Skip to main content

7 Conclusion

In this chapter, we have presented an overview of various nanoscale and molecular computing architectures. We have given a brief tutorial on various existing nanoscale and molecular devices. These include molecular switches, resonant tunnel diodes, tunnel diodes, single electron transistors, carbon nanotube field-effect transistors, quantum dots, and spin systems. We have next discussed a set of nanoscale computing modules, such as quantum and spin-based cellular logic arrays, and molecular-based cellular automata, all made from the switches presented here. These modules are an integral part of the hierarchical 3-D multiscale architecture presented. We have also showed a set of quantum and molecular self-assembled structures including molecular crossbars. The fabrication of these architectures currently faces a number of challenges, as discussed in this chapter. Nanoscale and molecular computing is a promising alternative to today’s CMOS technology but is in an infancy stage, with many interesting design issues yet to be studied and resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Goto, K. Mutara, K. Nakazawa, T. Moto-Oka, Y. Matsuoka, Y. Ishibashi, T. Soma, and E. Wada. (1960): Esaki diode high speed logical circuits, IRE Transactions on Electronics and Computing 9, 25.

    Google Scholar 

  2. L. Esaki and R. Tsu (1970): Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14, 61.

    Google Scholar 

  3. L.L. Chang, L. Esaki, W.E. Hpoward, and R. Ludeke (1973): Structures grown by molecular beam epitaxy (GaAs and GaAs-Ga/sub 1-x/Al/sub x/As), Journal of Vac. Science and Technology 10,11, 9.

    Google Scholar 

  4. L.L. Chang, L. Esaki, and R. Tsu (1974): Resonant tunneling in semiconductor double barriers, Applied Physics Letters 24, 593.

    Google Scholar 

  5. J. Holland (1976): Studies of the spontaneous emergence of self-replicating systems using cellular automata and formal grammars, in Automata Languages Development, North-Holland Publishing Co., Amsterdam, The Netherlands, pp. 385.

    Google Scholar 

  6. V.J. Goldman, D.C. Tsui, and J.E. Cunningham (1987): Observation of intrinsic bistability in resonant-tunneling structures, Physical Review Letters 58, 1256.

    Google Scholar 

  7. A. Miura, T. Yakihara, S. Uchida, S. Oka, S. Kobayashi, H. Kamada, and M. Dobashi (1990): Monolithic sampling head IC, IEEE Trans. Microwave Theory and Technology 38, 1980.

    Google Scholar 

  8. A. Ulman (1991): An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-assembly, Academic Press, San Diego.

    Google Scholar 

  9. B.C. Crandall and J. Lewis (1992): Nanotechnology Research and Perspectives, The MIT Press Cambridge, pp. 149–170.

    Google Scholar 

  10. Y.-C. Kao, A.C. Seabaugh, and H.-T. Yuan (1992): Vertical integration of structured resonant tunneling diodes on InP for multi-valued memory applications, Int. Conference on Indium Phosphide and Related Materials 489.

    Google Scholar 

  11. J.R. Tucker (1992): Complementary digital logic based on the ‘Coulomb blockade’, Journal of Applied Physics, 72, 4399.

    Article  Google Scholar 

  12. C.S. Lent, P.D. Togaw, and W. Porod (1993): Bistable saturation in coupled quantum dots for quantum cellular automata, Applied Physics Letters 62, 714.

    Article  Google Scholar 

  13. K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki (1993): A room-temperature single-electron memory device using fine-grain polycrystalline silicon, IEDM Technical Digest 541.

    Google Scholar 

  14. P. Balasingam and V.P. Roychowdhury (1994): Nanoelectronic functional devices, Purdue University Technical Report: TR-EE 94-24.

    Google Scholar 

  15. K. Maezawa, T. Akeyoshi and T. Mizutani (1994): Functions and applications of monostable-bistable transition logic elements (MOBILE’s) having multiple-input terminals, IEEE Transactions On Electron Devices 41, 148.

    Article  Google Scholar 

  16. T.K. Carns, X. Zheng, and K.L. Wang (1995): A novel high speed, three element Si-based static random memory (SRAM) cell, IEEE Electron Device Letters 16, 256.

    Article  Google Scholar 

  17. K. Itoh, K. Sasaki, and Y. Nakagome (1995): Trends in low-power RAM circuit technologies, Proceedings of IEEE 83, 524.

