Skip to main content

A Model-Based Approach to Robot Fault Diagnosis

  • Conference paper
Applications and Innovations in Intelligent Systems XII (SGAI 2004)

Abstract

This paper presents a model-based approach to online robotic fault diagnosis: First Priority Diagnostic Engine (FPDE). The first principle of FPDE is that a robot is assumed to work well as long as its key variables are within acceptable range. FPDE consists of four modules: the bounds generator, interval filter, component-based fault reasoning (core of FPDE) and fault reaction. The bounds generator calculates bounds of robot parameters based on interval computation and manufacturing standards. The interval filter provides characteristic values in each predetermined interval to denote corresponding faults. The core of FPDE carries out a two-stage diagnostic process: first it detects whether a robot is faulty by checking the relevant parameters of its end-effector, if a fault is detected it then narrows down the fault at component level. FPDE can identify single and multiple faults by the introduction of characteristic values. Fault reaction provides an interface to invoke emergency operation or tolerant control, even possibly system reconfiguration. The paper ends with a presentation of simulation results and discussion of a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Barnes, E. Taylor, N. Phillips, A. Gossant, and G. Paar. Beagle2 simulation, kinematics calibration, and environment dem generation. Proc. 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2002.

    Google Scholar 

  2. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and fault-tolerant control. Spririger-Verlag Berlin Heidelberg, 2003.

    MATH  Google Scholar 

  3. B. Bouchon-Meunier and V. Kreinovich. From interval computations to modal mathematics: Applications and computational complexity. ACM SIGSAM Bulletin, 32(2):7–11, 1998.

    Article  MATH  Google Scholar 

  4. A. Castellet and F. Thomas. An algorithm for the solution of inverse kinematic problems based on an interval method. in Advances in Robot Kinematics, M. Husty and J. Lenarcic (Eds.), Kluwer Academic Publishers, pages 393–403, 1998.

    Google Scholar 

  5. G. M. Coghill and Q. Shen. Towards the specification of models for diagnosis of dynamic systems. Artificial Intelligence in Communications, 14(2), 2001.

    Google Scholar 

  6. J. De Kleer and B. Williams. Diagnosing multiple faults. Artificial Intelligence, 32:100–117, 1987.

    Google Scholar 

  7. R. Dearden and D. Clancy. Particle filters for real-tim fault detection in planetary rovers. 13th international workshop on principles of diagnosis, 2003.

    Google Scholar 

  8. M. Grewal. Kalman filtering: Theory and practice. Englewood Cliffs, NJ: Prentice-Hall, 2001.

    Google Scholar 

  9. U. Heller and P. Struss. g + de:the generalize diagnosis engine. 12th international workshop on principles of diagnosis, 2001.

    Google Scholar 

  10. P. A. Naylor, O. Tanrkulu, and A. G. Constantinides. Subband adaptive filtering for acoustic echo control using allpass polyphase iir filterbanks. IEEE Trans, on Signal and Processing, 6(2), 1998.

    Google Scholar 

  11. T. Parks and C. Burrus. Digital filter design. New York: John Wiley and Sons, Inc., June 1987.

    MATH  Google Scholar 

  12. R. Patton, P. Prank, and R. Clark. Fault diagnosis in dynamic systems (theory and applications). prentice Hall International (UK) Ltd, 1989.

    Google Scholar 

  13. C. Perng, H. Wang, S. Zhang, and D. Parker. Landmark: a new technique for similarity-based pattern querying in time series databases. Proceedings, ICDE, 2000.

    Google Scholar 

  14. J. Schroder. Modelling, state oberservation and diagnosis of quantised systems. Springer-Verlag Berlin Heidelberg, 2003.

    Google Scholar 

  15. J. Schroder. Modelling, state observation and diagnosis of quantised systems. Springer-Verlag Berlin Heidelberg, Germany, 2003.

    Google Scholar 

  16. P. Shiakolas, K. Conrad, and T. Yih. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. International journal of modelling and simulation, 22(3):1–10, 2002.

    Google Scholar 

  17. M. Visinsky, J. Cavallaro, and W. I.D. A dynamic fault tolerance framework for remote robots. IEEE Transactions on Robotics and Automation, 11(4):477–490, 1995.

    Google Scholar 

  18. M. Visinsky, J. Cavallaro, and I. Walker. Robotic fault detection and fault tolerance: A survey. Reliability Engineering and System Safety, 46(2):139–158, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this paper

Cite this paper

Liu, H., Coghill, G.M. (2005). A Model-Based Approach to Robot Fault Diagnosis. In: Macintosh, A., Ellis, R., Allen, T. (eds) Applications and Innovations in Intelligent Systems XII. SGAI 2004. Springer, London. https://doi.org/10.1007/1-84628-103-2_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-103-2_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-908-1

  • Online ISBN: 978-1-84628-103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics