
SCHEDULABILITY ANALYSIS AND DESIGN
OF REAL-TIME EMBEDDED SYSTEMS
WITH PARTITIONS

David Doose, Zoubir Mammeri
IRIT - Paul Sabatier University Toulouse, France

{doose, mammeri}@irit.fr

Abstract: Resource partitioning is used to run several independent applications on the same
hardware while avoiding error propagation. However, classical methods of val-
idation and design are not adapted to this technique, so new methods have to be
elaborated. In this paper, we define four utilization bounds, which give sufficient
conditions to guarantee an execution sequence without timing faults as long as
the utilization rate of the system remains under the bound. They can of course
be used to validate a system with partitions, but the fact that they are based on a
partial knowledge of the system allows to use them during system design. This
latter point is interesting since we can thus validate a system whose parameters
are not yet completely defined, which can greatly reduce the cost by avoiding
many backtracks in development cycle.

1. INTRODUCTION

The use of computers in industrial processes that involve critical applica-
tion [1] induces changes in the design of systems. To run several applications
simultaneously on the same systems, one can choose a distributed or central-
ized architecture. The first solution avoids propagation of errors between inde-
pendent applications [2] but its cost increases with the number of applications
(including the costs of space, a major issue in avionics for instance [3, 4]).
Besides it is possible nowadays to centralize computations owing to computer
performances, which have increased and are still increasing faster than embed-
ded applications complexity.

However, costs reduction must not cut down on safety. That is why we need
to develop new methods to design, validate and safely execute independent ap-
plications in a centralized environment. Many researches have been conduced
in this area and many kinds of solutions were proposed [1, 5], among which
partitioning [6–8].

168 David Doose, Zoubir Mammeri

Partitioning is an interesting solution, which allows to run several applica-
tions on the same hardware while keeping their independence and the safety
requirements. The ARINC-653 [9] standard is a typical example of partition-
ing, that uses both strict resource partitioning and time partitioning. This time
partitioning is based upon a multi-level or hierarchical scheduler [10–12] com-
posed of a cyclic scheduler for the partitions, and a fixed-priority scheduler
for the tasks inside a partition. The layer organization offers modularity and
re-usability [13], which reduces the cost of the systems. Many recent real-time
systems [14, 15] use it, and moreover classical methods of validation [16] can
be used without any particular problem for this kind of systems, which makes
the partitioning solution an almost perfect one.

However, the use of a fixed-priority scheduler is a problem regarding perfor-
mance, since the utilization bounds are quite low [17, 18]. A dynamic priority
scheduler (such as EDF) would be useful to increase the scheduling capacity
of partitioned systems. And thus the cost of the system.

The cost of validation also has to be considered. Indeed, the design of hard
real-time systems differs from classical design processes in that the hardware
is to be taken into consideration very early.

The validation step requires the knowledge of both hardware and software.
In fact, it is particularly difficult to know the time parameters of tasks, includ-
ing their worst case execution time. Indeed, computation methods of WCET
are based on the knowledge of the hardware and on the software implemen-
tation. This second point is the most problematic since implementation and
testing are expensive, and it may have to be re-done several times if the valida-
tion fails.

In this article, we propose techniques to limit this risk. We try to give an
explicit representation of the system and its scheduling capacity usable even
during the design step. Indeed, some time parameters of tasks can be known
very early, such as for instance the period which often depends on the proper-
ties of external systems. The partitioning choice is also often made before the
software implementation step.

Owing to this partial knowledge, we will determine processor utilization
bounds which, if respected, will guarantee an execution without timing faults.
This technique allows to conduct in parallel tasks software implementation
and validation. The advantage is that the validation using this technique can
detect some errors before the complete realization of the system, which can
drastically cut down the design costs of hard real-time systems.

This article is structured as follows: the next section describes the system
properties and presents some notations. Section 3 introduces four utilization
bounds, and describes their properties and how to use them for validation. In
section 4, we present methods, based on bounds, to allow the designer to find
partitions parameters. Finally, we conclude our work in section 5.

Schedulability Analysis and Design of Real-Time Embedded Systems … 169

2. BACKGROUND

The concept of partitioning induces that the processor allocation is not lin-
ear. This makes unusable the model of task commonly used [17]. That is why
we will use the generalized multiframe task model [19–23].