    Article  Google Scholar 

  18. R.E. Jones, Jr., P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii, P. Chu, and S.J. Gillispie (1995): Ferroelectric nonvolatile memories for low-voltage, low-power applications, Thin Solid Films 270, 584.

    Article  Google Scholar 

  19. S. Bandyopadhyay and V.P. Roychowdhury (1996): Computational paradigms in nanoelectronics: quantum coupled single electron logic and neuromorphic networks, Japan. J. Appl. Phys. 35, 3350.

    Article  Google Scholar 

  20. S. Bandyopodhyay and V.P. Roychowdhury (1996): Granular nanoelectronics: The logical gateway to the 21st Century, IEEE Potentials.

    Google Scholar 

  21. E.R. Brown and C.D. Parker (1996): Resonant tunnel diodes as submillimetre-wave sources, Philos. Trans. R. Soc. London, Ser. A 354, 2365.

    Google Scholar 

  22. J. Koga and A. Toriumi (1996): Room temperature negative differential conductance in three-terminal silicon surface tunneling device, IEDM Technical Digest 265.

    Google Scholar 

  23. V.P. Roychowdhury, D.B. Janes, S. Bandyopadhyay, and X. Wang (1996): Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics, IEEE Transactions on Electron Devices 43, 1688.

    Article  Google Scholar 

  24. D. Goldhaber-Gordon, M.S. Montermerlo, J.C. Love, G.J. Opiteck, and J.C. Ellenbogen (1997): Overview of nanoelectronic devices, Proceedings of IEEE.

    Google Scholar 

  25. J. Jortner and M. Ratner (1997): Molecular Electronics, Oxford, U.K.

    Google Scholar 

  26. T.I. Kamins, E.C. Carr, R.S. Williams, and S.J. Rosner (1997): Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures, Journal of Applied Physics 81, 211.

    Article  Google Scholar 

  27. T.I. Kamins and R.S. Williams (1997): Lithographic positioning of self-assembled Ge islands on Si(001), Physical Letters 71, 1201.

    Google Scholar 

  28. S.J. Koester, K. Ismail, K.Y. Lee, and J.O. Chua (1997): Operation of a novel negative differential conductance transistor fabricated in a strained Si quantum well, IEEE Electron Device Letters 118, 432.

    Google Scholar 

  29. K. Morita, K. Morimoto, H. Sorada, K. Araki, K. Yuki, M. Niwa, T. Uenoyama, and K. Ohnaka (1997): Si interband tunnelling diode through a thin oxide with a degenerate poly-Si electrode, in Extended Abstracts from the 3rdInternational Workshop Quantum Functional Devices 175.

    Google Scholar 

  30. V.P. Roychowdry, D.B. Janes and S. Bandyopadhyay (1997): Nanoelectronic architecture for Boolean logic, Proc. IEEE 85, 574.

    Google Scholar 

  31. A. Seabaugh, B. Brar, T. Broekaert, G. Frazier, P. van der Wagt, and E. Beam (1997): Resonant tunneling circuit technology: has it arrived?, GaAs IC Symposium and Technology Digest 119.

    Google Scholar 

  32. J.J. Welser, S. Tiwari, S. Rishton, K.Y. Lee, and Y. Lee (1997): Room temperature operation of a quantum-dot flash memory, IEEE Electron Devices Letters 18, 278.

    Google Scholar 

  33. X. Zhu, X. Zheng, M. Pak, M.O. Tanner, and K.L. Wang (1997): Si bistable diode utilizing interband tunneling junctions, Applied Phyics Letters 71, 2190.

    Google Scholar 

  34. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams (1998): A defect tolerant computer architecture: Opportunities for nanotechnology, Science 280, 1716.

    Article  Google Scholar 

  35. K.M. Horn, B.S. Swartzentruber, G.C. Osbourn, A. Bouchard, and J.W. Bartholomew (1998): Electronic structure classifications using scanning tunneling microscopy conductance imaging, Journal of Applied Physics 84, 2487.

    Article  Google Scholar 

  36. B.E. Kane (1998): A silicon-based nuclear spin quantum computer, Nature 393, 133.

    Article  Google Scholar 

  37. C.H. Lin, K. Yang, M. Bhattacharya, X. Wang, X. Zhang, J.R. East, P. Mazumder, and G.I. Haddad (1998): Monolithically integrated InP-based minority logic gate using an RTD/HBT heterostructure, International Conference on Indium Phosphide and Related Materials 419.

    Google Scholar 

  38. R. Martel, T. Schmidt, H.R. Sea, T. Hertel, and P. Avouris (1998): Single-and multi-wall carbon nanotube field-effect transistors, Applied Physics Letters 73, 2447.

    Article  Google Scholar 

  39. J.H. Reif (1998): Alternative computational models: A comparison of biomolecular and quantum computation, Proceeding of the 18thInternational Conference on Foundations of Software Technology and Theoretical Computer Science.

    Google Scholar 

  40. M. Rodder, S. Hattangady, N. Yu, W. Shiau, P. Nicolllian, T. Laaksonen, C.P. Chao, M. Mehrota, C. Lee, S. Murtaza, and S. Aur (1998): IEDM Tech. Dig. 623.

    Google Scholar 

  41. A.C. Seabaugh and R. Lake (1998): Beyond-the-roadmap technology: Silicon heterojunctions, optoelectronics, and quantum devices, Encyclopedia of Physics 22, 335.

    Google Scholar 

  42. J.P. Sun, G.I. Haddad, P. Mazumder, and J.N. Shulman (1998): Resonant tunneling diodes: models and properties, Proceedings of IEEE 86, 641.

    Google Scholar 

  43. S.J. Tans, R.M. Verschueren, and C Dekker (1998): Room temperature transistor based on a single carbon nanotube, Nature 393, 49.

    Google Scholar 

  44. J.P.A. van der Wagt, A.C. Seabaugh, and E.A. Beam (1998): RTD/HFET low standby power SRAM gain cell, IEEE Electron Device Letters 19, 7.

    Google Scholar 

  45. T. Waho, T. Itoh, and M. Yamamoto (1998): Ultrahigh-speed resonant tunneling circuits, in Second International Workshop on Physics and Modeling of Devices based on Low-Dimensional Structures, p.73.

    Google Scholar 

  46. M.P. Anantram and V.P. Roychowdhury (1999): Metastable states and information propagation in a one-dimensional array of locally coupled bistable cells, Journal of Applied Physics 85.

    Google Scholar 

  47. J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour (1999): Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550.

    Google Scholar 

  48. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J. F. Stoddart, P.J. Kuekes, R.S. Williams, and J. R. Heath (1999): Electronically configurable molecular-based logic gates, Science 285, 391.

    Article  Google Scholar 

  49. K. Esfarjani, A.A. Farajian, Y. Hashi, and Y. Kawazoe (1999): Electronic and transport properties of N-P doped nanotubes, Applied Physics Letters 74, 79.

    Article  Google Scholar 

  50. A.A. Farajian, K. Esfarjani, and Y. Kawazoe (1999): Nonlinear coherent transport through doped nanotube junctions, Physical Review Letters 82, 5084.

    Article  Google Scholar 

  51. G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B. Y. Nguyen (1999): Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates, Applied Phyiscs Letters 75, 2752.

    Google Scholar 

  52. F. Leonard and J. Tersoff (1999): Novel length scales in nanotube devices, Physical Review Letters 83, 5174.

    Google Scholar 

  53. K. Likharev (1999): Single-electron devices and their applications, Proceedings of IEEE, 87.

    Google Scholar 

  54. J. Nygard, D.H. Cobden, M. Bockrath, P.L. McEuen, and P.E. Lindelof (1999): Electrical transport measurements on single-walled carbon nanotubes, Applied. Physics A 69, 297.

    Google Scholar 

  55. Y. Ono, Y. Takahashi, K. Yamazaki, H. Namatsu, K. Kurihara, and K. Murase (1999): Si complementary single-electron inverter, IED M Technical Digest 367.

    Google Scholar 

  56. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, and W.J. Gallagher (1999): Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory, J. Appl. Phys. 85, 5828.

    Article  Google Scholar 

  57. G. Snider, A. Orlov, I. Amlani, X. Zuo, G. B. Stein, C. Lent, J. Mez, and W. Porod (1999): Quantum-dot cellular automata, Journal of Applied Physics.

    Google Scholar 

  58. H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, and H. Dai (1999): Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes, Appl. Phys. Lett. 75, 627.

    Article  Google Scholar 

  59. A.S. Vedeneev, J. Li, C. Papadopoulos, A. Rakitin, A.J. Bennett, H.W. Chik, and J.M. Xu (1999): Molecular-scale rectifying diodes based on Y-junction carbon nanotubes, Proceedings of IEDM 231.

