
SCHEMA BASED XML SECURITY: RBAC APPROACH

Xinwen Zhang, Jaehong Park, and Ravi Sandhu
George Mason University

{xzhang6, jpark2, sandhu) } @gmu.edu

Abstract Security of XML instance is a basic problem, especially in enterprise with large
number of users and XML objects as well as complex authorizations adminis-
tration. In this paper, a role-based access control (RBAC) model based on XML
Schema is proposed. RBAC has been proven to be efficient to improve security
administration with flexible authorization management. XML Schema is a spec-
ification to define format and contents of XML instance. Access control based
on a schema will be transported to all its instances. As a proposed alternate
of XML Document Type Definition (DTD), XML Schema supports complex
constraints for XML components, such as elements, attributes, datatypes and
groups. Also, XML Schema provides a mechanism to build rich reuse relation-
ships between schemas and elements. These will be applied in reusable permis-
sions in our model, which efficiently simplify the security administration. Based
on these features fine-grained access control can be achieved. At the same time,
our model also supports instances-level authorization naturally, which provides
a uniform mechanism for XML security. A abstract implementation is presented
in this paper for our proposed model. “Pure” XML technologies will be applied
in the implementation mechanism, which make the system lightweight and can
be easily embedded into existing systems.

1. Introduction
Because of its platform-independent characteristics, XML [9] has been in-

creasingly used in many environments to integrate applications and commu-
nicate between systems. XML instance is a structured format with meta-data
for real data. Because of the ability to express complex reference relationship
between data, a XML instance may be generated from various resources with
varying security requirements. On the other side, a user can be allowed to ac-
cess only particular parts of a XML instance. For example in an enterprise,
a XML document can consist of information from applications among a few
departments and several databases. When an internal or external user tries to
access this document, his/her access rights have to be monitored according to
security policies in all these departments and databases. The final instance

Schema Based XML Security: RBAC Approach 331

which the user can read or modify is the result of enforcement with overall
authorizations.

In this paper, an access control model is proposed to control all accesses
to XML instances in such distributed and heterogeneous environment. In an
enterprise or organization, there are large number of users and XML objects.
Also, there are complex relationships among users, objects, and arbitrary au-
thorizations between users and objects. Each user has identification and at-
tributes. An object can be a XML document, message, dynamically generated
XML instance, or any XML elements. Because of the complex data sources
with different security policies, authorizations management will be burden-
some. Role-based access control model [1, 2] has proven to be efficient in se-
curity administration with roles providing a layer of indirection between users
and objects. The role-permission assignment is comparatively stable while
user-role assignment can be more dynamic. At the same time, RBAC provides
strong data type abstraction ability. All the components in the model can be
customized and fit into particular applications very easily.

XML Schema [11, 12] is a mechanism to define the content and relation-
ship of elements in an XML instance. A well-validated XML document must
follow the format specified by one or several schemas. In our proposed model,
permissions a user can invoke are defined on schema or schema element level
and will be transported to all XML instances specified by these schema or ele-
ments. The permission on a schema component will be transported to all XML
instance data which is specified by this component. At the same time, substan-
tial permission reuse can be generated based on the rich relationships between
elements, datatypes and attributes in a schema, or between schemas. We will
use these relationships to build permission reuse hierarchy. Based on this, fine-
grained, flexible, and easy-customized access control model can be achieved.
With the unique features of XML Schema, extensible, modular and reusable
security policies can be generated in distributed environment.

The remainder of this paper is organized as follows: Section 2 presents the
background of XML Schema and the main difference from DTD. Section 3
describes and discusses the model in details. Section 4 briefly presents the
high-level implementation of the access control model. Section 5 reviews the
previous work on XML document security. The difference between this work
to others is presented. Section 6 concludes the paper and outlines the future
work to continue on this topic.

2. XML and XML Schema

XML instance has two basic requirements: well-formed and validate-formed.
Well-formalization requires XML document to follow some syntax, such as,
there is exactly one element that completely contains all other elements, el-

332 DATA AND APPLICATIONS SECURITY XVII

ements may nest but not overlap, etc. Validation requires XML instance to
contain specified elements and attributes, following specified datatypes and re-
lationships. Document Type Definition (DTD) and XML Schema are two main
validation specification mechanisms.

