Abstract
In this chapter, we study isotropic properties of some Gibbs fields used for image segmentation. We consider ferromagnetic models defined by 3 × 3 interactions. We compute the Wulff shape of these models at zero temperature. A classification of the considered models with respect to this shape is given. We also give some conjectures which provide conditions necessary to obtain a regular shape. Finally, the influence of the Wulff shape of a given model is shown on real data in the context of magnetic resonance image segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dobrushin R L, Kotecký R, Shlosman S (1992) Wulff construction: a global shape from local interaction. AMS Translations Series, vol 104, Providence RI.
Sinai Y G (1982) Theory of Phase Transitions: Rigorous Results, Pergamon Press.
Georgii H O (1988) Gibbs Measures and Phase Transitions, Walter de Gruyter, 1988.
Descombes X, Mangin J F, Pechersky E, Sigelle M (1995) Fine structure pre-serving Markov model for image processing, In: Proc. SCIA, Uppsala, Sweden, 349–356.
Descombes X, Pechersky E (2003) Droplet shapes for a class of models in Z2 at zero temperature. Journal of Statistical Physics, 111(1–2):129–169.
Minlos R A, Sinai Y A (1967) The phenomenon of “phase separation” at low temperatures in some lattice models of a gas I. Math. USSR-Sb. 2:337–395.
Besag J (1974) Spatial interaction and statistical analysis of lattice systems. Journal of the Royal Society, Serie B, 48:192–236.
Geman S, Geman D (1984) tochastic relaxation, Gibbs distribution, and the Bayesian restoration of images, IEEE Trans. on PAMI, 6:721–741.
Descombes X, Morris R, Zerubia J, Berthod M (1999) Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum like-lihood. IEEE Trans. on Image Processing, 8(7):954–963.
Descombes X, Kruggel F (1999) A Markov pixon information approach for low level image description. IEEE Trans. on Pattern Anaylsis and Machine Intelligence, 21(6):482–494.
Maruani A, Pechersky E, Sigelle M (1995) On Gibbs fields in image processing. Markov Processes and Related Fields, 1:419–442.
Wulff G (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflachen. Z. Kryst., 34:449–530.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Birkhäuser Boston
About this chapter
Cite this chapter
Descombes, X., Pechersky, E. (2006). Wulff Shapes at Zero Temperature for Some Models Used in Image Processing. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_11
Download citation
DOI: https://doi.org/10.1007/0-8176-4481-4_11
Publisher Name: Birkhäuser Boston
Print ISBN: 978-0-8176-4376-8
Online ISBN: 978-0-8176-4481-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)