    Google Scholar 

  60. J.P.A. van der Wagt (1999): Tunneling-based SRAM, Proceedings of IEEE, 87, 571.

    Google Scholar 

  61. K. Yano, T. Ishii, T. Sano, T. Mine, F. Muri, T. Hashimoto, T. Kobayashi, T. Kure, and K Seki (1999): Single-electron memory for giga-to-tera bit storage, Proceedings of IEEE 87, 633.

    Article  Google Scholar 

  62. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath (2000): A [2]catenane-based solid state electronically reconfigurable switch, Science 289, 1172.

    Article  Google Scholar 

  63. F. Leonard and J. Tersoff (2000): Negative differential resistance in nanotube devices, Physical Review Letters 85, 4767.

    Google Scholar 

  64. Y. Ono and Y. Takahashi (2000): Single-electron pass-transistor logic: operation of its elemental circuit, IEDM Technical Digest 297.

    Google Scholar 

  65. M.A. Reed and J.M. Tour (2000): Computing with molecules, Sci. Am. 282, 86.

    Google Scholar 

  66. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, and C.M. Lieber (2000): Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94.

    Article  Google Scholar 

  67. Y. Takahashi, A. Fujiwara, K. Yamazaki, H. Namtsu, K. Kurihara, and K. Murase (2000): Multigate single-electron transistors and their application to an exclusive-OR gate, Applied Physics Letters 76, 637.

    Google Scholar 

  68. M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse (2000): Nanotechnology, Basic Science and Emerging Technologies, Chapman & Hall/CRC.

    Google Scholar 

  69. A. Bachtold, P. Hadley, T. Nakanaishi, and C. Dekker (2001): Logic circuits with carbon nanotube transistors, Science 294, 1317.

    Article  Google Scholar 

  70. M. Hanggi and L.O. Chua (2001): Cellular neural networks based on resonant tunneling diodes, Int. Journal of Circuit Theory and Applications 29, 487.

    Google Scholar 

  71. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C.M. Lieber (2001): Logic gates and computation from assembled nanowire building blocks, Science 294, 1313.

    Google Scholar 

  72. D.H. Kim, S.-K. Sung, J.S. Sim, K.R. Kim, J.D. Lee, B.-G. Park, B.H. Choi, S.W. Hwang, and D. Ahn (2001): Single-electron transistor based on a silicon-on-insulator quantum wire fabricated by a side-wall patterning method, Appl. Phys. Lett. 79, 3812.

    Google Scholar 

  73. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and P. Avouris (2001): Ambipolar electrical transport in semicon-ducting single-wall carbon nanotubes, Physics Review Letters 87, 256805.

    Article  Google Scholar 

  74. R. Martel, H.-S.P. Wong, K. Chan, and P. Avouris (2001): Carbon nanotube field effect transistors for logic applications, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224) IEEE 751.

    Google Scholar 

  75. M.T. Niemier and Peter Kogge (2001): Exploring and exploiting wire-level pipelining in emerging technologies, 28thAnnual Symposium on Computer Architecture.

    Google Scholar 

  76. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour (2001): Molecular random access memory cell, Appl. Phys. Lett. 78, 3735.

    Google Scholar 

  77. P. See, D.J. Paul, B. Hollander, S. Mantl, I.V. Zozoulenko, and K.-F. Berggren (2001): High performance Si/Si/sub 1-x/Ge/sub x/ resonant tunneling diodes, IEEE Electron Device Letters 22, 182.

    Google Scholar 

  78. D.D. Awschalom, M.E. Flatté, and N. Samarth (2002): Spintronics, Scientific American, May.

    Google Scholar 

  79. M.R. Diehl, S.N. Yaliraki, R.A. Beckman, M. Barohona, and J.R. Heath (2002): Self-assembled, deterministic carbon nanotube wiring networks, Angew. Chem. Int. Ed. 41.

    Google Scholar 

  80. A.Y. Kitaev, A.H. Shen, and M.N. Vyalyi (2002): Classical and quantum computation, American Mathematical Society.

    Google Scholar 

  81. L.J. Lauhon, M.S. Gudiksen, C.L. Wang, and C.M. Lieber (2002): Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420, 57.

    Article  Google Scholar 

  82. Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, and J.R. Heath (2002): Two-dimensional molecular electronics circuits, ChemPhysChem 3, 519.

