Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Barrow, J. (1988). The World within the World. Oxford University Press, Oxford.
Barrow, J. (1992). Perché il mondo è matematico? Laterza, Roma-Bari. (Why is the world mathematical?).
Bueno, O., French, S. and Ladyman, S. (2003) On representing the relationship between the mathematical and the empirical. Philosophy of Science, 69:452–473.
Butts, R. (1968). William Whewell’s Theory of Scientific Method. Pittsburgh University Press, Pittsburgh.
Cao, T. (1997). Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge.
Carnap, R. (1950). Logical Foundations of Probability. Chicago University Press, Chicago.
Cartwright, N. (1994). Nature’s Capacities and their Measurement, chapter What Econometric can teach Quantum Physics: Causation and the Bell Inequality, pages 231–263. Oxford University Press, Oxford.
Deutsch, D. (1985). Quantum theory, the Church principle and the universal quantum computer. Proceedings of the Royal Society, A 400:97–115.
Hempel, C. G. (1958). The theoretician dilemma. In Feigl, H., Scriven, M., and Maxwell, G., editors, Minnesota Studies in the Philosophy of Science, volume 2, Minneapolis. University of Minnesota Press.
Kant, I. (1968). Metaphysische Anfangsgründe der Naturwissenschaft, volume IV of Akademie Textausgabe. Akademie Verlag, Berlin.
Longo, G. (2002). The constructed objectivity of mathematics and the cognitive subject. http://www.dmi.ens.fr/users/longo.
Pour-El, M. and Richards, I. (1989). Computability in Analysis and Physics. Springer Verlag, Berlin.
Stein, H. (1989). Yes, but… Some skeptical remarks on realism and antirealism. Dialectica, 43:46–65.
van Fraassen, B. C. (1982). The Carybdis of realism: Epistemological implications of Bell’s inequality. Synthese, 52:25–38.
Wigner, E. (1967). The unreasonable effectiveness of mathematics in the natural sciences. In Symmetries and Reflections, pages 222–237, Indiana. Indiana University Press.
Worrall, J. (1989). Structural realism. Dialectica, 43:99–124.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this chapter
Cite this chapter
Dorato, M. (2005). Why Are (Most) Laws of Nature Mathematical?. In: Faye, J., Needham, P., Scheffler, U., Urchs, M. (eds) Nature’s Principles. Logic, Epistemology, and the Unity of Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3258-7_2
Download citation
DOI: https://doi.org/10.1007/1-4020-3258-7_2
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3257-8
Online ISBN: 978-1-4020-3258-5
eBook Packages: Humanities, Social Sciences and LawPhilosophy and Religion (R0)