Task notion

The concept of task uses in this article is relatively simple, but it makes pos-
sible to model and study many real-time systems [24, 16]. A task is defined
as a couple where is the worst case execution time and is the pe-
riod of the task.
The study of partitioned systems highlights the difference between the concept
of application and the concept of task. Indeed, these two concepts are often
wrongly confused. In the case of partitioned systems this is not allowed be-
cause the concept of partition is used to separate the applications and not the
tasks. Thus, the various tasks of a partition are considered as an application or
a group of tasks to which a complete processor is assigned. In this article,
we consider that this collection is partially ordered according to the task index
set, thus the period of the first task is the shortest one

Partitioning

We now introduce the concept of partitioning. Even if we will only study
here the partitioning of the processor, we can notice that the following defini-
tion of partition can be extended to any kind of resource.

Definition 1 (Partition). A partition is a tuple where is an array of
N pairs that satisfies

for some and P is the partition period. The
processor is available to a task group executing on this partition only during
time intervals

This representation of the partitioning has the advantage of being able to
model any static behavior.

Definition 2 (Supply Function). The supply function of a partition is
the total amount of time that is available for from time 0 to time

Definition 3 (Demand Bound Function). Let be a task, and a positive
number. The demand bound function denotes the maximum cumu-
lative execution requirement of the jobs of that have both arrival times and
deadlines within any time interval of duration

Theorem 1 ([21]). A group is infeasible on a partition if and only if
for some positive real numbers and

170 David Doose, Zoubir Mammeri

The major interest of this theorem comes from that the complete knowledge
of the task parameters is not needed. We will thereafter use this property to
introduce new theorems based on a partial knowledge of the system.

Definition 4 (Least Supply Function). The least supply function of a
partition is the minimum of where

Definition 5 (Critical Partition). A critical partition of a partition
is where has time pairs corresponding to the steps

in such that supply function equals in (0, P).

The critical partition is an essential concept because it can express in a non-
pessimistic way the worst situation, for the schedulability of a task group, rel-
ative to a partitioning
The following theorem was, up to this article, the best means to study effec-
tively the schedulability of a partitioned real-time system (as far as we know).

Theorem 2 ([21]). A task group is infeasible on a partition if and only
if:

for some positive real number

3. SCHEDULABILITY AND UTILIZATION BOUNDS

The previously defined method allows to study the schedulability of a real-
time partitioned system, without pessimism. However it has some disadvan-
tages. Indeed, since it uses all the system characteristics (parameters of both,
tasks and partition), a system modification, as negligible as it may be, implies
to restart the process of validation from the beginning. For the same reason, it
cannot be used in an interactive design of the system. Moreover, this method
does not provide an intuitive idea of the capacity of the system to meet task
time-constraints. Finally, towards the aim of adding the system some tasks dy-
namically, this method is too complex to be used as acceptance test for new
tasks.
So there is a need of another kind of solutions. That is why we introduce four
utilization bounds to study the schedulability of partitioned systems.

Demand bound function

In the particular situation where a task is defined only by its period and its
worst case execution time, the demand bound function is defined as follow:

Theorem 3. A task group is schedulable on a partition if and only if
with such as:

such as

Schedulability Analysis and Design of Real-Time Embedded Systems … 171

The proof is commonplace because the demand bound function grows only
at the instants such that

Minimal partition

We introduce the concept of minimal partition which allows the designer to
study the schedulability of a system in which some parameters are unknown.

Definition 6 (Minimal Partition). The minimal partition is the partition such
that its availability function is lower than or equal to all availabil-
ity functions of every critical partition with same period (P) and period total
availability

Thus we can easily deduce the formula of the minimal partition availability
function, called minimal function:

As a consequence, the minimal critical partition is defined such as:

The minimal partition is interesting because we can use it to validate parti-
tioned systems with the following theorem.

Theorem 4. If a task group is schedulable in the minimal partition
then is schedulable in every partition with the same period (P) and same
period total availability (A).

Utilization bound

Using utilization bounds to study a real-time system is interesting, because
it provides a means, to validate and design the system, less complex than the
method based on the critical partition. But it also gives to the designer an
intuitive idea of the availability of the system to schedule tasks without timing
faults. To do so, we need to introduce a new hypothesis.

Hypothesis 1. For any task group the period of the first task must be greater
than or equal to the period of the partition:

We can give these four following bounds:

with such as

172 David Doose, Zoubir Mammeri

Bounds properties

Pessimism. One of the major advantages of the utilization bounds is their
robustness. Indeed, the bounds being calculated only with parts of parameters
of the system, their conclusions remain valid with some changes of the sys-
tem. This property is interesting because it allows to use the utilization bounds
during the design step. The partial knowledge needed to calculate the bounds,
implies that they are pessimistic. In fact, the more parameters are needed to de-
termine a bound, the less pessimistic it is. In order to quantify the precision of
each bound we use a simulator varying the number of tasks and the parameters
size [25]. The results show that the first bound may be too pessimistic to
use it to validate a system, contrary to the others. That’s why we recommend
to use it for the design.

