Skip to main content

Predictive Coding of Hyperspectral Images

  • Chapter
Hyperspectral Data Compression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Laboratory, “AVIRIS (airborne visible/infrared imaging spectrometer) homepage.” http://aviris.jpl.nasa.gov/.

    Google Scholar 

  2. J. Seward, “The bzip2 and libbzip2 official home page.” http://sources.redhat.com/bzip2/.

    Google Scholar 

  3. A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 243–250, June 1996.

    Article  Google Scholar 

  4. T. W. Fry and S. Hauck, “Hyperspectral image compression on reconfigurable platforms,” in IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 251–260, 2002.

    Google Scholar 

  5. A. Miguel, A. Askew, A. Chang, S. Hauck, R. Ladner, and E. Riskin, “Reduced complexity wavelet-based predictive coding of hyperspectral images for FPGA implementation,” in Proceedings Data Compression Conference, pp. 469–478, 2004.

    Google Scholar 

  6. P. Shippert, “Why use hyperspectral imagery?,” Photogrammetric Engineering & Remote Sensing, Journal Of The American Society For Photogrammetry And Remote Sensing, vol. 70, pp. 377–380, April 2004.

    Google Scholar 

  7. R. W. Basedow, M. Kappus, L. J. Rickard, and M. E. Anderson, “HYDICE: Operational system status.” http://ltpwww.gsfc.nasa.gov/ISSSR-95/hydiceop.htm.

    Google Scholar 

  8. Earth Search Sciences, Inc., “Probe-1.” http://www.earthsearch.com/index.htm.

    Google Scholar 

  9. ITRES Research, Inc., “CASI-2 and CASI-3.” http://www.earthsearch.com/index.htm.

    Google Scholar 

  10. Integrated Spectronics, “HyMap.” http://www.intspec.com/.

    Google Scholar 

  11. Group for Environmental Research Earth Resources Exploration Consortium, “Airborne hyperspectral and multispectral imaging systems.” http://www.ger.com/ie.html.

    Google Scholar 

  12. Spectral Imaging, “AISA.” http://www.specim.fi/index.html.

    Google Scholar 

  13. U.S. Geological Survey EROS Data Center, “USGS EO-1 website.” http://eo1.usgs.gov/hyperion.php.

    Google Scholar 

  14. M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,” Tech. Rep. 124, Digital Equipment Corporation, 1994.

    Google Scholar 

  15. N. S. Jayant and P. Noll, Digital Coding of Waveforms. Englewood Cliffs, N. J.: Prentice-Hall, 1984.

    Google Scholar 

  16. J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard. New York: Chapman & Hall, 1996.

    Google Scholar 

  17. V. Cuperman and A. Gersho, “Adaptive differential vector coding of speech,” in Conference Record GlobeCom 82, pp. 1092–1096, Dec. 1982.

    Google Scholar 

  18. P.-C. Chang and R. M. Gray, “Gradient algorithms for designing predictive vector quantizers,” IEEE Transactions on Acoustics Speech and Signal Processing, vol. 34, pp. 679–690, Aug. 1986.

    Article  Google Scholar 

  19. A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Norwell, MA: Kluwer Academic Publishers, 1992.

    MATH  Google Scholar 

  20. H.-M. Hang and J. W. Woods, “Predictive vector quantization of images,” IEEE Transactions on Acoustics Speech and Signal Processing, vol. 33, pp. 1208–1219, Nov. 1985.

    Google Scholar 

  21. R. M. Gray, “Vector quantization,” IEEE ASSP Magazine, vol. 1, pp. 4–29, Apr. 1984.

    Article  Google Scholar 

  22. S.-E. Qian, A.-B. Hollinger, D. Williams, and D. Manak, “Vector quantization using spectral index-based multiple subcodebooks for hyperspectral data compression,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1183–1190, 2000.

    Article  Google Scholar 

  23. M. J. Ryan and M. R. Pickering, “An improved M-NVQ algorithm for the compression of hyperspectral data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 600–602, 2000.

    Google Scholar 

  24. G. P. Abousleman, T.-T. Lam, and L. J. Karam, “Robust hyperspectral image coding with channel-optimized trellis-coded quantization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 4, pp. 820–830, 2002.

    Article  Google Scholar 

  25. H. S. Lee, N.-H. Younan, and R. L. King, “Hyperspectral image cube compression combining JPEG 2000 and spectral decorrelation,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 6, pp. 3317–3319, 2000.

    Article  Google Scholar 

  26. X. Tang, S. Cho, and W. A. Pearlman, “Comparison of 3D set partitioning methods in hyperspectral image compression featuring an improved 3D-SPIHT,” in Proceedings of the Data Compression Conference, p. 449, 2003.