    Google Scholar 

  83. S.E. Lyshevski (2002): MEMS and NEMS, Systems, Devices, and Structures, CRC Press.

    Google Scholar 

  84. J.K. Mbdindyo, T.E. Mallouk, J.B. Mattzela, I. Kratochvilova, B. Razavi, T.N. Jackson, and T.S. Mayer (2002): Template synthesis of metal nanowires containing monolayer molecular junctions, J. Am. Chem. Soc. 124, 4020.

    Google Scholar 

  85. M.J. Krawczyk, K. Kulakowski, and A.Z. Maksymowicz (2002): New cellular automaton designed to simulate geometration in gel electrophoresis, Elsevier, Computer Physics Communications 147, 1–2(1), 354–7, Netherlands.

    Google Scholar 

  86. T. Yang, R.A. Kiehl, and L.O. Chua (2002): Chaos in circuits and systems, World Scientific, pp. 577–91.

    Google Scholar 

  87. G. Bourianoff (2003): The future of nanocomputing, IEEE Computer, August.

    Google Scholar 

  88. Y. Chen, G.-Y Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams (2003): Nanoscale molecular-switch crossbar circuits, Nanotechnology 14, 462.

    Google Scholar 

  89. Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams, J.O. Jeppesen, K.A. Neilsen, J.F. Stoddart, D.L. Olynick, and E. Anderson (2003): Nanoscale molecular-switch devices fabricated by imprint lithography, Appl. Phys. Lett. 82, 1610.

    Google Scholar 

  90. W. Deng and W. A. Goddard, Ab initio simulation of the Heath-Stoddart electronic devices J. Am. Chem. Soc., submitted.

    Google Scholar 

  91. M.R. Diehl, D.W. Steuerman, H.-R. Tseng, S.A. Vignon, A. Star, P.C. Celestre, J.F. Stoddart, and J.R. Heath (2003): Single-walled carbon nanotube-based molecular switch tunnel junctions, ChemPhysChem 4, 1335.

    Article  Google Scholar 

  92. M.M. Esahghian (2003): Nanoscale Ccomputing structures, Proceedings of the 7th World Multi-conference on Systemics, Cybernetics, and Informatics, SCI2003, Florida, July.

    Google Scholar 

  93. J.R. Heath and M.A. Ratner (2003): Molecular electronics, Physics Today, May, 43.

    Google Scholar 

  94. A. Khitun, S. Hong, and K.L. Wang (2003): Semiconductor tunneling structure with self-assembled quantum dots for multi-logic cellular automata module, SPIE-International Society Optical Engineering, Proceedings of SPIE 5023, pp.445–8.

    Google Scholar 

  95. C.M. Lieber (2003): Presentation at the DARPA PI Review Meeting for the Moletronics Program, Virginia.

    Google Scholar 

  96. Y. Luo, H.-R. Tseng, D.W. Steuerman, J. F. Stoddart, and J. R. Heath, Conservation of molecular mechanisms in solution, half devices and full devices, Angew. Chemie Int. Ed., manuscript in preparation.

    Google Scholar 

  97. R.M. Metzger (2003): Unimolecular electrical electrical rectifiers, Chem. Rev. 103, 3803.

    Article  Google Scholar 

  98. H.-R. Tseng, D. Wu, N. Fang, X. Zhang, and J.F. Stoddart (2003): Nanoelectromechanical switching in a self-assembled monolayer of [2]rotaxanes on gold, ChemPhysChem, in press.

    Google Scholar 

  99. D. Whang, S. Jin, Y. Wu, and C.M. Lieber (2003): Large-scale hierarchical organization of nanowire arrays for integrated nanosystems, Nano Lett. 3, 1255.

    Google Scholar 

  100. R.S. Williams (2003): Presentation at the DARPA PI Review Meeting for the Moletronics Program, VA.

    Google Scholar 

  101. H. Yu, Y. Luo, K Beverly, J.F. Stoddart, H.-R. Tseng, and J.R. Heath (2003): The molecule-electrode interface in single-molecule transistors, Angew. Chemie Int. Ed. 42, 5706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Eshaghian-Wilner, M.M., Flood, A.H., Khitun, A., Stoddart, J.F., Wang, K. (2006). Molecular and Nanoscale Computing and Technology. In: Zomaya, A.Y. (eds) Handbook of Nature-Inspired and Innovative Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27705-6_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-27705-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-40532-2

  • Online ISBN: 978-0-387-27705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics