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Diameter Determination on Restricted Graph
Families

Derek G. CorNEIL*  Feodor F. DRAGANT  Michel HABIB?
Christophe PauL?

Abstract

Determining the diameter of a graph is a fundamental graph operation,
yet no efficient (i.e. linear or quadratic time) algorithm is known. In
this paper, we examine the diameter problem on chordal graphs and AT-
free graphs and show that a very simple (linear time) 2-sweep LexBFS
algorithm identifies a vertex of maximum eccentricity unless the given
graph has a specified induced subgraph (it was previously known that a
single LexBF'S algorithm is guaranteed to end at a vertex that is within 1
of the diameter for chordal graphs and AT-free graphs). As a consequence
of the forbidden induced subgraph result on chordal graphs, our algorithm
is guaranteed to work optimally for directed path graphs (it was previously
known that a single LexBFS algorithm is guaranteed to work optimally
for interval graphs).

1 Introduction

Recently considerable attention has been given to the problem of developing fast
and simple algorithms for various classical graph problems. The motivation for
such algorithms stems from our need to solve these problems on very large input
graphs, thus the algorithms must be not only fast, but also easily implementable.
Determining a graph diameter is a classical and well-known problem.

For arbitrary graphs (with n vertices and m edges), as well as for various
restricted graph families, the current fastest algorithm for this problem achieves
the time bound of O(nm) (see for example [24]) which is too slow to be practi-
cal for very large graphs. This naive algorithm performs Breadth First Searches
(BFSs) from each vertex of the graph and actually finds the whole distance
matrix of the graph. For dense graphs, the best result known is by Seidel [28],
who showed that the distance matrix (and hence the diameter) of a graph can
be computed in O(M(n)logn) time where M (n) denotes the time complexity
for matrix multiplication involving small integers only. (Currently, M(n) is
known to be O(n2-37%) [6].) Note also that in a recent paper [1], the authors
solve the all pairs shortest path problem with an additive error at most 2 with-
out matrix multiplication in O(n?%y/logn) time. They obtain also a ratio 2/3
approximation to the diameter in time O(m+/nlogn + n2logn).
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Algorithms of complexity O(n?) for computing the distance matrix (and
hence the diameter) in different particular graph classes were presented in [10,
2, 4, 20]. Linear-time algorithms for computing the diameter, that avoid the
computation of the whole distance matrix, have been designed for trees [21],
maximal outerplanar graphs [16], interval graphs [25, 14], ptolemaic graphs [14],
strongly chordal graphs, dually chordal graphs [2], distance-hereditary graphs
[11, 13] and for graphs of benzenoid systems [4]. It is not yet clear for general
graphs whether computing the diameter is easier than computing the whole
distance matrix.

In this paper, we study the problem of determining a vertex of high eccen-
tricity for chordal graphs and AT-free graphs. The eccentricity of a vertex x
is ecc(x) = mazyevd(z,y), where d(x,y) denotes the distance between z and
y. The diameter of a graph equals the maximum eccentricity achieved by any
vertex in the graph. Given v, a vertex of maximum eccentricity, it is trivial to
determine the set of vertices whose distance from v equals the diameter of G
(these vertices constitute the last layer of a BFSfrom v).

A graph is chordal iff there is no chordless cycle of length more than 3. It is
well-known that chordal graphs are exactly the intersection graphs of subtrees
in trees [3, 17]. Interval graphs can be defined as the intersection graphs of
subpaths in paths (see [23]). A natural generalization of interval graphs is the
concept of directed path graphs. A graph is a directed path graph iff it is the
intersection graph of a collection of directed paths in a rooted directed tree
[18]. A chord z;x; in a cycle C = (z1,%2,...,%2,) is an odd chord if, in C,
d(z;,z;) is odd. A graph is strongly chordal [15] if it is chordal and each cycle
of even length at least 6 has an odd chord. Strongly chordal graphs represent
an interesting subclass of chordal graphs which includes directed path graphs.
Three vertices u,v,w are an asteroidal triple (AT) if between any two of them,
there exists a path that avoids the neighbourhood of the remaining vertex. A
graph is AT-free if it does not contain an AT. The famous characterization of
interval graphs given by Lekkerkerker and Boland says that a graph is interval
if and only if it is chordal and AT-free [23].

The algorithm that we present involves two sweeps of the well-known Lex-
icographic Breadth First Search (LexBFS) introduced by Rose, Tarjan and
Lueker [27] (see algorithm 1) for the recognition of chordal graphs. An ex-
ample of a LexBFS sweep is presented in figure 13. It is somewhat surprising
that LexBFS seems to play a fundamental role for both chordal and AT-free
graphs, two families that exhibit very little structural similarity (see for ex-
ample [8, 9, 17, 26, 27]). Dragan et al [14] and Dragan [12] have proved the
following theorem that demonstrates further similar behaviour for chordal and
AT-free graphs.

Theorem 1 [14, 12] Let v be the vertex visited last by an arbitrary LexBFS.
If the graph is chordal or AT-free, then the eccentricity of v is within 1 of the
diameter of the graph. If the graph is interval, the eccentricity of v equals the
diameter.



Algorithm 1: Lexicographic Breadth First Search (LexBFS) [27]
Input: A graph G = (V, E)
Output: An ordering o of the vertices of V
begin
assign the label @ to each vertex ;
fori=nto 1 do
pick an unnumbered vertex z with the largest label in the lexico-
graphic order ;
for each unnumbered neighbour y of x do
| add i to label(y) ;

o(i) <z /* number z by i */ ;

end

Note that LexBFS can be started from any vertex of the graph G. We
will denote by LexBFS(w) a LexBFS started from vertex w. In this paper,
we examine the following very simple 2-sweep LexBFS algorithm and study its
performance on chordal and AT-free graphs.

Algorithm 2: 2-sweep LexBFS

Input: A graph G

Output: A vertex v

begin
Let w be an arbitrary vertex;
u ¢ the last vertex numbered by LexBFS(w);
v « the last vertex numbered by LexBFS(u);
return v;

end

In particular, we examine conditions when ecc(v) = diam(G) — 1, where
v is the vertex returned by the 2-sweep algorithm. These conditions include
forbidden subgraph results for both chordal and AT-free graphs. The forbidden
subgraph result for chordal graphs immediately shows that the algorithm works
optimally (i.e. ecc(v) = diam(G)) for directed path graphs.

Before presenting these results, we show that it is unlikely that the diameter
problem on either chordal or AT-free graphs can be solved in quadratic time.
To do this we introduce the disjoint sets problem.

2 Disjoint Sets Problem

Given § = {51, 52,...,S,} sets over the base set X, the Disjoint Sets Problem
(DSP) asks whether there exist ¢ and j such that S; N S; = 0. As pointed out
by Chepoi and Dragan in [5], a fast algorithm (i.e. quadratic time or better)
for determining whether a split graph (and thus a chordal graph) has diameter
2 or 3 would imply a fast algorithm for the DSP (see figure 1).



Figure 1: The set X is represented by a clique and S by an independent set. A
set S; is adjacent to its elements in X'. The diameter of this graph is 3 iff there
exist two disjoint sets in S.

In figure 2, a similar transformation is presented to show that the diameter
equals 2 or 3 problem on co-comparability graphs (and thus AT-free graphs)
would have the same impact on the DSP.

Figure 2: The set X is represented by a clique. Two copies of S are also
represented by two cliques. A set S; (resp. S}) is adjacent to its elements in X.
The diameter of this graph is 3 iff there exist two disjoint sets in S.

Thus it seems unlikely that a linear or quadratic time algorithm exists for
the diameter problem on either chordal or AT-free graphs. We now present the
main results of our paper.

3 Results

The distance between a vertex x and a set of vertices S, denoted by d(S,z), is
the minimum distance between  and a vertex of S. The following easy property
of LexBFS holds for arbitrary graphs.

Lemma 1 Let S; be the numbered vertices at step i of LexBFS. If x ¢ S; and
y & S; are two vertices such that d(S;,z) < d(S;,y), then x will be numbered
before y.

Let 0 = (v1,va, - .., vy) be an ordering of the vertex set of a graph G. We
write a < b whenever in a given ordering ¢ vertex a has a smaller number than
vertex b. Moreover, {a1,---,a;} < {b1,---,br} is an abbreviation for a; < b;

(t=1,---,1;7=1,---,k). An ordering of the vertex set of a graph G generated
by LexBFS is called a LexBFS-ordering.



In what follows we will often use the following property (cf.[22]) :

(P1) If a < b< candac € E and be ¢ E then there exists a vertex d
such that ¢ < d, db € E and da ¢ E.

It is well-known that any LexBFS-ordering has property (P1) [19]. More-
over, any ordering fulfilling (P1) can be generated by LexBFS [14].

We now note that the LexBFS algorithm is guaranteed to find the diameter
for arbitrary graphs, if the diameter equals 2.

Proposition 1 Let G be an arbitrary graph and let u be the vertex of G visited
last by a LexBFS. If diam(G) = 2, then ecc(u) = diam(G).

Proof: Let (z,y) be a diametrical pair of vertices of G, i.e. d(x,y) = diam(G) =
2. To prove the proposition we just have to show that w is not a universal vertex.
Assume both vertices z and y are adjacent to u. Then, since u < {z,y}, by
(P1) there exists a vertex t > {z,y} such that tu ¢ E, thereby proving that u
is not universal. O

3.1 Chordal Graphs

We now turn our attention to chordal graphs. An ordering o of the vertex set
of a graph G is a perfect elimination ordering if bc € F for all vertices a,b and ¢
with a < {b, ¢} and ab,ac € E. The following theorem presents the well-known
characterization of chordal graphs.

Theorem 2 [27] Let o be a LexBFS-ordering of a graph G. Then G is a chordal
graph if and only if o is a perfect elimination ordering of G.

It is interesting to note that Maximum Cardinality Search (MCS) exhibits
the same property as LexBFS with respect to perfect elimination orderings of
chordal graphs [29]. For MCS, unlike LexBFS, the eccentricity of the last vertex
is not guaranteed to be within any constant of the diameter of the (chordal)
graph. (Consider an arbitrarily long path where a new vertex x is adjacent just
to a midpoint of the path; it is straightforward to construct an MCS that ends
at x.)

Let P = (g — 1 — --- — T—1 — Tx) be an arbitrary path of G and let o
be an ordering of the vertex set of this graph. The path P is monotonic (with
respect to o) if xg < 71 < --- < Tg—1 < ) holds whenever zg < zy, and P
is conver if there is an index ¢ (1 <4 < k) such that g < 21 < -+ < mj_1 <
Ty > Xigp1 > -0 > Tp—1 > Tp. Then vertex x; is called the switching point of
the convex path P.

In the remainder of this subsection we assume that G is a chordal graph and
o is a LexBFS-ordering of G.

By theorem 2 no induced path P = (2o —---— ) of G can contain a vertex
z; (1 <j<k)withz;_1 > z; < z;4+1. Hence, we have the following.

Lemma 2 Every induced path of G is either monotonic or convex.



Now let P = (zg — - -- — x) be a shortest path of G connecting g and z.
We say that P is a rightmost shortest path if the sum ¢ + 21 + - - - + z} of the

positions of zg,- -,z in ¢ is largest among all shortest paths connecting xg
and Ty -

Lemma 3 Let P = (xo—---—xar) be a shortest path in G such that the subpath
P'=(x;—---—may), i > k, of P is a rightmost shortest path connecting z; and

Tok- If To < T2y and xy, is the switching point of P, then xy1; > x_; holds for
eachj (i—k+1<j<k).

Proof: We will show that, foreach j (i —k+1<j <k—1),if zp4; < zp_;
then x4 ;1 < zk—;—1 holds too. Since x2;, > z¢ this will give a contradiction.

So, let zpy; < xp—; but Tp4j41 > xx—j—1. Since P is a convex path and zy
is the switching point of it we have x4 11 < zp4; and hence w11 < Tp—j.
Applying (P1) to zp—j—1 < Tpyj41 < Tp—; we find a vertex t > zp_; adja-
cent t0 Zpyj+1 and not to xp—j—1. From Zpyj1 < xpy; < {t,Tp+j—1} and
theorem 2 we deduce that t is adjacent to both zjy; and zg4;—1. Then, a
contradiction arises to P’ being a rightmost shortest path, since ¢ > zj4; and
tTpqjq1,tTp45-1 € E. O

Lemma 4 Let P = (zo — --- — =) be a rightmost shortest path in G which
is convex and let z; be the switching point of P. Then d(xo,x;) > d(zg,x;)
whenever xg < Tg.

Proof: We prove the assertion by induction on k. Note that any subpath of
a rightmost shortest path is again a rightmost shortest path. For k = 2 evi-
dently the assertion holds. So, let £ > 3. Since P is convex we have z; < zp_1
and hence 29 < zp_1. By the induction hypothesis, d(zg,z;) > d(zr_1,%;).
If d(zo, ;) > d(zg—1,2;) + 1 then d(zo,z;) > d(zg,z;) and we are done. So,
assume that d(xo,z;) = d(xg—1,%;). Since d(x1,x;) < d(xg—1,x;) by the in-
duction hypothesis we must have z;_; < x;. Moreover, from z < Zp_1 we
conclude zp < x1. Applying now (P1) to z¢ < zx < 1 we get a vertex t > o
adjacent to zj and not to xzg. From zp < 1 < {t,z_2} and theorem 2 we
deduce that ¢ is adjacent to both x_; and zy_». Then, a contradiction arises
to P being a rightmost shortest path, since ¢t > zx_; and txg,txg_o2 € E. O

Let u be the vertex of a chordal graph G visited last by a LexBFS.

Lemma 5 For every two vertices © and y of G such that d(z,u) < d(y,u),
d(z,y) < d(y,u) + 1 holds. Moreover, if d(z,y) = d(y,u) + 1 then d(y,u) =
d(z,u) and d(y,u) is even.

Proof: Assume that d(z,y) > d(y,u) + 1. Consider in G rightmost shortest
paths P, and P, connecting vertex u with vertices x and y, respectively. Let
a be the common vertex of the paths P, and P, furthest from uw. Note that,
since a subpath of a rightmost shortest path is again a rightmost shortest path,
paths P, and P, coincide in the part from u to a and do not have any other
common vertices. Denote the common subpath of these paths by P,. From
d(z,u) < d(y,u), we conclude d(z,a) < d(y,a).

By lemma 2, P, and P, are monotonic or convex. First we show that these
paths cannot have a switching point on the subpath P,. Assume by way of



contradiction that a vertex z of P, is the switching point of P, or Py. Then
by lemma 4 we obtain d(u,z) > d(z,z), if z is the switching point of P,, or
d(u,z) > d(y,2) if z is the switching point of P,. Since d(z,u) < d(y,u), in
both cases we have d(u,z) > d(z,z). Hence,

d(z,y) < d(z,a) + d(a,y) < d(z,2) +d(z,y) <

< d(u, 2) + d(z,y) = d(u,y) < d(z,y) — 1,

a contradiction.

Figure 3:

Now let b and c be the neighbours of a in the paths P, and P, respectively,
which do not belong to the monotonic path P, (see Figure 3). Since a < {b, c}
by theorem 2 we get bc € E.

Suppose ¢ < f, where f is the neighbour of ¢ in the path P, distinct from
a. If b > ¢ then by theorem 2 vertices b and f will be adjacent, contradicting
P, being rightmost. Hence, b < ¢ must hold. Now from the fact that the path
P, is rightmost we deduce that dc ¢ E and d < b, where d is the neighbour
of b in the path P, distinct from a. Since a < b > d the path P, is convex
and b is the switching point of P,. By lemma 4 we obtain d(u,b) > d(z,b)
and hence d(u,c) > d(z,b). From d(z,y) < d(z,b) + 1+ d(y,c) < d(u,c) +
d(y,c) + 1 = d(u,y) + 1 and our assumption that d(z,y) > d(u,y) + 1 we see
that d(u,b) = d(z,b). Hence from v < z and lemma 3 it follows that a < d.
Now we can apply (P1) to a < d < ¢ and get a vertex t > ¢ adjacent to d and
not to a. Sincet > ¢ > b > d and ¢ < f by theorem 2, vertex ¢ must be adjacent
to b,c, f (see Figure 4). Thus,

d(z,y) < d(z,d) +2+d(f,y) = d(z,b) +d(y,c) < d(u,c) + d(y, c) = d(u,y),

and a contradiction to the assumption d(z,y) > d(u,y) + 1 arises.

Hence, ¢ > f, and therefore P, is a convex path and c is the switching point
of P,. Again by lemma 4 we have d(u,c) > d(c,y) > d(b,x). Hence,

d(z,y) <d(z,b) + 1 +d(c,y) < d(u,c) + 1 +d(c,y) =d(u,y) + 1.

Since our assumption was d(z,y) > d(u,y) + 1 we conclude d(z,y) = d(u,y) +1
and d(u,c) = d(c,y) = d(b,z), i.e. d(u,y) is even and d(u,y) = d(u, x). O



Figure 4:

Theorem 3 Let u be the vertex of a chordal graph G last visited by a LexBFS,
and let x,y be a pair of vertices such that d(z,y) = diam(G). If ecc(u) <
diam(QG) then ecc(u) is even, d(u, z) = d(u,y) = ecc(u) and ecc(u) = diam(G)—
1.

Proof: Assume, without loss of generality, that d(u,z) < d(u,y). Then lemma
5 gives d(z,y) < d(u,y) + 1. On the other hand we have d(z,y) = diam(G) >
ecc(u) + 1 > d(u,y) + 1. Hence, ecc(u) = d(u,y), d(z,y) = d(u,y) + 1 and
diam(G) = ecc(u) + 1. Applying again lemma 5 we conclude d(u,z) = d(u,y) =

ecc(u) and ecc(u) is even. O

We continue with rather surprising results concerning the parity of the di-
ameter of the graph and the parity of the eccentricity of the vertex visited last
by LexBFS.

Corollary 1 If the diameter of a chordal graph G is even, then the vertex last
visited by a LexBFS has eccentricity equal to diam(QG).

Corollary 2 If the vertex u of a chordal graph G last visited by a LexBFS has
odd eccentricity, then ecc(u) = diam(G).

To prove the final result on chordal graphs we need the following auxiliary
lemmas, the first two of which are well-known.

Lemma 6 For every two vertices x,y of a chordal graph G and every k, 0 <
k < d(z,y), the set Sk(z,y) = {z € V : d(z,z) = k and d(z,y) = d(z,y) — k}
induces a complete subgraph of G.

Lemma 7 If all vertices of a complete subgraph C of a chordal graph G have
the same distance k from a vertex x, then there is a common neighbour z of all
vertices of C' which is at distance k — 1 from zx.

Lemma 8 Let G be a chordal graph which does not contain an induced 3-sun
(see figure 5), let w, x be arbitrary vertices of G and let u be the vertex visited last
by LexBFS(w). Also let P be a rightmost (with respect to LexBFS(w)) shortest
path connecting u with x and assume that d(u,x) = 2k. Then the vertex z of P
with d(u, z) = k lies on a shortest path connecting vertices w and u.



Figure 5: The 3-sun and the 4-sun.

Proof: Consider in G a rightmost shortest path P’ connecting vertex u with
w and let a be the common vertex of the paths P and P’ furthest from u.
By lemma 2, the path P is monotonic or convex (note that the path P’ is
monotonic since w is the vertex with the largest index in LexBFS(w)). Let b
and ¢ be two neighbours of a in the paths P’ and P, respectively, which are at
distance d(u,a) + 1 from u. (The degenerate cases where a = & or w = a are
trivial.) We will show that d(u,a) > k—1 and if d(u,a) = k — 1 then the vertex
¢ belongs to a shortest path connecting w with wu.

If a > ¢ then the path P is convex and a is the switching point of P. By
lemma 4 d(u,a) > d(a,x). Since d(u,z) = 2k we have d(u,a) > k.

Assume now that ¢ > a. Then from a < {b,c} and theorem 2 we get
bc € E. As before, denote by d and f the neighbours of b and ¢, respectively,
on the paths P’ and P distinct from a. We have a < b < d and a < ¢. If
b < c then by theorem 2 dc € E and hence the path P’ is not rightmost, a
contradiction. So, b > ¢. Analogously, since P is rightmost ¢ > f and bf ¢ E
must hold. Thus, the path P is convex and c¢ is the switching point of P. From
d(u, ) = 2k and lemma 4 we obtain d(u,c) > k, i.e. d(u,a) > k — 1. For the
case d(u,c) = k = d(u,a) + 1 we will show that the vertex c¢ is adjacent to d.
Indeed, if d(u,c¢) = k then by lemma 3 a < f. Hence, we can apply (P1) to
a < f < band get a vertex t > b adjacent to f and not to a. Sincet >b>c> f
and b < d by theorem 2 vertex ¢ must be adjacent to ¢, b,d. To avoid an induced
3-sun we must have an edge dc (note that G as a chordal graph does not have
any induced cycles). |

Lemma 9 Let G be a chordal graph which does not contain an induced 3-sun,
w,x,v be arbitrary vertices of G and u be the vertex visited last by LexBFS(w ).
If d(u,z) = d(u,v) = d(z,v) = 2k, then there exists a vertex a of G such that
d(u,a) = d(z,a) = d(v,a) =k and d(w,a) = d(w,u) — k.

Proof: Let P, and P, be rightmost (with respect to LexBFS(w)) shortest
paths connecting u with xz and v, respectively. Denote by b and ¢ the midver-
tices of the paths P, and P,, i.e. vertices with d(z,b) = d(v,¢) = k. By
lemma 8 both vertices b and ¢ belong to shortest paths joining w with w.
Hence, if ¢ = b or d(c,z) = k or d(b,v) = k then we are done. So, assume
that ¢ # b and d(c,z) > k, d(b,v) > k. Since d(u,b) = d(u,c) = k and
d(w,b) = d(w,c) = d(w,u) — k, by lemmas 6 and 7, we get that bc € E
and there are two vertices u/,w' in G such that u'b,u'c,w'b,w'c € E and
d(w',w) = d(w,b) — 1, d(u',u) = d(u,b) — 1. Now consider a cycle of G formed
by edge bc and shortest paths connecting b with z, ¢ with v and v with =z.



Since G is chordal, in this cycle, the middle vertex e of the (v,z)-path must
be adjacent to both b and ¢. Vertices ¢ and e are equidistant from v as well as
vertices b and e are equidistant from z. By lemma 7 there must be vertices 2’
and v’ in G such that z'b, 2'e,v'e,v'c € E and d(v',v) = d(z',z) = k — 1. Since
{d(v,b),d(z,c)} > k, v'b,z'c ¢ E. Hence, to avoid an induced 3-sun, vertex e
must be adjacent to both v’ and w’'. Tt is easy to see now that e is at distance
k from u, x and v and at distance d(u,w) — k from w. O

The main result of this subsection is the following.

Theorem 4 If G is a chordal graph and if v, the vertex returned by algorithm 2,
is not of mazimum eccentricity, then G contains either an induced 3-sun or an
induced 4-sun (see figure 5) or one of the graphs from figure 6 as an induced
subgraph.

Figure 6: Strongly chordal graphs where 2 sweeps of LexBFS are not enough to
find the diameter. LexBFS(w) and LexBFS(u) orderings of the left graph are
(u,z,y,v,9, f,a,b,s,t,w) and (v,z,y,s,t,w,a,b,g, f,u), respectively. Here we
have ecc(v) = 2 < 3 = d(z,y) = diam(Q).

Proof: Let w* be an arbitrary vertex of G, let u* be the vertex numbered
last by LexBFS(w*) and let v* be the vertex numbered last by LexBFS(u*).
We will show that if ecc(v*) < diam(G) and G contains neither induced 3-suns
nor induced 4-suns then G must contain one of the graphs from figure 6 as an
induced subgraph.

Let z*,y* be a diametral pair of vertices of G, i.e. d(z*,y*) = diam(G).
Since ecc(v*) < diam(G), by theorem 3, we have ecc(u*) = ecc(v*) = diam(G)—
1, ecc(v*) is even, say ecc(v*) = 2k, and d(u*,z*) = d(u*,y*) = d(u*,v*) =
d(v*,z*) = d(v*,y*) = 2k = d(z*,y*) — 1. Applying lemma 9 to z*,u*,v*, w*
and to y*,u*,v*, w* we will find two vertices a and b such that d(u*,a)
d(y*,a) = d(v*,a) = d(u*,b) = d(z*,b) = d(v*,b) = k and d(w*,b) = d(w*,a) =
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d(w*,u*) — k. Denote d(w*,u*) — k by l. By lemmas 6 and 7 vertices a and b
are adjacent and have three common neighbours u,v and w such that u,v are at
distance k — 1 from uw*,v*, respectively, and w is at distance [ — 1 from w* (see
figure 7). We choose v rightmost in LexBFS(w*), i.e. v has the largest index in
LexBFS(w*) among all vertices which are adjacent to a,b and at distance k —1
from v*.

u-e®
k-1
u
k-1 o b k-1
- .,
w v
-1 k-1

Figure 7:

Let o be the LexBFS(w*)-ordering of the vertex set of G with last visited
vertex u* (note that only in the proof of claim 3 do we use the LexBFS(u*)-
ordering). From lemma 1 and distance requirements we derive w > {a,b} > u
and vw,uv ¢ E. Without loss of generality assume that a < b.

Claim 1: In the LexBFS(w* )-ordering, vertex u has a smaller index than vertex
v.

Proof of Claim 1: If a < v then we are done since u < a. So, assume a > v.
Consider a rightmost shortest path P, connecting vertex v with v* and an
arbitrary shortest path P, joining u with u*. Let u' and v' be the neighbours
of u and v, respectively, on the paths P, and P,. Since u < a > v the shortest
path P formed by P,, P, and edges ua, av is convex and a is the switching point
of P. Consequently, v’ < u and v/ < v. Moreover, from u* < v* and lemma 3
we get ' < v'. Now, if v < u then v’ < v' < u and we can apply (P1) and find
a vertex z > u adjacent to v’ and not to u'. Since v' <v < z and v < a < b by
theorem 2 z is adjacent to v,a,b. This gives a contradiction to the choice of v
(z is adjacent to both a and b, is at distance k — 1 from v*, but z > u > v). O

Claim 2: There exist two adjacent vertices t and s in G such that d(z*,s) =
d(y*,t) = k and both t and s are adjacent to a,b,w and not to u. Moreover,
a<s and b <t hold in LezBFS(w*).

Proof of Claim 2: Pick the neighbour d of a in a rightmost shortest path
connecting a with y* and the neighbour e of b in a rightmost shortest path
connecting b with z*. From distance requirements we have d(e,d) = 3 and
ud,ue ¢ E. Note that w may be adjacent to d or e but only to one of them.
Since db ¢ E and a < b we get d < a. Hence, we can apply lemma 3 to a
shortest path connecting u* with y* and passing through vertices u, a, d and get
u < d. Thus, u < d < b, bu € E and db ¢ E hold. By property (P1) there
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must be a vertex ¢t > b adjacent to d and not to u. Since d < a < b < t and
b < w, by theorem 2, t is adjacent to a, b, w. It cannot be adjacent to e because
of d(e,d) = 3. Consequently, e < b must hold yielding u < e (similar as u < d).
If now a < e then (P1) applied to a < e < t gives a vertex p > t adjacent to e
and not to a. From e < b < t < p and theorem 2 vertex p is adjacent to b and
t. But then vertices u, a, b, d,t and p induce a 3-sun, a contradiction.

Hence, a > e. Moreover, every vertex adjacent to both b and ¢ must be
adjacent to a as well, otherwise we will have again an induced 3-sun. Now we
apply (P1) to u < e < a and get a vertex s > a adjacent to e and not to u.
From e < {b, s} vertices b and s are adjacent. If st ¢ E then b > s holds and
(P1) applied to a < s < t gives a vertex p > t adjacent to s and not to a. From
s < b <t < p and theorem 2 vertex p is adjacent to b and t. Since ap ¢ E there
is a 3-sun on w,a,b,d,t,p. Thus, st € E and hence sa € E, otherwise there is a
3-sun on s,b,t,a,d,u. From a < {w, s}, vertex s is adjacent to w too. Finally
we note that d(z*,s) = d(y*,t) since otherwise d(z*,y*) < 2k + 1. O

Claim 8: There exist two adjacent vertices f and g in G such that d(z*,g) =
d(y*, f) = k and both f and g are adjacent to a,b,u and not to v.

Proof of Claim 3: This proof is similar to the proof of claim 2. Instead of the
LexBFS(w*)-ordering we use the LexBFS(u*)-ordering of the vertex set of G
with last visited vertex v*. |

Now we have all the prerequisites to construct one of the graphs of figure 6.
Again let o be a LexBFS(w*)-ordering of G with last visited vertex u*. From
the discussion above we have a subgraph of G presented in figure 8(a).

Since b,g,s € Sk(z*,y*), by lemmas 6 and 7 vertices b,g,s are pairwise
adjacent and they have a common neighbour x which is at distance k—1 from z*.
Analogously, vertices a, f,t are pairwise adjacent and have a common neighbour
y at distance k — 1 from y*. From distance requirements we have d(z,y) = 3
and uz,uy,vw,uv,vz,vy ¢ E. Note that w may be adjacent to z or y but
only to one of them. Recall also that us,ut,vf,vg ¢ E (see claims 2 and 3).
Furthermore, each vertex adjacent to both ¢ and g must be adjacent to f too,
otherwise an induced 4-cycle or an induced 3-sun arises. Similarly, each vertex
adjacent to both f and s must be adjacent to g as well. Hence, gt, fs € E. If
wf,wg ¢ E then vertices u, f,9,y,,t,s,w induce a 4-sun (or a 4-cycle). So, w
is adjacent to f and hence to g (or to g and hence to f). Vertex v is adjacent
neither to s nor to ¢t. Indeed, if, for example, vs € E then we get an induced
3-sun formed by v, s, a, g, z,u.

Thus we have constructed a subgraph of G presented in figure 8(b). Only the
following additional edges are possible: wv and/or either wz or wy. If wv € E
then we have a graph from figure 6 as an induced subgraph of G. So, assume
that wv ¢ E.

Since vertices a, b, f,g are at distance ! (recall that [ = d(w*,u*) — k) from
w*, while vertex w is at distance [ — 1 and vertex u is at distance [ + 1, from
lemma 1, w > {a,b, f,g} > u must hold. We had also a < b < ¢, a < s and
u < v (see claims 1 and 2). From w > b > a, wv ¢ E and theorem 2 we
derive v < a < b. Assume that f < v. Then we can apply (P1) to f <v < w
and find a vertex p > w adjacent to v and not to f. Again by theorem 2, p is
adjacent to a, b and hence to ¢, s. Since pf ¢ E vertices u, f,g,y,Dp,t, s,z induce
either a 4-sun or a 3-sun (depending on whether p and g are adjacent). Thus,
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we conclude v < f. Now we apply (P1) to u < v < f and get a vertex p > f
adjacent to v and not to u. As before p must be adjacent to a,b. We will show
that p is adjacent to t, s, f, g as well. If pt ¢ E then from ¢ > b > a and theorem
2 we obtain p < a, i.e. p < a < b < tholds. Applying (P1) to f < p < t we find
a vertex q¢ > t adjacent to p and not to f. Since p<a<b<t<qanda< s,
by theorem 2, ¢ is adjacent to a,b,t,s. But then vertices f,y,u,t,b,q induce a
3-sun or a 4-cycle (if gy € E or qu € E). Thus, vertex p must be adjacent to ¢.
Analogously we can show that ps € E. Consequently, pg,pf € E too. Indeed,
if pg ¢ E then vertices p, s, a, z, g, u induce a 3-sun or a 4-cycle (if px € E), and
if pf ¢ E then vertices p,t,b,y, f,u induce a 3-sun. Now it remains to observe
that vertices u,y,z,v,p,a,b,s,t, f and g induce a graph from figure 6 (replace
w with p in those pictures). O

Recall that a graph G is a comparability graph if one can assign directions
to edges of G so that the resulting digraph G’ is transitive; that is, whenever
(z,y) and (y, z) are edges of G’ then (z, z) is also an edge of G’ [19]. Since none
of the graphs from figure 5 and figure 6 is a directed path graph as well as a
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comparability graph, this theorem immediately yields the following corollary.

Corollary 3 Algorithm 2 finds a vertexr of maximum eccentricity for directed
path graphs and for chordal comparability graphs.

Unfortunately, this result cannot be extended to the strongly chordal graphs
since for each of the graphs from figure 6, 2 sweeps of LexBFS are not enough to
find the diameter. Futhermore, in figure 9 we present a strongly chordal graph
for which 3 sweeps of LexBFS are also insufficient.

complete graph
with 11 vertices

Figure 9: A strongly chordal graph where 3 sweeps of LexBFS are not enough
to find the diameter. LexBFS(w), LexBFS(u) and LexBFS(v) orderings are
(uazayaxava o ',C,t,S,U)), (U7mayaza U 7gaf7pau) and (zauaxaya o ',q,h,U), re-
spectively. Here we have ecc(z) = 2 < 3 = d(x,y) = diam(G).

3.2 AT-free Graphs

We now turn our attention to AT-free graphs and start by recalling some known
results. A pair of vertices (x,y) is said to be a dominating pair if for every z,y
path P and every vertex z € V, N(z) NP # 0. If N(z) N P = ), we say that
P misses z. For vertices u,v and z, we say that u and v are unrelated with
respect to x if there is a v,z path that misses u and a u,z path that misses
v. As an example of the remarkable similarity exhibited by LexBFS on chordal
and AT-free graphs, we note the following characterization of AT-free graphs, a
characterization that is analogous to theorem 2 for chordal graphs.

Theorem 5 [8] Let o be a LexBFS ordering of a connected graph G. If G
is AT-free, then for all vertices a,b and ¢ with a < {b,c}, b and ¢ are NOT
unrelated with respect to a.
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In [9], it was shown that every connected AT-free graph has a dominating
pair; in [8] this was strengthened to show that Algorithm 2 can be used to find
such a dominating pair.

Theorem 6 [8] Let G be a connected AT-free graph and let vertices u and v be
as identified in Algorithm 2. Then u and v are a dominating pair of G.

Furthermore, as the following lemma shows, for sufficiently high diameter,
the set of dominating pairs of an AT-free graph can be expressed as the Cartes-
sian product of two distinct sets. (These sets can be found in linear time [8].)

Lemma 10 [9] If G is a connected AT-free graph with diam(G) > 3 then there
exists disjoint verter sets X,Y such that (x,y) is a dominating pair of G iff
zeXandyeY.

The fact that this lemma does not hold for diam(G) = 3 is illustrated by
the graph in figure 10.

4 ) 6

Figure 10: The dominating pairs are (1,3),(1,6), (4,3), (4,6), (1,5),(2,5) and
(4,5). There are no disjoint sets whose cartesian product defines all dominating
pairs.

A weaker version does however hold for AT-free graphs of diameter larger
than or equal to 3.

Lemma 11 Let G be a connected AT-free graph with diam(G) > 3 and let V}
be the set of vertices that are the last vertices of some LexBFS. Then there exists
a partition of V1 into non-empty sets X and Y such that (z,y) is a dominating
pair ifr € X andy €Y.

Proof: If diam (G) > 3, then lemma 10 applies; X (resp. Y) is the intersec-
tion of V; with the X (resp. V) identified in lemma 10. Thus we only need to
consider the case where diam(G) = 3.

Let z be a vertex of maximum eccentricity and let = be a vertex visited last
by a LexBFS from z (i.e. = € V7). We now assume that y is a vertex visited
last by a LexBFS from z. Denoting the vertices of distance i from z by N(x)
we let X' = V3 N N3(z) and Y' = V1 N N3(y).

Set V{ = V1 \ (X'UY') and let X" = V/ N N%(z) and Y" = V] N N%(y).
Finally welet X = X' UX" and Y = Y'UY". We now prove that X and Y
satisfy the statement of the lemma.

Claim 4: XNY =¢

Proof of Claim 4: First we show X' NY' = ¢. Suppose to the contrary that
w € X'NY”’ and let paths x —a—b—w and y —c—d—w be arbitrary z, w and y, w
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shortest paths. Trivially, the only possible intersection between these two paths
is if b = d. Regardless of the intersection, ¢ € E and ya ¢ E since otherwise
d(z,y) = 2. If b = d,z and y are unrelated with respect to w contradicting
theorem 5. If b # d,zd ¢ E (else d(z,w) = 2) and yb ¢ E, again showing that
z and y are unrelated with respect to w.

X"NY" = ¢ since otherwise the two paths £ — a — w and y — b — w, where
w € X"NY", must have zb ¢ E,ya ¢ E and thus z and y would be unrelated
with respect to w.

Note that by definition X' NY" = X" NY' = ¢. O

Claim 5: X UY =W;

Proof of Claim 5: If w € V1 \ (X UY), then since diam(G) = 3,w € {z}UN'(z)
and w € {y}UN(y) which implies that d(z,y) < 2 contradicting d(z,y) = 3. O

Before proceeding to show that every element of X forms a dominating pair
with every element of Y, we note the following:

Let u be an arbitrary element of X and v an arbitrary element of Y. Since
u € X, d(z,u) =2or 3. If dz,u) = 3,d(y,u) <2 (by claim 4). If d(z,u) =
2,d(y,u) <1 (if d(y,u) = 3,u € Y contradicting claim 4; d(y,u) # 2 since
X"NY" = ¢). Similarly if d(y,v) = 3,d(z,v) < 2 and if d(y,v) = 2,d(z,v) < 1.

Claim 6: For allu € X,v € Y,u,v is a dominating pair

Proof of Claim 6: Suppose to the contrary, that there is a pair of vertices u, v
and an induced path P joining them that misses vertex t. We now do a case by
case analysis based on the distance from z to P and from y to P. We let d(z, P)
denote the length of a shortest path from z to P. Thus d(z, P) = 0 means x
is on P;d(x, P) = 1 means z has a neighbour on P and d(z,P) > 1 means x
misses P (i.e. z plays the role of t).

Case 1: d(z,P) = 0 and d(y,P) = 0 (i.e. both z,y are on P)

This is clearly impossible since the subpath of P between x and y misses t,
contradicting x,y being a dominating pair.

Case 2: d(z,P) =0 and d(y, P) =1 (i.e. one vertex (without loss of gener-
ality z) is on P, the other is adjacent to P)

First we note (and this also applies to case 3 below) that z must be one
of the endpoints of P or adjacent to one of the endpoints. Otherwise u and
v are unrelated with respect to z. Since d(z,u) = 2 or 3, either zv € E or
x = v. Let p be the neighbour of z on P in the direction towards u. Since
d(z,u) > 2,u # p.

Since d(y, P) = 1, there is a vertex g € P such that yq € E. Clearly such a
vertex ¢ is between u and p but cannot be p (otherwise d(z,y) = 2). The z,y
path z ~ (P) ~ ¢ — y (this notation indicates the subpath of P from z to ¢
together with the edge qy) shows that ty € E (otherwise x, y is not a dominating
pair). Now let ¢ be the neighbour of y on P that is closest to u. The paths
u~(P)~qg—y—tand u ~ (P) ~ v show that v and ¢ are unrelated with
respect to u.
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Case 8: d(z,P) =0 and d(y, P) > 1 (i.e. one vertex (without loss of gener-
ality x) is on P, the other is not adjacent to P)

Note that y can now play the role of t. As in case 2 we let p denote the
neighbour of £ on P and see that py ¢ E (otherwise d(z,y) = 2). Since
d(y,u) < 2 and d(y,P) > 1 we see that d(y,u) = 2 and let u — a@ — y denote
such a path (a & P).

We immediately see that za ¢ E (otherwise d(z,y) = 2) and thus paths
u—a—y and u ~ (P) ~ z show that z,y are unrelated with respect to u.

Case 4: d(z,P) =1 and d(y, P) =1 (i.e. neither z nor y is on P but each
intercepts P)

The z,y path that has all internal vertices on P shows that zt € E or
yt € E but not both. Without loss of generality assume zt € E. If uv € E,
then yu,zv € E. Now y,t are unrelated with respect to v. Thus uv € E. Let
z' be the neighbour of z (on P) that is closest to v and consider the paths:

v~ (P)~uand v~ (P)~ 2 —z —t (where possibly v = z'). Since
zu € E, t and u are unrelated with respect to v unless ' is adjacent to u. Thus
d(z,u) = 2 implying that d(y,u) < 1. Since y is not on P,d(y,u) = 1. Also
z' # v since uv € E.

Now the paths v ~ (P) ~ u—y and v ~ (P) ~ &' — x — t show that y
and t are unrelated with respect to v unless y is adjacent to some vertex on
the v, z' subpath of P. Let 3’ be the neighbour of y closest to v; 3’ # v since
d(y,v) > 2. The existence of y' shows that z'v ¢ E. Now the path y —u—z'—x
misses v contradicting x,y being a dominating pair. Note zv ¢ E since z' is the
neighbour of z that is closest to v.