Loss. Pessimism makes it possible to characterize the behavior of a method
based on a sufficient condition, compared to a perfect method based on a nec-
essary and sufficient condition. The concept of loss makes it possible to mea-
sure, at the same time, the inaccuracy of the method of validation as well as
the waste of processor time that comes from partitioning.

We can thus define the loss of an utilization bound B as follows:

Definition 7 (Loss).

The simulations show that the loss rate decreases quickly with the ratio
We can also use the definition of the loss to prove the following the-

orem:

Theorem 5. For any group if then whatever the characteristics
of partitioning are, there is one period for the partition (P) short enough to

and

Utilization of the bounds

We have four utilization bounds based on a partial knowledge of the sys-
tem, we also know a partial order on their precision; it thus remains to recall

schedule all the tasks of without timing faults.

Bound comparison

Until now we evaluated the precision of the various utilization bounds
thanks to simulations. These results show that some bounds are less pessimistic
than others. This observation intuitively seems logical; indeed it appears rea-
sonable to think that a technique of validation based on a whole of knowledge
is less pessimistic than another which requires less knowledge. In fact, we
can prove the following partial order between the fourth utilization bounds:

Schedulability Analysis and Design of Real-Time Embedded Systems … 173

in a clear way when to use each bound. Indeed, it is obvious to use the less
pessimistic bound we can calculate. Thus, the designer must follow the in-
structions corresponding to its situation:
If only the total availability of the partition and the period of the partition or
the smallest period of the tasks (or both), are known, then the utilization bound

should be used.
If the period of the partition and the total availability and the period of all the
tasks are known then the bound should be used.
If the partition is completely known and the shortest period of the tasks is
known to then the bound should be used.
If the partition and the period of the tasks are known then the bound should
be used.

4. BOUND-BASED DESIGN

In the previous section, we studied how to determine whether a real-time
system with partition is schedulable. In this section, we will determine the
values of the parameters of the partition so that the tasks are executed without
timing faults.

Specific partitioning

We introduce here the concept of specific partition:

Definition 8 (Specific Partition). The specific partition of tasks group is a
partition which allows to schedule all the tasks of without timing faults, and
for which the availability function is lower than or equal to all other scheduling
of the tasks of

The specific partition of the task group is denoted and its avail-
ability function. To determine the specific partition, we proceed in three steps:
first find task constraints; second, keep the significant ones only, third calculate
the steps of the specific partition.

The first stage consists in finding, for each task, when the demand bound
function changes. The second stage consists in finding the instants when the
constraints are the more restrictive (i.e. when the request of the resource
is significant). To do that, we just have to find the pairs such
that and to keep only those which bring an additional constraint.
In fact, a pair is not significant if such that

Once determined
the significant pairs, we determine the various pairs To do so, we
associate with each of a significant pair, one and to each corresponding
instant where the request increases, a

174 David Doose, Zoubir Mammeri

Determining the total availability of the partition

It is possible to use the utilization bound to find the total availability of
a given partition A, from tasks parameters. To do that, one can use various
methods according to the utilization bounds.

The first solution which can be used with all the bounds consists in proceed-
ing in an iterative way by progressively increasing the availability per period
way until the bound is verified.

However, there is another solution, more formal, based on the bound use.
This method makes it possible to calculate the smallest value of A which makes
schedulable the tasks of the partition. The following equation makes it possible
to calculate the smallest value of A:

Determining the period of the partition
The utilization bounds also make it possible to determine the period of the

partition. The use of the theorem given in the previous section makes it pos-
sible to state that the bounds enable to find a period of the partition, enough
short, which schedules all the tasks of the partition, if the utilization ratio of
the partition is lower than the availability of the partition.

There still are two solutions: one is iterative and consists in reducing the size
of P gradually until the bound is verified, the other is based on the bound.
Indeed, we can demonstrate that if the following equation is checked, then the
system is schedulable.

5. CONCLUSIONS

The main goal of this article is to provide guidelines for the designer to rep-
resent clearly the capacity of a system to schedule tasks without timing faults.
For that, we propose four utilization bounds. These bounds provide an intu-
itive representation of a system whose designer has a partial knowledge, and
this method thus makes it possible to provide a judgment on the schedulability
of a system even if its design is not finished. A comparative study of these
bounds enabe to state in a clear way and specify some rules of their use, ac-
cording to knowledge of the studied system.

