information technol-
ogy, such as improving efficiency, lowering cost, or productivity gains. In this
context, we expect that this series intends to offer additional books covering
topics in perception, semantics, and experiential computing as they relate to
improving human experience involving interactions with computing devices
and environments. Our series intends to offer research monographs, books for
professional audiences, as well as text books for advance graduate courses.

This premier book in our series by Daniel Oberle is a good example of
what we hope to cover in this series. It discusses the role of semantics in
middleware - arguable the most important segment of the enterprise software
market. This work demonstrates that semantics and the semantic (and Semantic
Web) technologies have pervasive applications and uses. It is also an excellent
training companion for active practitioners seeking to incorporate advanced and
leading edge ontology-based approaches and technologies. It is a necessary
preparation manual for researchers in distributed computing who see semantics
as an important enabler for the next generation.

Middleware systems are complex. They need to integrate and manage mul-
tiple heterogeneous software systems. Just as semantics has been recognized
as a key enabler of heterogeneous information integration, can semantics be
a key enabler in integrating heterogeneous software systems? Daniel believes

xviii SEMANTIC MANAGEMENT OF MIDDLEWARE

that is indeed the case, and he goes on to provide a detailed road map on how
semantics and Semantic Web technologies can play a significant role in cre-
ating a middleware system and their use in managing heterogeneous software
systems.

The first step in the road map is modelling which centers around using on-
tologies for specifying semantic models. This leads to the development of a
semantic model for software components and Web services. We are introduced
to the basics of middleware technology where technologies and design patterns
from the past, such as message-oriented middleware or object monitors, help
readers who are not familiar with the area to get the necessary background
information. The discussion on ontologies achieves the same.

The subsequent part of this book offers a detailed discussion on the different
ontology frameworks which can be used as a modelling basis. The requirements
for the ontology are well laid out and each ontology framework is analyzed with
respect to the requirements. DOLCE is chosen since it meets most of the re-
quirements. The discussion on the semantic modelling of software systems is
particularly interesting to read. The author addresses the different modelling is-
sues at different phases of software component design. The modelling captures
the intricate details and differences between fundamental concepts, such as data
and software, and continues with component profiles, policies, and many more
aspects. The modelling also captures the API of components and proposes a
technique to discover dependent and conflicting libraries. Also presented is a
model to capture workflows. A discussion on how such a modelling can meet
the requirements and the advantages of using such an approach are presented
in detail.

The next part provides a technical look at the different solutions. This in-
cludes discussing each aspect of the middleware system and the techniques to
realize them as actual systems. The requirements of such a semantic middle-
ware are presented and the system design is discussed with that central per-
spective. The system architecture along its different constituting components
are discussed in detail. The application and reuse of the proposed ontology
in the middleware system is also presented. The book ends with relating this
approach to application management, Semantic Web Services and MDA.

Potentially, the most lasting engineering progress in this book, in my per-
sonal view, is that of taking semantics to the application server level. I foresee
an emergence of Semantic Aware Networking, in which semantics not only fa-
cilitates network functions but significantly enhances its capability by pushing
more functions. With the industry already taking initial steps in this direction,
such as in CISCO's Application Oriented Networking products, the next step is
quite likely the interplay between routers and application servers with semantics
providing a bridge.

PREFACE xix

While there is plenty of work related to semantics of information and even
Web services, this effort stands out in its attention to modelling the semantics of
software components. In this context, it is a unique offering that goes beyond
the mainstream Semantic Web research, while demonstrating a detailed and
pervasive use of semantics in larger software systems context. This series will
endeavor to offer more such books and for wider audiences.

Amit P. Sheth
Director, Large Scale Distributed Information Systems lab

Professor, Computer Science Department, University of Georgia
CTO and Cofounder, Semagix, Inc.

Athens, Georgia,
U.S.A.

Foreword

Which topic in computer science has been attracting researchers and de-
velopers from artijicial intelligence, business process modelling, conceptual
modelling, databases, distributed systems, information systems, programming
systems, security, sofhvare engineering, Web services and Web systems and
engineering (and probably many others whom I forgot to mention here)? It
is the specification, development and management of component- and service-
oriented architectures (SOAs).