Case 5: d(z,P) =1 and d(y,P) > 1 (i.e. z intercepts P but y misses P;
note y now plays the role of t)

Since d(y,P) > 1 and d(y,u) < 2,d(y,u) = 2 by the path u — a — y where
a ¢ P. Now zy, yz', xa ¢ E and also ur ¢ E. But paths v — a — y and
u ~ (P) ~ z' — x show that x and y are unrelated with respect to u.

Case 6: d(z,P) > 1 and d(y, P) > 1 (i.e. both z and y miss P)

Now d(y,u) = 2 by the path u —a—y and d(z,v) = 2 by the path v —§— =
where o, 8 € P (o # (). Again yz,yf8,za ¢ E. But path u — a — y and the
path induced on u ~ (P) ~ v —  — z show that z and y are unrelated with
respect to u. O
This completes the proof of the lemma. O

For the graph shown in figure 10, X = {6} and Y = {1,4}. The next
proposition presents further facts about the structure of the AT-free graphs.

Proposition 2 Let G be an AT-free graph with diam(G) =k > 2. If ecc(v) =
k — 1, where v is the vertex returned by algorithm 2, and u',v' achieve the
diameter where d(u,u’) < d(u,v') then :

1. d(u,v) = d(u,v') =du',v) =k -1,
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2. uu' € E and v' € E.
Proof:

1. By lemma 11, u,v is a dominating pair. Thus each of u/,v' is adjacent
to at least one vertex of (), an arbitrary shortest u,v path. Let a be
the furthest vertex from u (on @) that is adjacent to u' and let b be the
furthest vertex from v (on @) that is adjacent to v'. By theorem 1, it is
clear that ecc(u) = k — 1 and d(u,v) = k — 1. Since d(u',v') = k, either
a=wuor b=wv (or both). Without loss of generality assume v = b. Now
d(u',v) = k — 1 since otherwise d(u',v") < k. If v'u € E then the same
argument shows that d(u,v') = k — 1. Thus we may assume that vu' ¢ E
and a is the neighbour of u on Q. Suppose d(u,v') < k — 1 as witnessed
by path R. Now ' must be adjacent to some vertex of R since otherwise
the u, v path consisting of R plus the edge v'v misses v’ contradicting u,v
being a dominating pair. But now, d(u’,v') < k.

2. This follows immediately from the preceeding argument.

O

Although even the 2-sweep LexBFS algorithm does not guarantee a maxi-
mum eccentricity vertex for AT-free graphs (as well as for chordal graphs), the
previous proposition shows that such a vertex is in the last BFS layer from wv,
the vertex returned by algorithm 2.

Before presenting the final result on AT-free graphs, we introduce the notion
of an h-ladder and an h-*ladder.

Definition 1 An h-ladder consists of a chain of h 4-cycles where the 4-cycles
are attached as shown in figure 11. In an h-*ladder the first 4-cycle has a
diagonal.

Figure 11: The h-ladder and the h-*ladder.

Theorem 7 If G is an AT-free graph with diam(G) = k > 3 and ecc(v) = k—1,
where v is the vertex returned by algorithm 2, then G contains an induced (k—1)-
ladder or an induced (k — 1)-*ladder.

Proof: Let ', v’ be a diametrical dominating pair such that u,u' € X,v,v' € Y.
Clearly such v',v' exist (i.e. u',v' € V7). Furthermore let P be an arbitrary
rightmost shortest u’,v path v’ = ug —u; — -+ — ux_1 = v. Throughout the
proof a < b indicates that vertex a has a smaller number than vertex b in the
last LexBFS of Algorithm 2.
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L;(0 <4 <k —1) will denote the BFS layers of G with respect to u (i.e.
Ly = {u};v € L_; and it has been shown in proposition 2 that v’ € L;,v' €
Lj_1). The following facts follow immediately:

Fact 1: For all 0 < i < k—1, no neighbour of u; may be of distance < k—i—2
from v’ (otherwise d(u',v') < k.)

Fact 2: For exactly one l,1 <[ < k—1, L; contains 2 vertices from P namely
uj—1,u;. All other layers contain exactly one vertex from P. (Pigeonhole prin-
ciple and distance properties.) If L; contains u;_1,u; we say that P “jogs” in L;.

Claim 7: If P has its jog in L;,1 <1 < k—1, then there is an induced (k—1—1)
- ladder on {u;,---,up—1 = v} U{oy, --,ap_1 = v'} where aj € L; for all j,
1<j<k—-1anda;>u;.

Proof of Claim 7: By inductionon j: k—1,---, . Ifj=k—1,a4_1 =v",v'v €
E (i.e. we have a [k — (k—1) — 1 = 0]-ladder), v' > v and v' € Ly_;.

Now assume the claim is true for j > [ and show it’s true for j — 1.
uj—1 € L;j 4 and thus u;—1 > ;. By fact 1, uj_1a; ¢ E. Since a; > uy,
by (P1) there exists aj_i; > uj_; such that aj_10; € E,aj_ju; ¢ E. By
lemma 11, P is a dominating path and thus must dominate a;_;. By fact 1,
uj_s0;_1 ¢ E and thus aj_juj_; € E, thereby extending the ladder. O

As an immediate corollary of claim 7, we see that if [ = 1 then w is adjacent
to ug(= u'),u; and ay, thereby resulting in a (k — 1)-*ladder.

Henceforth we assume that [ > 1. We now show that there is only one pos-
sible ordering of u;,u;_1,qy.

Claim 8: uj_1 > oy > g

Proof of Claim 8: By claim 7, a; > u;. If the stated order is not present then
ap > wp—1. Since [ > 1,u;_5 exists, in L;—;. By fact 1, wj_2aq ¢ E and thus by
(P1) there exists aj—; > u;—2 such that ay_ju;—1 € E,a;_10q4 € E. By fact 1,
ai_1u;—2 € E. Now consider any direct u, ;1 path and append to it the path
aj—1 —a; —...—v'. This path (from u to v') misses u;—; contradicting lemma,
11. O

Since a; > uy, thereis a;_; (with as large a number in o as possible) such that
Q-1 > uj—1, 104 € E oy yu; € E. Furthermore, by fact 1, aj_ju;_2 & E.
Suppose oy_1ui—1 ¢ E. If oy_1 € L;_q, then P misses a;—; (note in this case,
Qp_1Up41 ¢ E since uj4; € Ll+1). Thus o;_1 € L; and u;_s > o;_1. Thus
there exists a;_2 > wu;_o such that oy 204 1 € E, oy ou;1 ¢ E. But now a
direct path from u to a;_» concatenated with the path oy 9 —ay_1 —---— '
yields a path from « to v' that misses u; 1, contradicting lemma 11. Thus,
aq_1u;—1 € E. Furthermore a;_ju;q; ¢ E since otherwise the path P’ formed
from P by replacing u; with a;_; would contradict P being rightmost. We now
examine the possible relative orders of u;—2 and a;_1.