The results obtained in this article are already concretely usable. However,
taking into account other shared resources, whose access is controlled by pro-
tocols specific to real-time systems [24, 26], is mandatory to extend the field of

Schedulability Analysis and Design of Real-Time Embedded Systems … 175

application of the studied methods. This is why our future research will focus
on the intra and inter partitions resource sharing using specific protocols. In
this article, the speed of the processor was constant, but on the current proces-
sors it is common to be able to modify it. Thus, it would be interesting to vary
the frequency of the processor on the different steps of partitioning.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Bondavalli, A. Fantechi, D. Latella, and L. Simoncini. Design validation of embedded
dependable systems. IEEE Micro, 21:52–62, September/October 2001.

Peter van der Stok and Paul T.A. Thijssen. Prevention of replication induced failures in the
context of integrated modular avionics. In Embedded System Applications, pages 153–170.
Kluwer Academic Publishers, 1997.

P. Conmy and J. McDermid. High level failure analysis for integrated modular avionics.
In 6th Australian Workshop on Safety Critical Systems and Software, volume 3, 2001.

Ben L. Di Vito. A model of cooperative noninterference for integrated modular avionics.
In Dependable Computing for Critical Applications (DCCA-7), 1999.

M. Nicholson, P. Conmy, I. Bate, and J. McDermid. Generating and maintaining a safety
argument for integrated modular systems. In 5th Australian Workshop on Industrial Expe-
rience with Safety Critical Systems and Software, Melbourne, Australia, November 2000.

J. Rushby. Partitioning in avionics architectures: Requirements, mechanisms, and assur-
ance. Technical report, SRI International, Menlo Park USA, March 1999.

B. L. Di Vito. A formal model of partitionning for integrated modular avionics. Technical
report, NASA Langley Research Center, August 1998.

B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor scheduling: To
partition or not to partition. In Proceedings of the Int’l Conf. on Real-Time Computing
and Applications, pages 337–346, Cheju Island, Korea, December 2000. IEEE Computer
Society Press.

Airlines Electronic Engineering Committee. Arinc specification 653, January 1997.

B. Ford and S. Susarla. Cpu inheritance scheduling. In Usenix Association Second Sym-
posium on Operating Systems Design and Implementation (OSDI), pages 91–105, 1996.

P. Goyal, X.Guo, and H.M. Vin. A hierarchical CPU scheduler for multimedia operating
systems. In Usenix Association Second Symposium on Operating Systems Design and
Implementation (OSDI), pages 107–121, 1996.

John Regehr, Jack Stankovic, and Marty Humphrey. The case for hierarchical schedulers
with performance guarantees. Technical Report CS-2000-07, Department of Computer
Science, University of Virginia, march 2000.

M. Nicholson and P. Hollow. Approaches to certification of reconfigurable ima systems,
2000.

M.D. Bennett and N.C. Audsley. Developing a real-time micro kernel design process. In
22nd IEEE Real-Time Systems Symposium, London, UK, December 2001. IEEE Computer
Society Press.

Michael Bennett and Neil Audsley. Developing an ima kernel based on 14 for avionic
systems. Technical report, Dependable Computer Systems Centre, Dept. of Computer
Science, University of York, UK, 2002.

176 David Doose, Zoubir Mammeri

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A Practitioner’s Hand-
book for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-time Systems.
Software Engineering Institute, 1999.

C.L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in hard real-time
environment. Association for Computing Machinery (ACM), 20:40–61, January 1973.

J.P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In IEEE Real-Time Systems Symposium, pages
166–171, Los Alamitos, CA, 1989. IEEE Computer Society Press.

A.K. Mok and D. Chen. A multiframe model for real-time tasks. In 17th IEEE Real-Time
Systems Symposium (RTSS ’96), page p.22. IEEE Computer Society, December 1997.

S.K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Generalized multiframe tasks. In
Real-Time Systems, volume 17, pages 5–22, July 1999.

A.K. Mok, A.X. Feng, and D. Chen. Resource partition for real-time systems. In Sev-
enth Real-Time Technology and Applications Symposium (RTAS ’01), pages 75–84, Taipei,
Taiwan, May-June 2001. IEEE Computer Society.

A.K. Mok and A.X. Feng. Towards compositionality in real-time resource partitioning
based on regularity bounds. In 22nd IEEE Real-Time Systems Symposium (RTSS’01), page
129, London, England, December 03-06 2001. IEEE Computer Society.

A.X. Fen and A.K. Mok. A model of hierarchical real-time virtual resources. In Real Time
System Symposium, pages 26–35, Austin, December 2002. IEEE Computer Society.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on Computers, 39:1175–1185, September
1990.

David Doose and Zoubir Mammeri. Analyse de bornes d’utilisation pour la validation de
systèmes temps réel partitionnés. In RTS 2004, 2004.

T. P. Baker. A stack-based resource allocation policy for realtime. In Real-Time Systems
Symposium, pages 191–200. IEEE Computer Society Press, 1990.

