Skip to main content

Introduction to Evolvable Hardware

  • Chapter
Evolvable Hardware

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

This chapter provides an introduction to evolvable hardware. First, the basic idea of evolvable hardware is outlined. Because evolvable hardware involves the integration of programmable logic device and evolutionary computation, these are both explained briefly. Then, an overview of current research on evolvable hardware is presented. Finally, the chapter discusses some directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, W. and A. M. Tyrrell. 2005. Hardware fault-tolerance within the POEtic system. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 25–36. Springer.

    Google Scholar 

  • Bennett III, F. H., et al. 1996. Evolution of a 60 decibel op amp using genetic programming. In Evolvable Systems: From Biology to Hardware, LNCS 1259, 455–469. Springer.

    Google Scholar 

  • Bradley, D. W. and A. M. Tyrrell. 2001. Multi-layered defence mechanisms: architecture, implementation and demonstration of a hardware immune system. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 140–150. Springer.

    Google Scholar 

  • Garvie, M. and A. Thompson. 2003. Evolution of self-diagnosing hardware. In Evolvable Systems: From Biology to Hardware, LNCS 2606, 238–248. Springer.

    Google Scholar 

  • Greensted, J. and A. M. Tyrrell. 2003. Fault tolerance via endocrinologic based communication for multiprocessor systems. In Evolvable Systems: From Biology to Hardware, LNCS 2606, 24–34. Springer.

    Google Scholar 

  • Haddow, P. C, G. Tufte and P. van Remortel. 2001. Shrinking the genotype: L-systems for EHW? In Evolvable Systems: From Biology to Hardware, LNCS 2210, 128–139. Springer.

    Google Scholar 

  • Harding, S. and J. F. Miller. 2005. Evolution in materio: investigating the stability of robot controllers evolved in liquid crystal. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 155–164. Springer.

    Google Scholar 

  • Higuchi, T., et al. 1993. Evolvable hardware with genetic learning. In Proc. of Simulated Adaptive behavior, 417–424. MIT Press.

    Google Scholar 

  • Islam, M. M., S. Terao and K. Murase. 2001. Effect of fitness for the evolution of autonomous robots in an open-environment. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 171–181. Springer.

    Google Scholar 

  • Kasai, Y., et al. 2005. Adaptive waveform control in a data transceiver for multi-speed IEEE 1394 and USB communication. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 198–204. Springer.

    Google Scholar 

  • Kim, J. G., K.-G. Noh and K. Park. 2001. Human-like dynamic walking for a biped robot using genetic algorithm. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 159–170. Springer.

    Google Scholar 

  • Korenek, J. and L. Sekanina. 2005. Intrinsic evolution of sorting networks: a novel complete hardware implementation for FPGAs. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 46–55. Springer.

    Google Scholar 

  • Koza, J. R., et al. 1996. Reuse, parameterized reuse, and hierarchical reuse of substructures in evolving electrical circuits using genetic programming. In Evolvable Systems: From Biology to Hardware, LNCS 1259, 312–326. Springer.

    Google Scholar 

  • Lohn, J. D. and S. P. Colombano. 1998. Automated analog circuit synthesis using a linear representation. In. Evolvable Systems: From Biology to Hardware, LNCS 1478, 125–133. Springer.

    Google Scholar 

  • Lohn, J. D., et al. 2001. Evolutionary optimization of Yagi-Uda antennas. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 236–243. Springer.

    Google Scholar 

  • Lohn, J. D., G. S. Hornby and D. S. Linden. 2005. Evolution, re-evolution, and prototype of an X-band antenna for NASA’s space technology 5 mission. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 205–214. Springer.

    Google Scholar 

  • Mange, D. 1993. Wetware as a bridge between computer engineering and biology. In Preliminary Proceedings, 2nd European Conference on Artificial Life, 658–667.

    Google Scholar 

  • Mange, D. 1993. Life in Silico. In 11th European Conference on Circuit Theory and Design (ECCTD’ 93), 145–149.

    Google Scholar 

  • Mange, D., A. Stauffer and G. Tempesti. 1998. Embryonics: a macroscopic view of the cellular architecture. In Evolvable Systems: From Biology to Hardware, LNCS 1478, 174–184 Springer.

    Google Scholar 

  • Martinek, T. and L. Sekanina. 2005. An evolvable image filter: experimental evaluation of a complete hardware implementation in FPGA. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 76–85. Springer.

    Google Scholar 

  • Moreno, J. M., Y. Thoma and E. Sanchez. 2005. POEtic: a prototyping platform for bioinspired hardware. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 177–187. Springer.

    Google Scholar 

  • Prodan, L., et al. 2001. Embryonics: artificial cells driven by artificial DNA. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 100–111. Springer.

    Google Scholar 

  • Restrepo, H. F. and D. Mange. 2001. An embryonics implementation of a self-replicating universal turing machine. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 74–87. Springer.

    Google Scholar 

  • Sekanina, L. and R. S. Zebulum. 2005. Intrinsic evolution of controllable oscillators in FPTA-2. In Evolvable Systems: From Biology to Hardware, LNCS 3637, 98–107. Springer.

    Google Scholar 

  • Smith, S. L., D. P. Crouch and A. M. Tyrrell. 2003. Evolving image processing Operations for an evolvable hardware environment. In Evolvable Systems: From Biology to Hardware, LNCS 2606, 332–343. Springer.

    Google Scholar 

  • Stauffer, A., et al. 2001. A self-repairing and self-healing electronic watch: the BioWatch. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 112–127. Springer.

    Google Scholar 

  • Torresen, J. 2001. Two-step incremental evolution of a prosthetic hand controller based on digital logic gates. In Evolvable Systems: From Biology to Hardware, LNCS 2210, 1–13. Springer.

    Google Scholar 

  • Trefzer, M., et al. 2005. Operational amplifiers: an example for multi-objective optimization on an analog evolvable hardware platform. In Evolvable Systems: From Biology to Hard-ware, LNCS 3637, 86–97. Springer.

    Google Scholar 

  • Yao, X. and T. Higuchi. 1999. “Promises and challenges of evolvable hardware”, IEEE Trans. Systems, Man, and Cybernetics, C 29(l), 87–97.

    Google Scholar 

  • Zebulum, R. S., et al. 2003. Automatic evolution of signal separators using reconfigurable hardware. In Evolvable Systems: From Biology to Hardware, LNCS 2606, 286–295. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Higuchi, T., Liu, Y., Iwata, M., Yao, X. (2006). Introduction to Evolvable Hardware. In: Higuchi, T., Liu, Y., Yao, X. (eds) Evolvable Hardware. Genetic and Evolutionary Computation. Springer, Boston, MA . https://doi.org/10.1007/0-387-31238-2_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-31238-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24386-3

  • Online ISBN: 978-0-387-31238-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics