
DESIGN SPACE EXPLORATION WITH
AUTOMATIC GENERATION OF IP-BASED
EMBEDDED SOFTWARE

Júlio C. B. de Mattos1, Lisane Brisolara1, Renato Hentschke1, Luigi Carro1,2,
Flávio R. Wagner1

1 Federal University of Rio Grande do Sul, Computer Science Institute, Av. Bento Gonçalves,
9500 - Campus do Vale - Porto Alegre, Brasil;
2 Federal University of Rio Grande do Sul, Electrical Engineering

Av. Oswaldo Aranha 103 - Porto Alegre, Brasil

Abstract: Automatic embedded software generation and IP-based design are good
approaches to achieve a short design cycle due to stringent time-to-market
requirements. But design automation must also consider application-specific
requirements. This paper presents a mechanism for the automatic selection of
software IP components for embedded applications, which is based on a
software IP library and a design space exploration tool. The software IP library
has different algorithmic implementations of several routines commonly found
in different application domains. These routines have been characterized in
terms of power, performance, and area, for a given architectural platform. The
design exploration tool allows the automatic configuration of an optimized
solution for a specific application, by selecting routines whose combination
best match system requirements. Experimental results are presented and
demonstrate that a very expressive design space can be explored with this
approach.

Key words: Design Space Exploration; Embedded Software, IP Components.

1. INTRODUCTION

The fast technological development in the last decades exposed a new
reality: the widespread use of embedded systems. Nowadays, one can find
these systems everywhere, in consumer electronics, entertainment,



238 J. de Mattos, L. Brisolara, R. Hentschke, L. Carro, F.R. Wagner

communication systems and so on. In embedded applications, requirements
like performance, reduced power consumption and program size, among
others, must be considered. Since different platforms and cores are available,
precise technical metrics regarding these factors are essential for a correct
comparison among alternative architectural solutions, when running a
particular application.

To the above physically related metrics, one should add another
dimension, which is software development cost. In platform-based design,
design derivatives are mainly configured by software, and software
development is where most of the design time is spent. But the quality of the
software development also directly impacts the mentioned physical metrics.

Presently, the software designer writes the application code and relies on
a compiler to optimize it. Compiler code optimizations for embedded
systems have been traditionally oriented towards improving performance,
reducing memory accesses or space [1,2,3], for instance targeting code to
specialized architectures, reducing cache misses, or compressing code.

It is widely known that design decisions taken at higher abstraction levels
can lead to substantially superior improvements. Software engineers
involved with software configuration of embedded platforms, however, do
not have enough experience to measure the impact of their algorithmic
decisions on issues such as performance and power. Therefore, this paper
proposes a more pragmatic approach, consisting in the use of a software
library and a design space exploration tool to allow an automatic software IP
selection. The software IP library contains alternative algorithmic
implementations for routines commonly found in embedded applications,
whose implementations are previously characterized regarding performance,
power, and memory requirements on a given platform. A similar approach is
followed in [6], but restricted to implementations of Simulink blocks.

By offering a range of algorithmic solutions for usual problems that may
be critical in several applications, the designer may choose the solution that
best matches particular application requirements. By exploring design
alternatives at the algorithmic level, that offer a much wider range of power,
performance, and memory size values, the designer is able to automatically
find, through the exploration tool, corner cases that result in optimizations
far better that those reported by later code optimizations. As a very important
side effect, the choice of an algorithm that exactly fits the requirements of
the application, without unnecessarily wasting resources, may allow a more
efficient use of the underlying hardware, for instance reducing supply
voltage, clock frequency, and area to a minimum.

This paper is organized as follows. Section 2 discusses related work in
the field of embedded software optimization. Section 3 gives an overview of
the target architecture. Section 4 presents our approach to design space



Design Space Exploration with Automatic Generation … 239

exploration, introducing the library with its characterization and the
exploration tool. Section 5 presents experimental results, and, finally, section
6 draws conclusions and introduces future work.

2. RELATED WORK

Power-aware software optimization has gained attention in recent years.
It has been shown [8] that each instruction of a processor has a different
power cost. By taking these costs in consideration, a 40% power
improvement obtained by code optimizations is reported [8]. Reordering of
instructions in the source code has been also proposed [9], considering that
power consumption depends on the switching activity and thus also on the
particular sequence of instructions, and improvements of up to 30% are
reported. In [10], an energy profiler is used to identify critical arithmetic
functions and replace them by using polynomial approximations and
floating-point to fixed-point conversions.

Recent efforts are oriented towards automatic exploration tools that
identify several points in the design space that correspond to different trade-
offs between performance and power. In [4], Pareto-optimal configurations
are found for a parameterized architecture running a given application.
Among the solutions, the performance range varies by a factor of 10, while
the power range varies by a factor of 7.5. In [5], the best performance/power
figures are selected among various application-to-architecture mappings.

In [6], a library of alternative hardware and software parameterized
implementations for Simulink blocks that present different performance,
power, and area figures is characterized. Our approach is similar, but instead
of aiming at a partitioning between software and hardware functions, it
concentrates on algorithmic variations of software routines that are
commonly found in a wide range of embedded applications. This way, it
provides design space exploration for given platforms.

3. TARGET ARCHITECTURE

The software library characterization has been performed for a platform
based on a Java microcontroller, called femtoJava [7], although the
methodology is general and can be applied for other processor architectures
as well. The Java microcontroller implements a hardware execution engine
through a stack machine that is compatible with the Java Virtual Machine
(JVM) specification. A CAD environment that automatically synthesizes the
microcontroller for a target application [7] is available, using only a subset



240 J. de Mattos, L. Brisolara, R. Hentschke, L. Carro, F.R. Wagner

of instructions critical to the specific application. This way, the impact of
algorithmic-level optimizations against compiler level optimizations can be
measured.

4. THE PROPOSED APPROACH

Figure 1a shows a traditional design flow, where the designer receives the
application specification and, after coding it in some language, compiles it
for a chosen platform. In this approach, the designer must know the target
platform, and all optimizations are trusted to the compiler.

In our approach, illustrated in Figure 1b, the design starts with an
application specification at a high level of abstraction, and the application
code is generated automatically by a tool. This tool allows design space
exploration based on a software IP library, the application specification, and
the designer knowledge. Note that, in this approach, the designer does not
need to know the target platform, because this information is used only for
the library characterization. This methodology allows the automatic selection
of software IPs to better match a certain platform. Moreover, if the
application constraints might change, for example with tighter energy
demands or smaller memory footprint, a different set of SW IPs might be
selected. The same reasoning applies when the underlying platform is
changed.

Figure 1. (a) Traditional approach (b) Our approach.

In this work, a configurable power estimation simulator, called CACO-
PS [11], was used to collect all measures during library characterization.
Specifically, considering a certain platform and for each algorithmic
implementation of the library functions, it measures the performance (in



Design Space Exploration with Automatic Generation … 241

cycles), the memory usage (for data and instruction memories), and the
power dissipation (in gate capacitances – GC – that switch during execution,
considering CPU, RAM, and ROM). In the next sections, the software IP
library and the design space exploration tool are presented in more detail.

4.1 Software IP library

As it has been already mentioned, the library contains different
algorithmic versions of the same function, thus supporting design space
exploration. Since embedded systems are found in many different
application domains, this investigation has been started using classical
functions: Sine – Two ways to compute the sine of an angle are provided.
One is a simple table search, and the other one uses the CORDIC
(Coordinate Rotation Digital Computer) algorithm [12]; IMDCT – The
Inverse Modified Discrete Cosine Transform is a critical step in
decompression algorithms like those found in MP3 players. Together with
windowing, it takes roughly 70% of the processing time [13]. Others
functions are implemented like Table Search, Square Root and Sort.

4.2 Library characterization

To illustrate the results of library characterization using different
algorithmic versions of the same function, there are two routines selected:
the sine and the Inverse Modified Discrete Cosine Transform. Table 1 shows
the main results of the characterization of the four different implementations
of the IMDCT function. The IMDCT4 implementation has the better results
in terms of performance and power dissipation, but the size of program
memory significantly increases. The opposite happens with the IMDCT1
implementation, which has far better results in terms of program memory,
but consumes about 3 times more cycles and power.

Table 2 illustrates the characterization of the alternative implementations
of the sine function. There are some entries in Table 2 that are pretty
obvious. Since Cordic is a more complex algorithm, program memory size is
larger than with Table Look-up, as well as the number of cycles required for
computation. It is interesting to notice, however, that the data memory size



242 J. de Mattos, L. Brisolara, R. Hentschke, L. Carro, F.R. Wagner

seems to be almost the same. This, however, is caused by the fact that data in
Table 2 was obtained for a sine resolution of 1 degree. As the resolution
increases, the amount of data memory increases exponentially for the Table
Look-up algorithm, but only sublinearly for the Cordic algorithm. The
increase in memory reflects not only in the required amount of memory, but
also in the power dissipation of a larger memory.

4.3 Evaluating a complete application

In all examples presented above, the design space concerning
performance, power, and memory footprint was large. However, the
availability of different alternatives of the same routine is just a first step in
the design space exploration of the application software. One must notice
that embedded applications are seldom implemented with a single routine.
There is another level of optimization, which concerns finding the best mix
of routines among all possible combinations that may exist in an embedded
application.

In order to better illustrate the concept, let us take as an example the
IMDCT function. Taking into account program and data memory sizes,
performance, and power, there are 16 possible combinations of the four
versions of the IMDCT and cosine functions. Some of them are very
interesting, depending on particular application requirements:

If memory space has the highest priority, one can combine the IMDCT1
core with a table look-up cosine calculation with a resolution of 1 degree.
This requires only 3,730 bytes of data memory and 432 bytes of program
memory, although it presents the worst figures for performance and
power;
If an application must respond in at most 200,000 cycles and the cosine
calculation requires a high resolution (0.1 degree), then the best is to
combine the IMDCT2 core and the CORDIC-based cosine calculation.
This is the combination that fulfils the above restrictions and requires less



Design Space Exploration with Automatic Generation … 243

memory space (3,730 bytes of program memory and 2,343 bytes of data
memory);
If performance and power have the highest priority, combining the
IMDCT4 core with a table look-up cosine is the best alternative. It
requires only 56,242 cycles and gate capacitances of power
consumption.

4.4 Design space exploration tool

The Dragon Lemon tool maps the routines of an embedded program to an
implementation using instances of the software IP library, so as to fulfil
given system requirements. The user program is modeled as a graph, where
the nodes represent the routines, while the arcs determine the program
sequence. The weight of the arcs represents the number of times a certain
routine is instantiated. It is also possible to model parallel routine calls, in
case the underlying hardware has parallel processing capabilities.

To generate the application graph representing the dynamic behavior of
the application, an instrumentation tool was developed. It is based on BIT
(Bytecodes Instrumentation Tool) [14] that allows the dynamic analysis of
Java Class files, generating a list of invoked methods with its corresponding
number of calls, which can be mapped to the application graph.

In the exploration tool, before the search begins, the user may determine
weights for power, delay and memory optimization. It is also possible to set
maximum values for each of these variables. The tool automatically explores
the design space and finds the optimal or near optimal mapping for that
configuration. The cost function of the search is based on a trade-off
between power, timing, and area. Each library option is characterized by
these three factors. The exploration tool normalizes these parameters by the
maximum power, timing and area found in the library. The user can then
select weights for the three variables. This way, the search can be directed
according to the application requirements. If area cost, for example, must be
prioritized because of small memory space, the user may increase the area
weight. Although one characteristic might be prioritized, the others are still
considered in the search mechanisms. As output, Dragon Lemon also
provides 2D and 3D Paretto curves. For both curves, the user may select
which variables (power, delay, or memory) will be used in each axis (x, y
and z).



244 J. de Mattos, L. Brisolara, R. Hentschke, L. Carro, F.R. Wagner

5. RESULTS

Two sets of experiments have been executed. First, our methodology has
been evaluated with small synthetic examples, but trying to address real
applications, like an Address Book and a Game, running in parallel with a
MP3 player. The second experiment shows that the design exploration tool is
also able to explore much larger search spaces.

The application A_Book+MP3 is implemented as two parallel processes.
The first one runs typical Address Book tasks, such as table search, insert,
and sort. Calculator features, such as square root and sine calculation, have
also been added. In parallel to this process, an MP3 player is executed. The
design space exploration for the MP3 considers the different
implementations of the IMDCT function, which is dominant in the MP3
decode routine. Two different architectural variations have been tried. In the
first one, a single processor has been used. In the second option, one
processor executes the MP3 algorithm, while the other processor deals with
the other tasks of the Address Book. The results are shown in Table 4. For
the option with equal weights for power, timing and area, the best solution is
to use hash and quick-sort routines. However, this configuration is changed
when the area weight increases. Hash is replaced with a sequential search,
while the quick-sort is replaced with insert-sort. Table 4 also shows that
increasing the number of processors does not significantly decreases the
running time. This happens simply because the IMDCT calculation running
time is much larger than the other tasks.

The Game application is implemented by three parallel processes. There
is a rendering part, which allows the exploration of sine and square root
routines. In parallel, there is the MP3 decoder part, with the IMDCT
exploration. The third part comprises the game logic itself and AI
computation, which will perform table searches, insertions, and sort
functions. The difference from the previous application is that the parallel
processes will have similar running times, while in the Address Book the
IMDCT time determines the total running time. Results are also presented in
Table 4. It is clear that this time we took advantage of additional processors
in the architecture, because of the higher parallelism of tasks with equal
complexity.

All results in Table 4 come from an exhaustive search, running in less
than a second of execution time. Figure 3 shows the Paretto curve found for
the first row of Table 4. The curve shows Running Time in the x-axis and
Area in the y-axis. It is clear that by increasing the expected running time the
designer is able to use smaller memory spaces.



Design Space Exploration with Automatic Generation … 245

Figure 3. Paretto curve for first row of Table 4.

6. CONCLUSIONS AND FUTURE WORK

This paper proposed a new methodology for software IP selection in a
design space exploration context, considering performance, power, and
memory area requirements. It is based on software IP library that is
previously characterized for a given architectural platform and uses a genetic
tool for automatic design space exploration and IP selection.

Experimental results have confirmed the hypothesis that there is a large
space to explore based on algorithmic decisions taken at higher levels of
abstraction, much before compiler intervention. Selecting the right algorithm
might give orders of magnitude of gain in terms of physical characteristics
like memory usage, performance, and power dissipation. As a future work,
we plan to enlarge the library and to investigate the impact of different
memories with different power-delay products, so that one can better tune
the algorithms to the underlying platform.



246 J. de Mattos, L. Brisolara, R. Hentschke, L. Carro, F.R. Wagner

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

N.Dutt, A.Nicolau, H.Tomiyama, A.Halambi. “New Directions in Compiler Technology
for Embedded Systems.” Asia-Pacific Design Automation Conference, Jan. 2001.
Proceedings, IEEE Computer Society Press, 2001.

V.Dalal, C.P.Ravikumar. “Software Power Optimizations in an Embedded System”.
VLSI Design Conference, Jan. 2001. Proceedings, IEEE Computer Science Press, 2001.

M.Kandemir, V.Vijaykrishnan, M.J.Irwin, W.Ye. “Influence of Compiler Optimizations
on System Power”. In: IEEE Transactions on VLSI Systems, vol. 9, n. 6, Dec. 2001.

T.Givargis, F.Vahid, J.Henkel. “System-Level Exploration for Pareto-optimal
Configurations in Parameterized Systems-on-a-chip”. ICCAD’01 - International
Conference on Computer-Aided Design, San Jose, Nov. 2001.

A.Nandi. R.Marculescu. “System-Level Power/Performance Analysis for Embedded
Systems Design”. Design Automation Conference, Las Vegas, June 2001. Proceedings,
ACM, 2001.

L.M.Reyneri, F.Cucinotta, A.Serra, L.Lavagno. “A Hardware/Software Co-design Flow
and IP Library Based on Simulink”. DAC’01 - Design Automation Conference, Las
Vegas, June 2001. Proceedings, ACM, 2001.

S.Ito, L.Carro, R.Jacobi. “Making Java Work for Microcontroller Applications”. In:
IEEE Design & Test of Computers. vol. 18, n. 5, Sept-Oct 2001.

V.Tiwari, S.Malik, A.Wolfe. “Power Analysis of Embedded Software: a First Step
Towards Software Power Minimization”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 2, n. 4, Dec. 1994.

K.Choi, A.Chatterjee. “Efficient Instruction-Level Optimization Methodology for Low-
Power Embedded Systems”. International Symposium on System Synthesis, Montréal,
Oct. 2001. Proceedings, ACM, 2001.

A.Peymandoust, T.Simunic, G. de Micheli. “Complex Library Mapping for Embedded
Software Using Symbolic Algebra”. DAC’02 - Design Automation Conference, New
Orleans, June 2002. Proceedings, ACM, 2002.

A.C.Beck Filho, F.R.Wagner, L.Carro. “CACO-PS: A General Purpose Cycle-Accurate
Configurable Power Simulator”. SBCCI’03 – 16th Symposium on Integrated Circuits and
Systems Design. São Paulo, Brazil, Sept. 2003. Proceedings, IEEE Computer Society
Press, 2003.

A.Omondi. Computer Arithmetic Systems: Algorithms, Architecture and
Implementation. Prentice Hall, 1994.

K.Salomonsen, S.Søgaard, E.P.Larsen. Design and Implementation of an MPEG/Audio
Layer III Bitstream Processor, Master Thesis, Aalborg University, 1997.

H.B.Lee, B.G.Zorn. “BIT: A Tool for Instrumenting Java Bytecodes”. USITS’97 -
USENIX Symposium on Internet Technologies and Systems, Dec. 1997.