Document Type Definition(DTD) is the first and earliest language to de-
fine the structure and content of XML documents. But it has many limita-
tions which are critical in enterprise and distributed environments. A DTD
file is not itself a well-formed and valid XML document. The rules in DTD
are not meta-data, but rather some special formats to show the order of ele-
ments. The problem with this is that a special process is needed for an XML
parser to parse the content in DTD. Another problem is that it is difficult to
specify constraints on structure and content of XML instance with DTD. Actu-
ally, DTD only specifies the appearance order of element and its subelements
and attributes, but cannot define complex relationships and constraints. DTD
cannot define datatypes, which make it difficult to be reusable, extensible, and
modular. A defined DTD cannot be used by other DTDs, and rules in DTD
cannot be reused and extended by other rules within or out of this DTD. All
these limitations prevent DTD from being widely applied in distributed and
scalable systems. XML Schema is an alternate in modern enterprise environ-
ments with some new features. XML Schema is XML document itself, which
XML parser can handle just like normal XML instance. Therefore, XPath
and XQuery can be applied to specify fine-grained schemas objects. Com-
plex user-defined datatypes can be created in XML Schema. Rich description
and relations of schemas and components can be expressed. Hierarchy can be
established based on these relationships. This makes schema reusable and ex-
tensible. Namespace is supported in XML Schema to solve name conflictions.
This helps modular deployment of security administration in our model.

With these reasons, modern XML specifications are all based on schema. At
the same time, the improvement of XML Schema results in flexible schema-
based access control policy. With DTD’s limitations, permission based on
DTD is not modular, extensible, and reusable. The access control policy on
XML instance documents and DTD have to be implemented separately, since
DTD is not XML well-formed and valid-formed. By using schema, we can
define and enforce the permissions on schema objects and instance objects
with uniform mechanism. Also, in distributed environment, the authorizations
from various services and departments can be assembled easily with pure XML
technologies, since policy based on schemas is extensile and reusable with
schema’s characteristics.

Schema Based XML Security: RBAC Approach 333

3. Extended RBAC Model

Role-based access control is a policy-neutral model studied by many re-
searchers during the past decade. The flexibility and efficiency in security
management make it an attractive access control solution in many commercial
systems. The main components of RBAC96 model includes users, roles, role-
hierarchy, permissions, user-role assignments and permission-role assignment
[1].

Figure 1 shows our proposed model extended from original RBAC96 model.
The users, roles, role hierarchy, user-role assignment and sessions are the same
as that of RBAC96 model. Instead of direct assignment of roles and final per-
missions, in this model, there are schema-based permissions (SP) and explicit
role-permission assignments (EPA) between roles and schema objects. SP
are defined by associating some atomic access types with schema components.
EPA is the assignment between roles and SP. By the instance mapping (IM)
function from schema objects (SO) to instance objects (IO), SP and EPA
imply the instance-based permission (IP) and implicit role-permission assign-
ments (IPA). Secure Schema Object Hierarchy (SSOH) is a partial order
between schema objects defined by a security administrator, in which the per-
missions defined on low level objects will be transported to high level objects.
Some constraints are specified for the SP and EPA.

Figure 1. Extended RBAC Model

Extended RBAC Model:

U (Users), R (Roles), P (Permissions), S (Sessions), AT (Access Types),
IO (Instance Objects), SO (Schema Objects), SP (Schema-based Per-

334 DATA AND APPLICATIONS SECURITY XVII

missions), IP (Instance-based Permisson), IM (Instance Mapping), SSOH
(Secure Schema Object Hierarchy)

S, U A and RH are same as RBAC96

Schema-based Permissions

Instance-based Permissions

Instance Mapping

Permissions

Secure Schema Object Hierarchy

Explicit Role-Permission Assignment

Implicit Role-Permission Assignment

Permission-role Assignment

schema_permissions : a function mapping a role to a set
of explicitly assigned schema-based permissions.

