Skip to main content

Computing with Point Cloud Data

  • Chapter
Statistics and Analysis of Shapes

Abstract

Point clouds are one of the most primitive and fundamental manifold representations. A popular source of point clouds are three-dimensional shape acquisition devices such as laser range scanners. Another important field where point clouds are found is the representation of high-dimensional manifolds by samples. With the increasing popularity and very broad applications of this source of data, it is natural and important to work directly with this representation, without having to go through the intermediate and sometimes impossible and distorting steps of surface reconstruction. Under the assumption that the underlying object is a submanifold of Euclidean space, we first discuss how to approximately compute geodesic distances by using only the point cloud by which the object is represented. We give probabilistic error bounds under a random model for the sampling process. Later in the chapter we present a geometric framework for comparing manifolds given by point clouds. The underlying theory is based on Gromov—Hausdorff distances, leading to isometry invariant and completely geometric comparisons. This theory is embedded in a probabilistic setting, as derived from random sampling of manifolds, and then combined with results on matrices of pairwise geodesic distances to lead to a computational implementation of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis transform. Comput. Geom., 19(2–3):127–153, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry, volume 33 of AMS Graduate Studies in Math. American Mathematical Society, 2001.

    Google Scholar 

  3. J.-D. Boissonnat and F. Cazals. Coarse-to-fine surface simplification with geometric guarantees. In Proc. Eurographics Symp. on Comput. Geom., 2001.

    Google Scholar 

  4. M. Bernstein, V. de Silva, J. Langford, and J. Tenenbaum. Graph approximations to geodesics on embedded manifolds. Technical report, 2000.

    Google Scholar 

  5. J. Borwein and O. Hijab. http://www.siam.org/journals/problems/ downloadfiles/99-5sii.pdf

    Google Scholar 

  6. D. Burago and B. Kleiner. Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps. Geom. Funct. Anal., 8:273–282, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Burago and B. Kleiner. Rectifying separated nets. Geom. Funct. Anal., 12:80–92, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Boutin and G. Kemper. On reconstructing n-point configurations from the distribution of distances or areas. Adv. in Appl. Math., 32(4):709–735, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of point sampled geometry. In Proceedings of the 13th Eurographics Workshop on Rendering, pages 53–64. Eurographics Association, 2002.

    Google Scholar 

  10. G. Charpiat, O. Faugeras, and R. Keriven. Shape metrics, warping, and statistics. In Proceedings of the International Conference on Image Processing, 2003.

    Google Scholar 

  11. J. Costa and A. O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Processing, 52:2210–2221, August 2004.

    Google Scholar 

  12. I. Chavel. Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge, UK, 1997.

    Google Scholar 

  13. R. Coifman. Personal communication.

    Google Scholar 

  14. A. Collins, A. Zomorodian, G. Carlsson, and L. Guibas. A barcode shape descriptor for curve point cloud data. In Proc. Symposium on Point-Based Graphics, ETH, Zürich, Switzerland, 2004.

    Google Scholar 

  15. M. P. do Carmo. Riemannian geometry. Mathematics: Theory and Applications. Birkhäuser Boston Inc., Boston, MA, 1992.

    MATH  Google Scholar 

  16. N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered data. J. Comput. Appl. Math., 145(2):505–517, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. K. Dey, J. Giesen, and J. Hudson. Decimating samples for mesh simplification. In Proc. 13th Canadian Conference on Computational Geometry, pages 85–88, 2001.

    Google Scholar 

  18. A. Dvoretzky. On covering a circle by randomly placed arcs. Proc. Nat. Acad. Sci. U.S.A., 42:199–203, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Elad (Elbaz) and R. Kimmel. Bending invariant representations for surfaces. Proc. of CVPR’01 Hawaii, 2001.

    Google Scholar 

  20. W. Feller. An Introduction to Probability Theory and its Applications. John Wiley & Sons, Inc., New York-London-Sydney, 1971.

    MATH  Google Scholar 

  21. L. Flatto. A limit theorem for random coverings of a circle. Israel J. Math., 15:167–184, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Flatto and D. J. Newman. Random coverings. Acta Math., 138(3–4):241–264, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Frosini. A distance for similarity classes of submanifolds of Euclidean space. Bull. Austral. Math. Soc., 42:3:407–416, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  24. M.T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):371–376, 1999.

    Article  Google Scholar 

  25. [GPZ+]_M. Gross, H. Pfister, M. Zwicker, M. Pauly, M. Stamminger, and M. Alexa. Point based computer graphics. EUROGRAPHICS 2002 Lecture Notes.

    Google Scholar 

  26. A. Gray. Tubes. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1990.

    MATH  Google Scholar 

  27. K. Grove. Metric differential geometry. In Differential geometry, volume 1263 of Lecture Notes in Math., pages 171–227. Springer, Berlin, 1987.

    Chapter  Google Scholar 

  28. M. Gromov. Asymptotic invariants of infinite groups. In A. Niblo and Martin A. Roller, editors, Geometric group theory, volume 2 of London Math. Soc. Lecture Notes Ser., pages 1–295. Cambridge Univ. Press, Cambridge, UK, 1993.

    Google Scholar 

  29. M. Gromov. Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser, Boston, 1999.

    MATH  Google Scholar 

  30. J. Giesen and U. Wagner. Shape dimension and intrinsic metric from samples of manifolds with high co-dimension. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pages 329–337. ACM Press, New York, 2003.

    Chapter  Google Scholar 

  31. P. Hall. Introduction to the theory of coverage processes. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1988.

    MATH  Google Scholar 

  32. J. Hoffmann-Jørgensen. Coverings of metric spaces with randomly placed balls. Math. Scand., 32:169–186, 1973.

    MathSciNet  Google Scholar 

  33. A. Ben Hamza and Hamid Krim. Geodesic object representation and recognition. In Lecture Notes in Computer Science, volume 2886, pages 378–387, 2003.

    Google Scholar 

  34. D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:9, 1993.

    Article  Google Scholar 

  35. J. Helmsen, E. G. Puckett, P. Collela, and M. Dorr. Two new methods for simulating photolithography development in 3d. In Proc. SPIE Microlithography IX, pages 253–261, 1996.

    Google Scholar 

  36. S. Janson. Random coverings in several dimensions. Acta Math., 156(1–2):83–118, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  37. D. W. Kahn. Topology. An Introduction to the Point-Set and Algebraic Areas. Williams & Wilkins Co., Baltimore, MD, 1975.

    MATH  Google Scholar 

  38. M. G. Kendall and P. A. P. Moran. Geometrical probability. Griffin’s Statistical Monographs & Courses, No. 10. Hafner Publishing Co., New York, 1963.

    MATH  Google Scholar 

  39. N. J. Kalton and M. I. Ostrovskii. Distances between Banach spaces. Forum Math., 11:1:17–48, 1999.

    MATH  MathSciNet  Google Scholar 

  40. R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA, 95(15):8431–8435 (electronic), 1998.

    Article  MATH  MathSciNet  Google Scholar 

  41. R. Kunze, F. Wolter, and T. Rausch. Geodesic Voronoi diagrams on parametric surfaces. In Proceedings of the 1997 Conference on Computer Graphics International, page 230. IEEE Computer Society, 1997.

    Google Scholar 

  42. S. Lafon. Diffusion maps and geometric harmonics. Ph.D. thesis, Yale University, New Haven, CT, May 2004.

    Google Scholar 

  43. G. Leibon and D. Letscher. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pages 341–349. ACM Press, New York, 2000.

    Chapter  Google Scholar 

  44. L. Linsen and H. Prautzsch. Local versus global triangulations. In Proc. Eurographics’ 01, 2001.

    Google Scholar 

  45. C. T. McMullen. Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal., 8:304–314, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  46. C. Moenning and N. A. Dodgson. Fast marching farthest point sampling for implicit surfaces and point clouds. Technical Report 565, Cambridge University Computer Laboratory, Cambridge, UK, 2003.