Case 1: g1 > uj—2 (i.e. aqy—1 € Lj_1)
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If | = 2,u is adjacent to ay—1 and u;—» and we have an induced (k—1)-ladder.
If 1 > 2,u_3 exists (in L;_s) with wj_su;—o € E,u_30q_1 ¢ E (fact 1). Since
Qi1 > uj_s, there exists a;_o > u;_3 such that a;_s0;-1 € E,oq_ou;_o ¢ E.
But now a direct u, a;_» path concatenated with the path aj_s —a;_1 —---—2'
yields a path from u to v’ that misses u;—s, contradicting lemma 11.

Case 2: wj_o > oy_1
We differentiate on whether o;_1 € L; or L;_1.
Case 2.1: aj_1 € L;

Since ag_1 > u;_1, there is ag_o > u_2(aq_o € L;_1) such that ay_sa;_1 €
E, and oy ou;1 ¢ E. First we see that a; 204 ¢ E since otherwise a direct
path from u to a;_5 concatenated with the path a;_o—a;—---—v' yields a path
from u to v' that misses u; 1, contradicting lemma 11. Secondly o; su; ¢ E
since otherwise there would exist vertex 8 > a;_s such that fa; € E, fu; ¢ E
but this would contradict o;_; having as large a number in ¢ as possible. Now
we see that a;_su;_o € E. Otherwise, if [ = 2, P misses o;_o. If [ > 2, there
exists ay—3 > uj—3 such that ay_say_2 € E, aj_zu;—o & E but now a direct path
from u to a;_3 concatenated with the path a;_3 — a;_5 —--- — v’ yields a path
from u to v’ that misses u;_», contradicting lemma 11.

If | = 2,4’ = w_2 and there is a (k — 1)-ladder on PU {a}Uv'. If1 > 2,
a straightforward induction argument shows that for all i,1 < ¢ <1 —1,L;_;
contains vertices a;_; 1 > w;_;_1 where ay_; 10q_; € E,ap ; qu;_; 1 € E,
o u_i 1€ FEandag ; qu ;€ E. When i =1—1,u4;_; 1 = u' and we have
an induced (k — 1)-ladder on PU {a} Uv'.

Case 2.2: ay_1 € Lj_1.

If I =2 (i.e. uj—2 = u'), then there is a (k — 1)-ladder on PUu U {a} Uv'".

If I > 2, let a;_2 be the neighbour of a;_1 in L;_5 with the largest number.
Since uj—1 € Lij,oq_ou;—1 € E. oj_su;_o € E since otherwise P would miss
aj—2. Now consider w;—3(€ L;—»). If Il = 3,u;_3 = «' and we have a (k — 1)-
ladder on PUuU{a}Uv'. If | > 3 we now show that u;_3 > a;_2. Assume to the
contrary. Since | > 3,u;_4 exists (in L;_3). By fact 1, uj_ay—2 ¢ E. ag_o >
u;—3 implies there exists a;_3 > w;—4 such that oy_30y_2 € E,aq_su;—3 € E
and uj_goq_3 € E (by fact 1). Thus P misses a;_3.

Now a straightforward induction argument shows that for all i,2 < i <
Il —1,L;_; contains vertices u;_;—1 > oq—; where oq_;a;_;41 € E,oqy_ju;_; € E
(otherwise P misses Otl,,'), QiU —i—1 ¢ E (fact 1) When i =1— ]., U—j—1 = u'
and we have a (k — 1)-ladder on PUu U {a}Uv'.

This completes the proof of the theorem. O
Note that this theorem considerably strengthens the following result by Dra-
gan [12]. An HHD-free graph does not contain an induced house (complement of

Ps) or an induced hole (an odd cycle of length at least 5) or an induced domino
(a 2-ladder).
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Theorem 8 [12] If G is an HHD-free, AT-free graph, then the vertex visited
last by a LexBFS has mazimum eccentricity.

Similarly considering K 3 induced subgraphs we have:

Corollary 4 If G is an AT-free graph with no Ky 3 then the vertex returned by
algorithm 2 has mazimum eccentricity.

4 Concluding Remarks

First of all, the reader should note a kind of duality in the results when algo-
rithm 2 finds a vertex whose eccentricity is not maximum. For chordal graphs,
each of the forbidden subgraphs has an AT. For AT-free graphs, the h-ladder
and the h-*ladder are built with 4-cycles, the smallest non-chordal graph.

Having seen the power of the 2-sweep LexBFS algorithm, it is natural to
ask whether significant improvements can be achieved by performing ¢ sweeps
for some ¢ > 2. In particular, can we find a vertex of maximum eccentricity,
although in light of the results of section 2, this is highly unlikely for ¢ a con-
stant? As shown by the graphs in figure 12, for no ¢, is the c-sweep algorithm
guaranteed to find a vertex of maximum eccentricity. The first graph is chordal,
the second AT-free. In both graphs any LexBFS starting at u must end at v
and vice versa. Thus if the initial choice of vertex is either u or v, a multi-sweep
LexBFS algorithm will forever alternate between w and v, thereby missing z
and y, the two vertices of maximum eccentricity.

T
1
a c f l
e
U v
b d h k
J
)
T a d v
b
f
U c e Y

Figure 12: A chordal graph and an AT-free graph where an infinite number of
LexBFS sweeps never end at a maximum eccentricity vertex.
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2 8 15 22 26 32 36 40 41 39 35 30 25 20 12 6
w

Figure 13: G4 together with the first LexBFS.

4lry = u

16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8
v

Figure 14: G4 and the second LexBFS.

A second obvious question concerns the power of the 2-sweep algorithm on
arbitrary graphs. Unfortunately, the answer again is negative. In particular,
for any i > 1, there is a graph G; where ecc(v) = diam(G;) — 271 + 1, where v
is the vertex returned by algorithm 2. We construct G; as follows: Let T} be a
2-leaf tree with root r1. T3, ¢ > 1, is formed from two copies of T;_; by making
r;, the root of T;, adjacent to the two r;_; roots. Each r;r;_; edge then has
2i=2 _ 1 new vertices inserted. Finally G; is formed from T; by creating a path
on the leaves of T; in the obvious way. G4 is shown in figure 13. If w is the
leftmost leaf of the right T;_; and the next vertex chosen in the LexBFS from
w is the rightmost leaf of the left T;_1, then the LexBFS will end at u = r; (see
figure 13). If the second LexBFS starts at u and breaks ties by choosing the
last eligible vertex in the previous sweep, then v, the last vertex, is the same as
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w (see figure 14). Tt is easy to see that ecc(v) = 2¢~! and diam(G;) = 2 — 1 as
witnessed by the extreme leaves.

As a final comment, we note that the results in this paper add to the growing

evidence of the similar roles played by LexBFS for chordal and AT-free graphs.
It would be interesting to find a structural result to explain this surprising
phenomenon.
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