    Google Scholar 

  27. T. Markas and J. Reif, “Multispectral image compression algorithms,” in Proceedings of the Data Compression Conference, vol. 3, pp. 391–400, 1993.

    Google Scholar 

  28. G. P. Abousleman, M. W. Marcellin, and B. R. Hunt, “Hyperspectral image compression using using entropy-constrained predictive trellis coded quantization,” IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 566–573, 1997.

    Article  Google Scholar 

  29. P.-L. Dragotti, G. Poggi, and R. P. Ragozini, “Compression of multispectral images by three-dimensional SPIHT algorithm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 1, pp. 416–428, 2000.

    Article  Google Scholar 

  30. N. D. Memon, “A bounded distortion compression scheme for hyperspectral data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 1039–1041, 1996.

    Google Scholar 

  31. A. Rao and S. Bhargava, “Multispectral data compression using bidirectional interband prediction,” IEEE Trans. on Geoscience and Remote Sensing, vol. 34, no. 2, pp. 385–397, 1996.

    Article  Google Scholar 

  32. S. R. Tate, “Band ordering in lossless compression of multispectral images,” IEEE Transactions on Computers, vol. 46, pp. 477–483, Apr. 1997.

    Article  MathSciNet  Google Scholar 

  33. M. J. Ryan and J. F. Arnold, “A suitable distortion measure for the lossy compression of hyperspectral data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 4, pp. 2056–2058, 1998.

    Google Scholar 

  34. G. Motta, F. Rizzo, and J. A. Storer, “Compression of hyperspectral imagery,” in Proceedings Data Compression Conference, pp. 333–342, Mar. 2003.

    Google Scholar 

  35. F. Rizzo, B. Carpentieri, G. Motta, and J. A. Storer, “High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain,” in Proceedings Data Compression Conference, pp. 479–488, 2004.

    Google Scholar 

  36. M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 546–550, May 1997.

    Article  Google Scholar 

  37. M. R. Pickering and M. J. Ryan, “Efficient spatial-spectral compression of hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1536–1539, 2001.

    Article  Google Scholar 

  38. B. Aiazzi, P. Alba, L. Alparone, and S. Baronti, “Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2287–2294, 1999.

    Article  Google Scholar 

  39. S.-E. Qian, A. B. Hollinger, and Y. Hamiaux, “Study of real-time lossless data compression for hyperspectral imagery,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 4, pp. 2038–2042, 1999.

    Google Scholar 

  40. R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Transactions on Image Processing, vol. 5, no. 5, pp. 713–719, 1996.

    Article  Google Scholar 

  41. V. D. Vaughn and T. S. Wilkinson, “System considerations for multispectral image compression designs,” IEEE Signal Processing Magazine, vol. 12, pp. 19–31, January 1995.

    Article  Google Scholar 

  42. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. 2001. Second edition.

    Google Scholar 

  43. J. Edmonds, “Optimum branchings,” Journal of Research of the National Bureau of Standards, vol. 71B, pp. 233–240, 1967.

    MathSciNet  Google Scholar 

  44. R. E. Tarjan, “Finding optimum branchings,” Networks, vol. 7, pp. 2–35, 1977.

    MathSciNet  Google Scholar 

  45. H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, “Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,” Combinatorica, vol. 6, no. 2, pp. 109–122, 1986.

    MathSciNet  MATH  Google Scholar 

  46. P. Kopylov and P. Fränti, “Optimal layer ordering in the compression of map images,” in Proceedings of the Data Compression Conference, pp. 323–332, 2003.

    Google Scholar 

  47. C. Bloom, “Dictionary coders (lzp).” http://www.cbloom.com/src/index_lz.html.

    Google Scholar 

  48. A. Simakov, “Shcodec home page.” http://webcenter.ru/~xander/.

    Google Scholar 

  49. H. Peltola and J. Tarhio, “Ppmz for Linux.” http://www.cs.hut.fi/tarhio/ppmz/.

    Google Scholar 

  50. S. T. Lavavej, “bwtzip.” http://nuwen.net/bwtzip.html.

    Google Scholar 

  51. M. Schindler, “Szip homepage.” http://www.compressconsult.coszip/.

    Google Scholar 

  52. D. Debin, “Zzip homepage.” http://debin.org/zzip/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Miguel, A.C. et al. (2006). Predictive Coding of Hyperspectral Images. In: Motta, G., Rizzo, F., Storer, J.A. (eds) Hyperspectral Data Compression. Springer, Boston, MA. https://doi.org/10.1007/0-387-28600-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-28600-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28579-5

  • Online ISBN: 978-0-387-28600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics