CHECKING AND SIGNING XML DOCUMENTS
ON JAVA SMART CARDS
Challenges and Opportunities

Nils Gruschka, Florian Reuter and Norbert Luttenberger
Christian-Albrechts-University of Kiel

Abstract: One major challenge for digitally signing a document is the so called “what
you see is what you sign” problem. XML as a meta language for encoding
semistructured data offers new opportunities for a solution. The possibility for
checking fundamental properties of XML-encoded documents (well-formed-
ness, validity) can be used to improve the security of the signing process for
such documents. In this paper we present an architecture for checking and
signing XML documents on a smart card in order to enhance the control over
the documents to be signed. The proposed architecture has successfully been
used to implement a secure, smart card based electronic banking application
for the financial transactions system FinTS.

Key words: Java smart cards, XML, digital signature, XML Schema, electronic banking

1. INTRODUCTION

Smart card assistance for generating digital signatures [4] is current state
of the art and best practice. This is mainly due to the fact that smart cards
nowadays have enough processing power to produce digital signatures for
documents by on-card resources (processor and memory) only. This way the
owner’s private signing key never has to leave the smart card: The signing
key is and remains permanently stored in a tamper-proof environment.

A closer look at the signing process however reveals a still existing major
security problem: the problem known as the “what you see is what you sign”
problem. Before signing a document the signer usually wants to check the
document’s syntactic and semantic correctness.

288 Nils Gruschka, Florian Reuter and Norbert Luttenberger

When compared to the traditional process of signing a paper document
with a handwritten signature, the difference can easily be identified: In the
traditional case, it is relatively easy for the user to assert the correctness, be-
cause syntactic and semantic document checking and signature generation
are in immediate context. Digitally signing an electronic document is com-
pletely different, because checking and signature generation are executed in
two different fundamentally environments, exposing different characteris-
tics—different with respect to security on the one hand and processor, mem-
ory, and display resources on the other hand.

Traditionally, the signing application computes the document’s digest us-
ing a one-way hash function and sends the result to the smart card. The card
encrypts the digest by an asymmetric cipher using the signing key stored on
the card. The resulting value is the digital signature of the document. But,
what is really signed is beyond the user’s control. It might—for instance—be
the digest for a manipulated document. Even if the smart card can be re-
garded as tamper-proof, the terminal (e.g. a PC) and the programs running
on it are vulnerable to viruses and Trojan horses [3] [8] [9] [10]. Such evil-
doers might obviously also affect signing applications and let them produce
valid signatures for—from the user’s perspective—invalid documents. Such
incidents invalidate the signing process in total. To solve this problem the
whole or at least the major part of the signing process has be executed in a
trusted environment. While trusted PCs are not yet available, one could use a
signing application running on a trusted card reader (e.g. FINREAD [28]) or
a smart card, which is our approach.

We propose an enhanced architecture which performs checking and sign-
ing of XML documents on Java smart cards, called JXCS architecture. The
basic idea of JXCS is to shift the syntactic validation and hash value genera-
tion from the vulnerable PC to the trusted smart card. Syntactic validation
imposes the following challenges and opportunities: Challenging is the need
of processing XML documents on resource constraint Java smart cards. The
opportunity of the approach is the possibility to perform syntactic and even
semantic checks on the XML document in a tamper-proof environment
which improves the security of the signing process.

We propose the need for three major checks on the XML documents to
be signed: Well-formedness, validity and content acknowledgement using a
class 3 card reader (i.e. a card reader including a display and a keypad).
Taken together all three checks can defeat “what you see is what you sign”
attacks.

The paper is organized as follows: Section 2 introduces relevant XML
fundamentals. The checks are explained more detailed in chapter 3. Section
4 then proposes the JXCS architecture. Section 5 shows a sample implemen-
tation for this architecture. Finally section 6 gives the conclusion.