schema_permissions* : a function mapping a role to a set
of explicitly assigned schema-based permissions with SSOH.

schema_permissions** : a function mapping a role to a set
of explicitly assigned schema-based permissions with SSOH and RH.

instance_permissions : a function mapping a role to a set
of implicitly assigned instance-based permissions.

instance_permissions* : a function mapping a role to a set
of implicitly assigned instance-based permissions with SSOH.

instance_permissions** : a function mapping a role to a
set of implicitly assigned instance-based permissions with SSOH and

Schema Based XML Security: RBAC Approach 335

RH.

In the following subsections we will explain details of the main components
in this extended RBAC model.

3.1. Objects
Definition 1 (Schema Objects (SO)) A schema object is a XML Schema or
schema component(s), may be patterned by an XPath or XQuery expression.

Definition 2 (Instance Objects(IO)) A instance object is a XML instance or
instance component(s).

Definition 3 (Instance Mapping) Instance Mapping (IM) is a mapping be-
tween SO and IO:
IM : and

Since it is a well-formed XML document, a XML Schema can be treated as
a tree structure, with nodes as the schema elements, attributes and datatypes.
XPath can be applied on schema to capture the tree paths with particular con-
ditions. A path can be absolute starting from the root, or relative from cur-
rent position. For example, “/” is to return the root element of a XML docu-
ment, while “customer Info/name” selects the child element of “name” in
“customer Info”. Another example, “customer Info [@gender = ”Male”]”
selects all customer Info nodes where the value of gender attributes is equal
to “Male”. XPath can select nodes which satisfy some conditions, such as,
“customer Info/billing Address[state = “V A”]” selects all the customer Info
nodes with Virginia state of billing address. There some built-in functions and
in XPath to strengthen the capability of expressions, which can satisfy most of
fine-grained specifications.

IM is a one-to-many mapping relationship from SO to IO. In our model,
we use IM to implicitly specify the authorization in instance level. Specifi-
cally, the permissions defined on schema object will be transported to all its
instance objects.

3.2. Secure Schema Object Hierarchy
Definition 4 (Secure Schema Object Hierarchy (SSOH)) SSOH is the partial
order relationship between schema objects:

Mostly SSOH is based on reuse relationships between schema objects. The
reuse relationships can be regarded as partial order with acyclic, transitive and

336 DATA AND APPLICATIONS SECURITY XVII

reflexive relations. Several types of reuse mechanisms have been specified in
W3C XML Schema:

Datatype library. A datatype library consists of basic schema datatypes
as building blocks. Schema elements and attributes can be created with
these basic datatypes by specifying their “type” name.

Datatype derivation. New datatype or element can be derived from ex-
isting datatypes defined in the same schema or other schemas. There are
two types of derivations: restriction and extension.

Schema element reference. Without duplicated its definition, a new ele-
ment can be created by referring to another element in the same schema
or from other schemas.

1

2

3

Some modularity mechanisms have been specified by W3C XML Schema to
reuse datatypes and elements defined in a different schema, specifically in-
cluding “include”, “redefine” and “import”. The first two only can be applied
under the same namespace, while the third one can be used between different
schemas.

Note that it is the security administrator’s duty to decide which schema ob-
jects will be put in the hierarchy. At the same time, other relationships can be
used in SSOH definition by a security administrator.

3.3. Access Types

In this model, four basic access types have been considered to an XML
object: Read, Create, Update and Delete.

Read: “Read” XML information is the most frequent access to external
users. A user activates some roles and try to read some instance informa-
tion. The authorization enforcement point checks the Read permissions
defined on the schema objects with these role.

Create: “Create” access type is particularly for the document composer
or source of message. The composition operation has to be verified by
the composer’s permission on the targeted XML information before stor-
ing or transporting. The final version of the created instance may be
validated by a schema.

Update: “Update” permission is to modify the content of a XML object.
Also the final version of the modified instance may be validated by a
schema.

Delete: “Delete” is to remove a XML instance or elements in an in-
stance, including the elements and contents. Besides the security check,
XML validation check will be launched as well.

1

2

3

4

Schema Based XML Security: RBAC Approach 337

3.4. Permissions

Definition 5 (Schema-based Permissions (SP)) A schema-based permission
(explicit permission) is association of a schema object and its allowed access
type:

Definition 6 (Instance-based Permissions (IP)) An instance-based permission
(implicit permission) is association of an instance object and its allowed access
type:

Definition 7 (Permission Reuse) In SSOH,

Permission reuse greatly reduces the number and complexity of permissions
needed to define. This will simplify the authorization management of the ac-
cess control system. At the same time, modular and extensible security policy
can be achieved by using existing permission based on building block objects.
The permissions for new schema objects is extensible with capacity of adding
new permissions besides the inherited permissions.

3.5. Constraints

Some constraints are introduced in our model to make it fine-grained and
flexible.

1. Recursive
“Recursive” constraint is used when permission based on a schema component
will be automatically transported to all its sub-components, such as, a Read
permission on an element will transported to all its sub-elements and attributes.
Since schema objects are nested meta-data structure, recursive transportation
can happen in several levels. We use to express level recursiveness.

means permission not transported, while means always nested re-
cursiveness. For example, (Read, /, expresses the permission of Read
access to a schema, and to all components in this schema.

2. Recursive Direction
In some cases, permissions on schema component can be transported to its
super-component. Sometimes this bottom-up recursive direction is useful. For
example, if role CSR (Customer Service Representative) has “Read” permis-
sion on CreditCard element, the role will have “Read” permissions on all
other elements or schemas who include this element, since credit card infor-
mation is normally more sensitive than it’s super elements. We use + and –
to present top-down and bottom-up directions respectively, such as

Other constraints can be defined according to the real service and business
logic by system designer and security administrator.

338 DATA AND APPLICATIONS SECURITY XVII

3.6. Explicit Permission on XML Instance

So far in our model we assumed that an XML instance is defined by a
schema. The explicit permissions defined on schema objects implicitly spec-
ify the permission to instance objects. In real world there are two cases that
instance-level authorization is desired: one is that there are some “arbitrary”
XML documents without schema validation; another is that for a schema, the
authorization for an instance is different from other instances. For these cases,
the permission should be defined based on the instance level. Since XML
Schema itself is a well-formed XML document, the permission specification
can be easily applied to instance objects without any change. Both schema and
instance objects can be expressed in XPath or XQuery. The only thing with ex-
tra consideration is to specify which level object is used in explicit permission.
This is one of the benefits of the proposed schema based access control model.
Generally the permission on instance level will overcome that in schema level.

4. High-level Implementation Mechanism
XML provides a uniform mechanism to solve problems in heterogeneous

environment. Figure 2 shows the server-pull [2] implementation architec-
ture. All the messages transported among the services are identified in XML.
XML requests and responses are XML messages, whose format will be de-
fined in schemas. We will use some existing XML standard to transport the
security information, such as SAML (Security Assertion Markup Language)
[13]. With SAML, the messages for user authentication, user-role assign-
ment request/response, permission-role assignment request/response will be
in standard format. And the underlying mechanism of user authentication,
role server, and policy server can be abstract. That means, the implementa-
tion mechanism can be embedded to other systems very easily. This is an
important advantage with“ pure” XML implementation. Figure 3 shows an
algorithm for the process of access control decisions. The algorithm is de-
scribed in a way for clear exposition rather than efficiency. Implementation
details of the XML mechanism will be our future work. As shown in the al-
gorithm, an access request includes a user information a role activated by
the user access type (at), and the target XML document (target.xml) to
be accessed. To make an access control decision, some other related informa-
tion is needed, such as the schema(s) of target.xml (target.xsd), the possi-
ble expected output schema as well as the security information:
user-role assignment (UR.xml), permission-role assignment (PR.xml), role
hierarchy (RH.xml), and Secure Schema Object Hierarchy (SSOH.xml).
In some cases, the output of an access control decision is required to satisfy
some expected schema. The function is to check if output

can be validated by Since the authorization process

Schema Based XML Security: RBAC Approach 339

Figure 2. High-level Implementa-
tion Architecture

can remove some nodes of the input object, the output may not satisfy some
particular schema, which is required by most applications. In this case, the
access will be denied.

Function returns a set of roles assigned to a user, including direct
assignment and inheritance with role hierarchy. Function parse(target.xml)
returns a set of data with tree structure. For each instance component func-
tion returns its corresponding schema object. The key part of the algo-
rithm is a recursive method rootnode), which is a depth-
first algorithm. For each subtree the method first checks the permission
to the root node. If the access to it has been permitted, all subtrees will be
checked by the same mechanism. Otherwise, access to the whole element and
its sub-elements will be denied.

Function s_permissions(at, PR.xml, RH.xml, SSOH.xml) returns a
set of schema nodes which is accessible to or a subrole of in role hierarchy.
PR.xml is defined for each schema. There are different implementations of
this permission-role assignment. Here, we just provide a simple and abstract
structure as shown in Figure 4. The basic format is similar to a schema doc-
ument. In this example, each schema component is followed by one or more
< permission > tags to specify the permissions. A < permission > tag has
two attributes: role and access. The value of < role > is a role name, and
the value of access is a pre-defined access type. Since RBAC is a close model,
any other role which is not specified in the < permission > of a schema
component cannot access this object. Because of the large number of schema
objects and roles, in the real implementation, a visual tool will be developed to
do the permission-role assignment.

UR.xml and RH.xml are more static in real implementation mechanism.
UR.xml is very straightforward. The main component is a user information

340 DATA AND APPLICATIONS SECURITY XVII

Figure 3. Algorithm of XML Access Control

with some sub-nodes of name, department, role name, etc. In the real world,
user-role assignment is built on organization structure, maybe be cooperated by
some department other than security administrator [3]. So the UR.xml may
be derived from other systems. This is out of the range of this paper. What
we present here are all very high-level and conceptual. In the next step of this
work, we will enrich and finalize the details of this algorithm. Schemas for
UR.xml, PR.xml, RH.xml, and SSOH.xml will be defined. Since input
and output in the algorithm are all XML documents, open source XML APIs
will be applied, such as SAX (Java implemented XML parser).

Schema Based XML Security: RBAC Approach 341

Figure 4. PR.xml Example

5. Related Work

E.Damiani et al. [6] and E.Bertino et al. [7, 8] did some work in XML
document access control, which is close to our work. E.Damiani et al. used
organization-level DTD and site-level DTD as objects, built access control
model for XML document based on authorization rules of (subject, object,
permission, recursive). They only considered read operation in the pa-
per. The algorithm to compute the final view of XML document based on the
subject’s authorization rules is presented with DOM tree labelling and trans-
formation. E.Bertino et al. provided XML document access control policies,
model and implementation based on authorization built on DTD and XML doc-
ument. The authorization propagations from element-to-subelement, element-
to-attribute, DTD-to-instance were considered with recursive options. Based
on this, a Java-based access control system, named is implemented
with discretionary access control (DAC) model. Both Damiani and Bertino’s
models are based on DTD, using the relationship between XML instance docu-
ment and DTD to transport authorizations. Another point is that they used DAC
model. The main difference between our work and these previous work is that
we use RBAC model based on XML Schema. The user-role and permission-
role greatly will improve the security administration with vast users and XML
objects. Also, the schema based permission and permission reuse enable mod-
ular and reusable policy deployment. Another point is that our model is not
only for static XML documents, but for dynamically generated XML mes-
sages, such as SOAP and other XML protocols.

342 DATA AND APPLICATIONS SECURITY XVII

From industry, mainly there are two projects on XML security motivated by
Organization for the Advancement of Structured Information Standards (OA-
SIS): Security Assertion Markup Language (SAML) [13] and extensible Ac-
cess Control Markup Language (XACML) [14]. The motivation of SAML is
to define “assertion” for security statements in XML, such as authentication
and authorization. Some XML protocols have been specified in SAML to ex-
change assertion in distributed environment. Our framework is orthogonal to
SAML. Actually we will use SAML mechanism in our architecture. As shown
in Figure 2, all XML requests and responses will be implemented in SAML
messages and protocols. XACML is similar to our work, which applies XML
format to specify access control policy with objects identified in XML. The
main difference is that XACML focus on policy level, including logical pred-
icates, rules, and policy combining. So in XACML, there is no clear access
control model supported. In our model, we focus on model level. A XML-
based RBAC model is clearly supported, which is policy neutral.

6. Conclusion and Future Work

This paper presented an extended RBAC model for XML security. Per-
missions in the model are defined based on XML Schema components and
will be transported to all instances. Different from the previous access control
model built on DTD, complex object hierarchies can be achieved with rich re-
lationships between schemas components. The permission reuse through these
hierarchies greatly improves the security administration by modular, reusable
and extensible permissions. Several constraints are presented in the model.
The proposed model can be modularly deployed and flexibly administrated in
distributed environments. The model can be applied to no-schema based XML
instance and instance level authorizations easily. The abstract implementation
architecture is presented.

The detail implementation of proposed model is the next step of this work.
XML technology is applied in the implementation mechanism. The modu-
lar and reusable features of XML will be the benefits to the RBAC model.
SAML will be applied in our implementation for all XML messages. In the
future we will study the access control in Web Services technologies, where
the applications are built from XML protocols. As a service-oriented software
environment, Web Services have roles like service provider, registry, requester,
deployer, as well as system administrator. The schema based RBAC model can
be a solution of Web Services security.

References

R.Sandhu, E.J.Coyne, H.L.Feinstein, Role based access control models, IEEE Computer,
29, (2), pp.38-47, 1996.

[1]

Schema Based XML Security: RBAC Approach 343

Joon S.Park, R.Sandhu, and Gail-Joon Ahn, Role-Based Access Control on the Web,
ACM Trans. Information and System Sec., Vol.4, No.1, Feb. 2002.

Sejong Oh, Ravi Sandhu, A Model for Role Administration Using Organization Struc-
ture, In Proc. of ACM Symposium on Access Control Models and Technologies, 2002.

E.Bertino, S.Jajodia, and P. Samarati, Supporting Multiple Access Control Policies in
Database Systems, IEEE Symposium on Security and Privacy, 1996.

S.Jajodia, P.Samarati, and V.S.Subrahmanian, and E.Bertino, A United Framework for
Enforcing Multiple Access Control Policies, ACM SIGMOD International Conference
on Management of Data, 1997.

E.Damiani, S.D.C.Vimercati, S.Paraboschi, and P.Samarati, A Fine-grained Access Con-
trol System for XML Documents, ACM Trans. Information and System Sec., Vol.5, No.2,
May 2002.

E. Beritino, S.Castano, E.Ferrai, and M.Mesiti, Specifying and Enforcing Access Control
Policies for XML Document Sources, World Wide Web Journal, Vol.3, No.3, 2000.

E. Beritino, S.Castano, E.Ferrai, and M.Mesiti, Author-x: a Java-Based System for XML
Data Protection, 14th IFIP WG 11.3 Working Conference on Database Security, 2000.

World Wide Web Consortium (W3C), Extensible Markup Language (XML),
http://www.w3.org/XML, October, 2000

World Wide Web Consortium (W3C),
XML Path Language (XPath), http://www.w3.org/TR/xpath20, August, 2002

World Wide Web Consortium (W3C),
XML Schema Part 0: Primer, http://www.w3.org/TR/xmlschema-0, May, 2001

World Wide Web Consortium (W3C),
XML Schema Part 1: Structures, http://www.w3.org/TR/xmlschema-1, May, 2001

OASIS, Security Services TC,
http://www.oasis- open.org/committees/tc_home.php?wg-abbrev=security

OASIS, eXtensible Access Control Markup Language TC,
http://www.oasis-open.org/committees/tc_home.php?wg.abbrev=xacml

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

