Skip to main content

Why Are (Most) Laws of Nature Mathematical?

  • Chapter
Nature’s Principles

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrow, J. (1988). The World within the World. Oxford University Press, Oxford.

    Google Scholar 

  • Barrow, J. (1992). Perché il mondo è matematico? Laterza, Roma-Bari. (Why is the world mathematical?).

    Google Scholar 

  • Bueno, O., French, S. and Ladyman, S. (2003) On representing the relationship between the mathematical and the empirical. Philosophy of Science, 69:452–473.

    Article  Google Scholar 

  • Butts, R. (1968). William Whewell’s Theory of Scientific Method. Pittsburgh University Press, Pittsburgh.

    Google Scholar 

  • Cao, T. (1997). Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge.

    Google Scholar 

  • Carnap, R. (1950). Logical Foundations of Probability. Chicago University Press, Chicago.

    Google Scholar 

  • Cartwright, N. (1994). Nature’s Capacities and their Measurement, chapter What Econometric can teach Quantum Physics: Causation and the Bell Inequality, pages 231–263. Oxford University Press, Oxford.

    Google Scholar 

  • Deutsch, D. (1985). Quantum theory, the Church principle and the universal quantum computer. Proceedings of the Royal Society, A 400:97–115.

    Google Scholar 

  • Hempel, C. G. (1958). The theoretician dilemma. In Feigl, H., Scriven, M., and Maxwell, G., editors, Minnesota Studies in the Philosophy of Science, volume 2, Minneapolis. University of Minnesota Press.

    Google Scholar 

  • Kant, I. (1968). Metaphysische Anfangsgründe der Naturwissenschaft, volume IV of Akademie Textausgabe. Akademie Verlag, Berlin.

    Google Scholar 

  • Longo, G. (2002). The constructed objectivity of mathematics and the cognitive subject. http://www.dmi.ens.fr/users/longo.

    Google Scholar 

  • Pour-El, M. and Richards, I. (1989). Computability in Analysis and Physics. Springer Verlag, Berlin.

    Google Scholar 

  • Stein, H. (1989). Yes, but… Some skeptical remarks on realism and antirealism. Dialectica, 43:46–65.

    Google Scholar 

  • van Fraassen, B. C. (1982). The Carybdis of realism: Epistemological implications of Bell’s inequality. Synthese, 52:25–38.

    Article  Google Scholar 

  • Wigner, E. (1967). The unreasonable effectiveness of mathematics in the natural sciences. In Symmetries and Reflections, pages 222–237, Indiana. Indiana University Press.

    Google Scholar 

  • Worrall, J. (1989). Structural realism. Dialectica, 43:99–124.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Dorato, M. (2005). Why Are (Most) Laws of Nature Mathematical?. In: Faye, J., Needham, P., Scheffler, U., Urchs, M. (eds) Nature’s Principles. Logic, Epistemology, and the Unity of Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3258-7_2

Download citation

Publish with us

Policies and ethics