The topic has become important to all of them. While the development of
individual software systems is reasonably well understood and reasonably well-
established practice (even when thousands of issues of such systems are and
will have to be dealt with in more detail), the specification, development and
maintenance of distributed software systems has in generalnot been understood
to an extent that let their stakeholders gain the intended economic network ben-
efits. On the upside, organizations that establish networking of their numerous
distributed systems with the ones of other organizations may save costs, gain
new customers or increase customer satisfaction. On the downside, if each mi-
nor change or minor disruption in one software system leads to a trickle down
effect that results in expensive reprogramming of another system, all the po-
tential positive network effects are overshadowed by the costs for joining and
remaining in the network.

As the spectrum of interests indicates, the solution to this dilemma may
require a multi-faceted approach. This book by Daniel Oberle significantly
contributes towards this objective. Hence, the methods he proposes, revises and
extends contribute to the plentiful, seminal research of several communities. I
will name the ones that are most immediately affected, though I strongly believe
that all of the above cited interest groups may benefit from building on his
contribution:

xxii SEMANTIC MANAGEMENT OF MIDDLEWARE

Distributed Systems: Current middleware systems, such as application servers,
are complex beasts that are very hard to tame because of the intricacies of
distributed interactions. Hence, it has been a long-established practice to
factorize configuration aspects of distributed interactions into correspond-
ing declarative description files and - more recently - into XML files that
follow the specification given by the various Web service standards.

Unfortunately, the semantics of these files is either given by the code of the
concrete middleware system or - probably worse -by thousands of pages
of specification documents consisting of raw textual explanations. We all
know what went wrong with compilers in the 1960ies when programming
language specifications were still at that stage.

Daniel here builds a rigorous approach towards giving the declarative de-
scriptions of software components/Web services a well-defined meaning by
defining ontological foundations and by showing how such foundations may
be realized in practical, up-and-running systems.

Artificial Intelligence - Ontologies: Though all software developers use pro-
gramming languages, only few specialists are actually able to formally de-
fine a programming language and develop a corresponding compiler: the
formal foundation is not used to tutor the beginner, but to clarify the dis-
cussion and development by experts. The same is true for ontologies that
underly a software management approach. They need to outlive many soft-
ware development cycles, i.e., they need to have a formal foundation, yet
one must also tutor the domain experts how to use them.

It is one of the successes of this work that it shows how to develop and
use the ontological foundations of this work in a concrete software envi-
ronment. This is done in a way that the usage of the resulting middleware
infrastructure seems amenable to a sophisticated software developer even
though the development of a complex foundational ontology may have to
be left to some few specialists.

Web Services -Semantic Web Services: The analysis of the ontologies
Daniel develops makes evident that very few concepts actually differ when
"upgrading" from conventional middleware to Web services. It also makes
clear that the use of declarative specifications, such as done in Web ser-
vices, or formal declarative specifications, such as done for Semantic Web
Services comes with economic modelling costs that need to be justified by
savings in other places. This lets us presume that formal specifications with
the objective of fully automatic Web service composition and orchestration
remain a valid research topic - but one that will find its applications in
niches rather than in wide-spread adoption by software developers.

FOREWORD xxiii

Thus, the book covers an incredible depth and breadth of approaches. Its
value lies in revising and extending existing methods thereby providing the
cornerstones for specifying, developing and managing distributed applications
in the coming decades - using semantics.

Prof. Dr. Steffen Staab
ISWeb - Information Systems and Semantic Web
Institute for Computer Science
University of Koblenz-Landau
Germany

Acknowledgments

This work was financed by Wonderweb - "Ontology Infrastructure for the
Semantic Web," a European Union Information Society Technologies (IST)
Future Emerging Technolgiges (FET) funded project under contract number
IST-2001-33052 (2002-2004). I feel indebted to all the colleagues for the much
valued cooperation and fruitful discussions we had throughout the project.

This work was financed by Smartweb, a research project funded by the
German Federal Ministry of Education and Research (BMBF). My appreciation
to all the colleagues of another great project still running at the time of writing
this book (2004-2007). It has been a joy working with you all!

My appreciation to all the members of the Software Engineering Task Force
(SETF). The task force is a part of the World Wide Web's Consortium (W3C) Se-
mantic Web Best Practices and Deployment Working Group (SWBPD), where
this work was also successfully exposed and revised [Tetlow et al., 20051.

Finally, I would like to express my gratitude to Amit Sheth - the series
editor - as well as the ladies at Springer: Susan Lagerstrom-Fife and Sharon
Palleschi, who made the publication of this book possible.