Checking And Signing XML Documents on Java Smart Cards 289

2. XML PRELIMINARIES

2.1 XML well-formedness

An XML [11] document encodes semi structured data [13]. It is said to
be well-formed if it contains at least one element and fulfills the well-
formedness constraints given in the XML specification. Well-formedness is
related to the syntactic format of markup, content, comments, document type
definition, and so on, and it also ensures the usage of proper Unicode charac-
ters and the specification of their encoding. According to the XML specifica-
tion every XML processing entity has to check and assert the well-
formedness property.

The most important constraint is the logical structure of element tags.
The tags must be properly braced, meaning that every start element has a
corresponding end element, together forming a unique tree structure. For
example <a>Hello is well-formed, while <a>Good</c>and
<a>Bye are not well-formed.

a) b)
ul ul
i 1i /11\
B 2 1 1i

|

2

Figure 1: Possible interpretations for the not well-formed XML docu-
ment:<1i>1<1i>2

Well-formedness ensures the uniqueness of the XML documents’ inter-
pretation. Consider for example the following not well-formed XML frag-
ment: <1i>1<1i>2. The document allows the following two
interpretations shown in figure 1: <1i>1</1i><1i>2</1li> for
a) and <1li>12 for b). In case of well-
formedness the interpretation would be unique.

2.2 XML validity

A more restricting property compared to well-formedness of XML
documents is its validity. An XML document is said to be valid if it is valid
with respect to an associated document type declaration or schema [5] [6].

290 Nils Gruschka, Florian Reuter and Norbert Luttenberger

Document type definitions resp. schemata express tree grammars, against
which the XML documents are checked.
A (regular) tree grammar is a 5-tuple G = (Z, D, N, P, ns) where,
o X =Xp U X, with Zg is a finite set of element types and Z, is a
finite set of attribute types,
D is a finite set of data types,
N is a finite set of non-terminals,
P is a finite set of production rules of the form n — a(r), where
n € N is a non-terminal, @ € X is a symbol and r is either an ele-
ment of D or a regular expression over the alphabet N with L(r)
< N*. Finally
e n, € N is the starting non-terminal
Consider for example the following schema fragment

<xsd:element name="Amount”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=“Value’ type="xsd:decimal”/>
<xsd:element name=“Currency” type="xsd:string”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

defining instances of the form:

<Amount>
<Value>100</Value>
<Currency>EUR</Currency>
</Amount>

The corresponding tree grammar for the above schema fragment has the
following form:

G =, D, N, P, ng) with £ = Zg = {Amount, Value, Currency}, D =
{xsd:string, xsd:decimal}, N = {Ny, Na, N3}, ng = N| and P containing the
following production rules:

o N, — Amount(N; N3)
¢ N, — Value(xsd:decimal)
® N; — Currency (xsd:string)

An import property of tree grammars is single-typeness, which means
that for each production rule n — a(r), non-terminals in its content model

Checking And Signing XML Documents on Java Smart Cards 291

r do not compete with each other. Single-typeness ensures unique parsing.
Thus, in the following all tree grammars are assumed to be single-typed [15].
W3C XML Schema offers a rich variety of built-in data types which can
be customized using <restriction>, <union> and <1ist>s. This allows
to impose content-related constraints, e.g. the restriction of decimals to an
upper bound:
<xsd:element name="Value">
<xsd:restriction base="xsd:decimal">
<xsd:maxInclusive value="100"/>
</xsd:restriction>
</xsd:element>

2.3 XML Signature

XML Signature is a W3C recommendation [1] for digital signatures us-
ing an XML format. It specifies the required XML syntax and the processing
rules for creating and representing XML signatures. In the context of the
JXCS architecture we used this format and its related processing rules.

<Signature>
<SignedInfo>
<CanonicalizationMethod Algorithm=.../>
<SignatureMethod Algorithm=.../>
<Reference URI=...>

<Transforms>...</Transforms>
<DigestMethod Algorithm=.../>
<DigestValue>...</DigestValue>
</Reference>

</SignedInfo>

<SignatureValue>...</SignatureValue>

<KeyInfo>...</KeyInfo>

</Signature>

Figure 2: XML Signature format (simplified)

An XML Signature is represented by a signature element which has a
structure as given in figure 2. A signature element carries a sequence of
three elements: a Signedlnfo element, a signatureValue element, and a
KeyInfo element.

The Signedlnfo element contains a sequence of a Canonicaliza-
tionMethod element, a signatureMethod element and one or more Ref-
erence particles. A Reference particle is created for each signed object
(XML document or arbitrary other content, the latter not regarded in this pa-

292 Nils Gruschka, Florian Reuter and Norbert Luttenberger

per). The Reference particle includes a reference URI to the data object,
which may be found externally or included in the same document. The Ref-
erence element further contains the digest value for the object (Digest-
Value), and the digest algorithm used (DigestMethod). For all signed data
objects given in the Reference particles, a single signature algorithm ele-
ment (signatureMethod) and a canonicalization method element (Can-
onicalizationMethod) is available. (Canonicalization e.g. removes re-
dundant whitespaces, sorts attributes, normalizes namespaces, etc.)

The signature value given in the Signaturevalue element refers to the
whole signedlnfo element using the signature algorithm and the user’s
signing key. The user’s signing key may be included in the XML Signature
in the Keylnfo element.

A signature according to the XML Signature recommendation is com-
puted in five steps:
canonicalization of the document to be signed,
computing the digest of the canonicalized document,
generation of the signedlnfo element,
computation of the signature value,
building of the signature element.

iAW~

24 APIs for XML processing

There exist two different types of APIs for XML processing [14]: tree-
based APIs like DOM or event-based APIs like SAX [18] or StAX [24].
Tree-based APIs in fact load the complete XML document into main mem-
ory which then can be accessed as an XML Infoset [12] like tree. Such kind
of APIs put a great strain on system resources, especially if the document is
large.

Event-based APIs report parsing events directly to the application
through callbacks, and do not usually build internal trees. Applications im-
plement handlers to deal with the different events, much like handling events
in a graphical user interface.

With respect to the limited resources of a smart card the only useful
choice for on card XML processing is an event-based APL. We propose a
SAX-like event-based API which produces the following events: begin-
element(a), end-element(a), begin-attribute(a), end-attribute(a), char-
content(c) where a € Z, ¢ € Unicode*. The above XML document is repre-
sented by the following events:
begin-element(Amount)
begin-element(Value)
char-content(“100”)
end-element(Value)

Checking And Signing XML Documents on Java Smart Cards 293

begin-element(Currency)
char-content(“EUR”)
end-element(Currency)
end-element(Amount)

3. WHY SIGNING XML DOCUMENTS IS
DIFFERENT

Why relying on XML for solving the “what you see is what you sign”
problem? Our ideas can be summarized in two points:

1. If a document to be signed is either not well-formed in the sense of
XML, or not valid in the sense of its accompanying schema, or
both, than it must strictly be assumed that the document has been
manipulated. In consequence, it has to be dropped, and the user has
to be notified.

2. A smart card application can extract certain content items for dis-
play on the smart card reader from a structured and formally de-
scribed document. The extraction and display operations are fully
controlled by the tamper-proof smart card—which is the same envi-
ronment that generates the digital signature.

The fundamental property of XML documents is well-formedness. Ac-
cording to the XML specification every XML processing entity has to check
and assert this property. Regarding digital signing well-formedness is impor-
tant, since it ensures the uniqueness of the XML documents’ interpretation.
Well-formedness also ensures the usage of proper Unicode characters and
the specification of their encoding. This is also very important regarding
digital signatures, since character set manipulation can be used to perform
“what you see is what you sign” attacks [10].

Validity is a much more restrictive property of XML documents com-
pared to well-formedness. A smart card which checks validity of XML
documents with respect to a given schema before signing ensures due to the
tamper resistance of the smart card that only certain types of XML docu-
ments are signed. Consider for example a smart card which contains your
private key, but only signs XML documents which are valid with respect to a
purchase order schema. You could give this card to your secretary being
sure, that nothing else than purchase order is signed using your signature.
Using additional constraints in the schema, e.g. the restriction of the maxi-
mum amount to 100 Euro eliminates the last chance of misusage.

When operated in a card reader containing a display the card can print se-
lected parts of the content and request user confirmation. This brings a great
approach to the solution of the “what you see is what you sign” problem.

294 Nils Gruschka, Florian Reuter and Norbert Luttenberger

Obviously, XML processing is not an easy task to perform on resource-
constrained smart cards. The following table summarizes the challenging
XML properties and the resulting opportunities for improving the signing

process:

Table 1: Challenges and opportunities in signing XML documents

Challenge Opportunity

Check well-formedness property on smart Confidence that only XML documents are

card signed

Check validity property on smart card Confidence that only documents of a certain
type are signed

Check validity property and additional con-
tent-related constraints (W3C XML Schema
simple types) on smart card

Confidence that certain ,,lower bounds* on
document content are observed (e.g. financial
transaction not going over some critical
amount)

Display selected content items on SmartCard
reader

Confidence that even a manipulated docu-
ment couldn’t do any harm

4. JXCS SMARTCARD SIGNING ARCHITECTURE

<fintstrans:Amount>
<Value>100</Value>
<Currency>Euro</Currency>

</fintstrans:Amount>

|

beginElement(*fintstrans®, *Amount*)

[0 o6 oa]oo]es]es]..]

<ds:SignatureValue>
VKFMd+okwSvc ...
</ds:SignatureValue>

<fintstrans:Amount>
<Value>100</Value>
<Currency>Euro</Currency>

</fintstrans:Amount>

I

VKFMd+okwSVe ...

T
—— === === [6afa0[F1[17] ..]o0]00]

beginElement("fintstrans®, "Amount”) D VKFMd+okwSVe ...

—* Well-formed

a) Checker

Signer

b) ——* Validator

Signer

c) ——] validator

Signer

Figure 3: JXCS Architecture Overview

Checking And Signing XML Documents on Java Smart Cards 295

The JXCS architecture offloads all security-critical processing tasks to

the tamper-proof smart card environment including:
¢ well-formedness and validity checking,
* document canonicalization and hashing, and
¢ signature value computation.

Figure 3 gives an overview over the JXCS architecture. The terminal runs
an XML parser which analyzes the document to be signed. The parsing
events are coded into APDUs and sent to the smart card. The events are for-
warded to a chain of event handlers. These handlers process the total XML
document sequentially event by event. Different handlers can be used in this
chain according to the specific requirements (see for example figure 3, a) to
¢)). The chain normally contains event handlers for checking XML docu-
ment properties like well-formedness or validity, and of course a handler for
creating the signature. If an event causes one of the checks to fail, instantly
an exception is thrown. If all checks on all events are successful, the signa-
ture value of the document is finally returned. From this value the XML Sig-
nature is created by the terminal computer. The following paragraphs de-
scribe the JXCS architecture handlers in detail.

4.1 Signing Handler

The signing handler’s purpose is to digest the canonicalized document, to
create the signedInfo element and to compute the signaturevalue.

For the purpose of digesting the signing handler reconstructs the canoni-
calized document from the received parsing event; there is no need to send
the original document to the smart card. This approach—based on a single
event stream—enables the efficient combination of both checking and sign-
ing XML documents on resource constraint smart cards.

