Skip to main content

Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces

  • Chapter
Statistics and Analysis of Shapes

Abstract

Given a finite set of random samples from a smooth Riemannian manifold embedded in ℝd, two important questions are: what is the intrinsic dimension of the manifold and what is the entropy of the underlying sampling distribution on the manifold? These questions naturally arise in the study of shape spaces generated by images or signals for the purposes of shape classification, shape compression, and shape reconstruction. This chapter is concerned with two simple estimators of dimension and entropy based on the lengths of the geodesic minimal spanning tree (GMST) and the k-nearest neighbor (k-NN) graph. We provide proofs of strong consistency of these estimators under weak assumptions of compactness of the manifold and boundedness of the Lebesgue sampling density supported on the manifold. We illustrate these estimators on the MNIST database of handwritten digits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373–1396, June 2003.

    Google Scholar 

  2. M. Bernstein, V. de Silva, J.C. Langford, and J.B. Tenenbaum. Graph approx-imations to geodesics on embedded manifolds. Technical report, Department of Psychology, Stanford University, Palo Alto, CA, 2000.

    Google Scholar 

  3. F. Camastra and A. Vinciarelli. Estimating the intrinsic dimension of data with a fractal-based method. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(10):1404–1407, October 2002.

    Google Scholar 

  4. M. Carmo. Riemannian Geometry. Birkhäuser, Boston, 1992.

    MATH  Google Scholar 

  5. J.A. Costa and A.O. Hero. Entropic graphs for manifold learning. In Pro-ceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 2003.

    Google Scholar 

  6. J.A. Costa and A.O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Processing, 52(8):2210–2221, August 2004.

    Google Scholar 

  7. D. Donoho and C. Grimes. Hessian eigenmaps: locally linear embedding tech-niques for high dimensional data. Proc. Nat. Acad. of Sci., 100(10):5591–5596, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Edelsbrummer, M. Facello, and J. Liang. On the definition and the construc-tion of pockets on macromolecules. Discrete Applied Math., 88:83–102, 1998.

    Article  Google Scholar 

  9. A. Hero, B. Ma, O. Michel, and J. Gorman. Applications of entropic spanning graphs. IEEE Signal Processing Magazine, 19(5):85–95, October 2002.

    Google Scholar 

  10. A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, NJ, 1988.

    Google Scholar 

  11. B. Kégl. Intrinsic dimension estimation using packing numbers. In Neural Information Processing Systems: NIPS, Vancouver, Canada, December 2002.

    Google Scholar 

  12. M. Kirby. Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns. Wiley-Interscience, 2001.

    Google Scholar 

  13. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, No-vember 1998.

    Google Scholar 

  14. E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimen-sion. In Neural Information Processing Systems: NIPS, Vancouver, Canada, December 2004.

    Google Scholar 

  15. F. Mémoli and G. Sapiro. Distance functions and geodesic distances on point clouds. to appear in SIAM Journal of Applied Math., 2005. (Tech. Rep. 1902, IMA, University of Minnesota, Mineapolis).

    Google Scholar 

  16. H. Neemuchwala, A.O. Hero, and P. Carson. Image registration using entropy measures and entropic graphs. European Journal of Signal Processing, Special Issue on Content-based Visual Information Retrieval, 85(2):277–296, 2005.

    Google Scholar 

  17. M. Penrose. A strong law for the largest nearest-neighbour link between random points. J. London Math. Soc., 60(2):951–960, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Penrose and J. Yukich. Weak laws of large numbers in geometric probability. Annals of Applied Probability, 13(1):277–303, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(1):2323–2326, 2000.

    Article  Google Scholar 

  20. J.B. Tenenbaum, V. deSilva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

    Article  Google Scholar 

  21. K. Weinberger and L. Saul. Unsupervised learning of image manifolds by semi-definite programming. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington D.C., 2004.

    Google Scholar 

  22. J.E. Yukich. Probability Theory of Classical Euclidean Optimization Problems, volume 1675 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  23. Z. Zang and H. Zha. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing, 26(1):313–338, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Costa, J.A., Hero, A.O. (2006). Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_9

Download citation

Publish with us

Policies and ethics