    Google Scholar 

  47. C. Mantegazza and A. C. Mennucci. Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim., 47(1):1–25, 2003.

    Article  MathSciNet  Google Scholar 

  48. [MMS+04]_C. Moenning, F. Mémoli, G. Sapiro, N. Dyn, and N. A. Dodgson. Meshless geometric subdivision. Technical Report 1977, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, USA, 2004. http://www.ima.umn.edu/preprints/apr2004/1977.pdf

    Google Scholar 

  49. N. J. Mitra and A. Nguyen. Estimating surface normals in noisy point cloud data. In Proc. 19th Conf. on Comput. Geom., pages 322–328, 2003.

    Google Scholar 

  50. F. Mémoli and G. Sapiro. Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys., 173(2):730–764, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  51. F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Technical Report 1980, University of Minnesota, IMA, 2004. http://www.ima.umn.edu/preprints/jun2004/1980.pdf, to appear J. Foundations Computational Mathematics.

    Google Scholar 

  52. F. Mémoli and G. Sapiro. Distance functions and geodesics on submanifolds of ℝd and point clouds. SIAM J. Appl. Math., 65(4):1227–1260, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  53. V. V. Nekrashevych. On equivalence of nets in hyperbolic spaces. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, pages 18–21, 1997.

    Google Scholar 

  54. P. Niyogi, S. Weinberger, and S. Smale. Finding the homology of submanifolds with high confidence from random samples. Technical Report TR-2004-08, Department of Computer Science, University of Chicago, November 2004.

    Google Scholar 

  55. P. Petersen. Gromov-Hausdorff convergence of metric spaces. In Differential geometry: Riemannian geometry, Proc. Sympos. Pure Math., volume 54 Part 3, pages 489–504. Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  56. P. Petersen. Riemannian Geometry. Springer-Verlag, New York,, 1998.

    MATH  Google Scholar 

  57. M. Pauly and M. Gross. Spectral processing of points sampled geometry. In ACM SIGGRAPH, pages 379–386, 2001.

    Google Scholar 

  58. M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of pointsampled surfaces. In Proc. 13th IEEE Visualization, pages 163–170, 2002.

    Google Scholar 

  59. S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution point rendering system for large meshes. In Proc. SIGGRAPH’ 00, pages 343–352, 2000.

    Google Scholar 

  60. T. Sakai. Riemannian geometry, volume 149 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  61. H. Von Schelling. Coupon collecting for unequal probabilities. Amer. Math. Monthly, 61:306–311, 1954.

    Article  MATH  MathSciNet  Google Scholar 

  62. J. Sethian. Fast marching level set methods for three-dimensional photolithography development. In Proc. SPIE International Symposium on Microlithography, 1996.

    Google Scholar 

  63. J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. U.S.A., 93(4):1591–1595, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  64. C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. In Information and Decision Processes, pages 93–126. McGraw-Hill, New York, 1960.

    Google Scholar 

  65. L. A. Shepp. Covering the circle with random arcs. Israel J. Math., 11:328–345, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  66. H. Solomon. Geometric Probability. Society for Industrial and Applied Mathematics, Philadelphia, PA., 1978.

    MATH  Google Scholar 

  67. E. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(9):1005–1008, 1989.

    Article  Google Scholar 

  68. R. Tsai, L. T. Cheng, S. Osher, and H.-K. Zhao. Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal., 41(2):673–694 (electronic), 2003.

    Article  MATH  MathSciNet  Google Scholar 

  69. J. B. Tenenbaum, V. deSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, pages 2319–2323, 2000.

    Google Scholar 

  70. D. Toledo. Book review: Geometric group theory vol 2: Asymptotic invariants of infinite groups. Bull. Amer. Math. Soc., 33:395–398, 1996.

    Article  Google Scholar 

  71. J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, (40):1528–1538, 1995.

    Google Scholar 

  72. M. Zwicker, M. Pauly, M. Knoll, and M. Gross. Pointshop3d: An interactive system for point-based surface editing. Proc. SIGGRAPH’ 02, pages 322–329, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Mémoli, F., Sapiro, G. (2006). Computing with Point Cloud Data. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_8

Download citation

Publish with us

Policies and ethics