Table 2: Reconstructing the document from events

Event Parameter 1 Parameter 2 Canon. Document
_beginDocument
_beginElement name <name
beginElement prefix name <prefix:name
addNamespace uri xmins ="uri"
addNamespace prefix uri xmins:prefix="uri"
beginAttribute name name="
beginAttribute prefix name prefix: 4
endAttribute b
charContent data data
endElement name </name>
endElement prefix name </prefix:name>

endDocument

296 Nils Gruschka, Florian Reuter and Norbert Luttenberger

Table 2 shows how the canonicalized document is reconstructed from
parsing events.

For each reconstructed document element the hash generator of the sign-
ing handler is triggered which that way digests the whole document piece by
piece. Most hashing functions (like MD5 [26] or SHA-1 [27]) do not store
the whole input data, but process the input stream block by block and only
need a small additional digest buffer. Thus the hashing “piece by piece” is
very space saving.

If the document has been completely parsed and transmitted to the card,
the endDocument event is triggered and the signing object starts the actual
signing process. The signer creates the signedInfo (see above) element
including the signature, canonicalization and digest algorithm. Furthermore
the document’s digest and the reference (created from the document’s root
element) is inserted.

The resulting SignedInfo fragment is signed using the user’s private key,
stored on the smart card. The resulting value is used to create the entire
XML Signature.

As parsing events and the canonicalized document are semantically
equivalent, the canonicalized document can be reconstructed from the pars-
ing events, and the digital signature can be generated from the reconstructed
document, and the signature is valid only for the parsed document and not
for any other document.

4.2 Well-Formedness Checker

The following algorithm is used in the JXCS architecture to check well-
formedness:

begin-element(a): Push a on the stack
end-element(a): Let @’ be the stack’s topmost element.
¢ Ifa=a’, popa’ from stack.
e Otherwise throw a not-wellformed exception,
begin-attribute(a): do nothing
end-attribute(a): do nothing
char-content(c): check if all characters in ¢ are allowed characters

4.3 Validity Checker

The validity of XML documents with respect to a tree grammar (i.e. a
document type definition or a schema) can easily be checked by the follow-
ing algorithm using the proposed event-based API and a stack. The algo-
rithm starts with an empty stack.

Checking And Signing XML Documents on Java Smart Cards 297

begin-element(a):
o Ifthe stack is empty, find a production rule #, = a(r) and push it
onto the stack.
¢ Otherwise let n’—» a’(r’) be the stack’s topmost production rule.
Search the production rule n = a(r) where n € next(r’).
0 Ifnone such exist, throw a not-valid exception.
0 Otherwise change the actual production n’ = a’(r’) to
n’ —a’(n’\r’) and then push n —»a(r) onto the stack.
end-element(a): Letn” — a’(r’) be the stack’s topmost production rule.
o Ifa#a’, throw a not-wellformed exception.
e Otherwise
o [If € ¢ L(r'), throw a not-valid exception.
o Otherwise pop the production rule from the stack.
begin-attribute(a): same as for begin-element
end-attribute(a): same as for end-element
char-content(c): Let n —> a(r) be the stack’s topmost production rule.
e If r ¢ D, throw a not-valid exception.
e If ¢ ¢ r, throw a not-valid exception.

The set next(r) = {a € Z | there exists a ¢ € Z* with ac € L(r)} describes
the set of letters accepted next and x\a describes the derivative of x with re-
spect to a, i.e. the expression which remains from a after parsing x. Both
next(r) and x\a can be computed efficiently using a simple lookup table [25].
The above algorithm is correct, due to the fact that for a single type tree
grammar the next non-terminal can be chosen uniquely [15, 17].

We use a compressed encoding of the production rules based on adja-
cency lists. Here the running time is O(m n) with m is the length of the larg-
est adjacency list. For a fixed tree grammar m is constant, so the running
time is still O(n) for a fixed schema or document type definition.

The space consumption is O(h) where £ is the height of the parsed tree.
For non-recursive tree grammars the maximum height of an XML document
is fixed, so the space consumption is limited for a fixed tree grammar. There-
fore the memory consumption of the algorithm will not exceed the smart
card’s resources.

The adjacency list representation for an XML schema is generated off-
card and installed on the card. A card can handle one or more schemata.

4.4 Visual inspector for Class 3 Reader

A smart card reader with own display and numerical keyboard (often
called “class 3 reader”) offers further possibilities for checking the document
before signing it. The data exchanged between card reader and smart card

298 Nils Gruschka, Florian Reuter and Norbert Luttenberger

can neither be read nor changed by the terminal or any Trojan horse running
on it. So unless the reader’s firmware has not been modified, the card reader
can be used as a secure display for the information send to the card.

A simple solution to the “what you see is what you sign” problem would
be showing the complete document on the display prior to sending it to the
smart card. This would indeed be useless for at most all practical purposes.
These displays normally only have 1 to 3 rows with at most 20 characters
each. Most users’ acceptance for viewing a complete document on such a
display would be very low.

Displaying selected parts of arbitrary XML documents otherwise is inef-
fective for checking the document to be signed. A single element may have
totally different semantics in different contexts. If the user acknowledges e.g.
the prompt

<Amount>

<Value>1000</Value>
<Currency>EUR</Currency>

</Amount>

he does not know the denotation of this element. He could buy a very
cheap car or loose a lot of money by transferring it to the Nigeria connection.
Even if all ancestors of the element are displayed additionally, the semantic
is generally not unique.

This is solved by validating the XML document to a specific schema. In
this case the context and semantic of an element is unambiguous. If the vali-
dator validates the documents e.g. against a schema for cash remittance, the
user can be sure to sign a transfer of 1000 Euro, if he acknowledges the ele-
ment shown above.

The functionality of the display component is the following. When the
schema is transferred to the smart card, the most “critical” elements are
marked for displaying. The display component reads the content of these
elements from the event stream. These values have to be acknowledged by
the user. If one is rejected an exception is thrown.

S. FINTS SAMPLE IMPLEMENTATION

5.1 Sample Application: FinTS

FinTS [23] (formerly named HBCI) is a home banking computer inter-
face developed by the German Central Banking Committee (ZKA). It de-
fines a standard for home banking and specifies the relationship between
customer products and bank systems. FinTS allows more flexible and con-

Checking And Signing XML Documents on Java Smart Cards 299

venient online banking than other systems. To ensure secure transactions
over open networks, cryptographic functions and smart cards are used.

The actual version’s communication is based completely on XML. All
messages exchanged between the FinTS server and the FinTS clients are
XML documents. Orders, like cash remittances, are signed using a personal
smart card and coded as XML signature. The whole transaction message —
containing one or more orders — is encrypted into an XML encryption docu-
ment.

Banking transactions are obviously extreme secure relevant and a profit-
able target for attacks. The user wants assurance, that the document he cre-
ates using his online banking program is actually the one signed by the card
and sent to his bank.

The assumed scenario for our sample application is an online-banking
user who wants to sign cash remittances using a smart card and a class 3
reader. The signed remittances will then be sent to his bank’s FinTS server.

5.2 Implementation

The proposed architecture was utilized to implement a client with a se-
cure signing process for FinTS banking transactions. We implemented a cli-
ent program on the terminal creating FinTS remittance transactions and
sending it to the smart card. The smart card contains the user’s private key
and a signing component. It also contains a validator, validating the input
document against a modified FinTS schema for a remittance. The schema
has been altered in the way that the remittance value must be less or equal
100 and the currency must be EUR. Thus the smart card will sign only
documents being a valid FinTS remittance with a maximum of 100 Euro.
Thus the user has the assurance, that his signing card will never sign any-
thing else, no matter what a Trojan horse would perform to the documents.
Additionally the display component let the user acknowledge the remit-
tance’s most important content values like target account number. Thus even
modifications on these values would be detected.

The sample client program is a GUI that creates a FinTS cash remittance
document from the input values. This XML document is parsed into XML
events, which are coded as TLV into request APDUs. Due to efficiency rea-
sons not single events are sent to the card. Instead the amount of events fit-
ting into an APDU is transferred, improving performance by up to 20%.

On the Java smart card a main applet and the following event handlers
are implemented: validator, displayer and signer. The XML events are de-
coded from the APDUs by the applet, which calls the event handler’s appro-
priate event methods. Once an exception is thrown by one of the handlers, an
error code is returned to the client. In order to simplify the implementation

300 Nils Gruschka, Florian Reuter and Norbert Luttenberger

the algorithms for hashing, signing, canonicalization are set statically. The
final application needs approximately 13000 bytes plus the binary schema
representation. The signing time increases linear with the document’s size.
For a typical cash remittance (ca. 1.2 KB) approximately 15 seconds are
needed.

The validator is an implementation of the above described validity check-
ing algorithm. In our sample application we provided the validator on the
smart card with the FinTS schema. The original schema has 5537 bytes, the
binary tree grammar only just 954 bytes. As shown above the stack’s size is
limited for a fixed schema. The stack can be implemented as list of fixed
length. Thus dynamic object instantiating can be avoided, which is critical
for a Java card without garbage collection. For the FinTS schema the maxi-
mum size needed for the validator’s stack is 200 bytes.

The display component will be configured when uploading the schema.
The simple type elements, that shall be displayed, are specified by an XPath
[7] like expression. The displayer collects the content for these elements
from the charContent events. He then waits for the acknowledgement for
these values from the card reader. Due to the stringent master-slave-
relationship between the terminal and the smart card, the card can not re-
quest the card reader for displaying these values. Instead, the PC sends the
to-be-acknowledged values to the card reader contained in a special com-
mand. This command instructs the reader to display the value and send it to
the card if it is acknowledged by the user. The displayer compares these val-
ues with the content extracted from the events. If this fails an exception is
thrown. Figure 4 shows a sample output on the card reader’s display.

Figure 4: Card reader waiting for user acknowledgement

As pointed out above the signing component creates the signature
fragment from the events. In order to minimize the communication between
PC and card, not the total Signature fragment is returned to the client but
only the documents digest and the signature of the signedInfo fragment.
As the algorithms are fixed, the client program can create the same signa-

Checking And Signing XML Documents on Java Smart Cards 301

ture fragment from the digest and the signature values. And of course this
is no lack of security.

The Java smart cards used are JCOP 2lid from IBM. These cards are
compliant to JavaCard 2.1.1, OpenPlatform 2.0.1’ and FIPS 140-2 level 3.
They have 30 Kbytes EEPROM as persistent Java heap, 590 bytes RAM as
transient Java heap and 200 bytes RAM as Java stack. The card reader used
is a class 3 reader (2 x 16 character display, numerical keypad) from Rein-
erSCT.

6. CONCLUSION AND FUTURE WORK

In this article we have shown how processing XML documents on a
smart card arises new opportunities for signing them. By checking properties
like well-formedness and validity the user gains more control over the
documents signed using his private key. We have also shown, that checking
a document’s validity according to a specific grammar, allows showing sin-
gle elements from the document on a reader’s display without losing the
element’s semantic. This way we can greatly improve the security of the
signing process for XML document and even approach a solution for the
“what you see is what you sign” problem.

Future research will focus on applying the XML processing smart card
technology on XML communication protocols to improve e.g. Web Service
security.

7. ACKNOWLEDGEMENTS

We would like to thank Karsten Strunk and Jesper Zedlitz for implement-
ing the secure FinTS signing client including an interface to a FinTS server
system. We also like to thank Christian Friberg and Rainer Segebrecht of
PPI Financial Services Kiel for supporting the implementation process.

8. REFERENCES

[1] Mark Bartel et al. XML-Signatur Syntax and Processing — W3C Recommendation 12
February 2002. W3C (World Wide Web Consortium), 2002.

[2] John Boyer. Canonical XML, Version 1.0- W3C Recommendation 15 March 2001. W3C
(World Wide Web Consortium), 2001.

[3] Armin B. Cremers, Adrian Spalka, and Hanno Langweg. The Fairy Tale of “What You
See Is What You Sign’ — Trojan Horse Attacks on Software for Digital Signatures. In

302 Nils Gruschka, Florian Reuter and Norbert Luttenberger

IFIP Working Conference on Security and Control of IT in Society-1l (SCITS-1I), Brati-
slava, Slovakia, June 2001.

[4] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644-654, November 1976.

[S] Henry S. Thompson et al. XML Schema Part 1: Structures — W3C Recommendation 2

May 2001. W3C (World Wide Web Consortium), 2001.

Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes — W3C Recommen-

dation 2 May 2001. W3C (World Wide Web Consortium), 2001.

[7] James Clark, Steve DeRose. XML Path Language (XPath) — W3C Recommendation 16
November 1999. W3C (World Wide Web Consortium), 2001.

[8] Tim Redhead and Dean Povey. The Problem with Secure On-Line Banking. In Proceed-
ings of the XVIIth annual South East Asia Regional Conference (SEARCC’98), July 1998

[9] Arnd Weber. See What You Sign. Secure Implementation of Digital Signatures. In Intel-
ligence in Services and Networks: Technology for Ubiquitous Telecom Services
(IS&N’98), Springer-Verlag LNCS 1430, 509-520, Berlin, 1998.

[10] Audun Jgsang, Dean Povey, and Authony Ho. What You See is Not Always What You
Sign. AUUG 2002 - Measure, Monitor, Control, September 2002

[11] Tim Bray et al. Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recom-
mendation 04 February 2004. W3C (World Wide Web Consortium), 2004.

[12] John Cowan, Richard Tobin. XML Information Set (Second Edition) W3C Recommenda-
tion 4 February 2004. W3C (World Wide Web Consortium), 2004.

[13] P. Buneman. Semistructured data. Tutorial in Proceedings of the 16th ACM Symposium
on Principles of Database Systems, 1997

[14]Hiroshi Maruyama et al. XML and Java: developing Web applications. Pearson Educa-
tion. 2nd ed. 2002.

[15] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML Schema Languages
using Formal Language Theory. Extreme Markup Languages 2000, August 13-14, 2000.
Montreal, Canada.

[16] Boris Chidlovskii. Using Regular Tree Automata as XML Schemas. IEEE Advances in
Digital Libraries 2000 (ADL 2000). May 22 - 24, 2000. Washington, D.C.

[17] F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3), 2002.

[6

=

[18] The SAX Project, URL: http://www.saxproject.org/

[19] IBM JCOP embedded security software. URL: http://www.zurich.ibm.com/jcop/

[20] Sun Microsystems: JavaCard 2.1.1 http://java.sun.com/products/javacard

[21] Global Platform Consortium: OpenPlatform 2.0.1’. URL: http://www.globalplatform.org/

[22] FIPS PUB 140-2: Security Requirements For Cryptographic Modules, May 2001. URL:
re.ni lications/fips/fips140-2/fips 1402

[23] FinTS Financial Transaction Services 3.0. URL: http://www fints.org/

[24] JSR 173: Streaming API for XML. Java Community Process.

[25] Janusz A: Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4),
1964.

[26] Ronald Rivest: The MD5 Message-Digest Algorithm, IETF RFC 1321, April 1992. URL:

http://www ietf.org/rfc/rfc1321 txt
[27] National Institute of Standards and Technology: Secure Hash Standard, April 1995.
URL: http: itl.ni fi fip180-1.htm

[28] FINREAD. URL: http://www finread.com/

