Abstract
This paper describes linear algorithms for partitioning a planar graph into k edge-disjoint connected subgraphs, each of which has a specified number of vertices and edges. If ℓ(≤ k) subgraphs contain the specified elements (called bases), we call this problem the k-partition problem with ℓ-base (denoted by k-PART-B(ℓ)). In this paper, we obtain the following results: (1)for any k ≥ 2, k-PART-B(1) can be solved in O(|E|) time for every 4-edge-connected planar graph G=(V,E), (2)3-PART-B(1) can be solved in O(|E|) time for every 2-edge-connected planar graph G=(V,E) and (3)5-PART-B(1) can be solved in O(|E|) time for every 3-edge-connected planar graph G=(V,E).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. Journal of Algorithms 10, 187–211 (1989)
Gabow, H.N., Westermann, H.H.: Forests frames and games: algorithms for ma-troid sums and applications. Algorithmica 7(5/6), 465–497 (1992)
Györi, E.: On division of connected subgraphs. In: Proc. 5th Hungarian Combinational Coll. Combinatorics 1976, Keszthely, pp. 485–494. North-Holland, Amsterdam (1978)
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Computing 2(3), 135–158 (1973)
Jou, L., Suzuki, H., Nishizeki, T.: A linear algorithm for finding a nonseparat-ing ear decomposition of triconnected planar graphs.Tech. Rep. of Information Processing Society of Japan, AL40-3 (1994)
Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmic 16(1), 4–32 (1996)
Lovász, L.: A homology theory for spanning trees of a graph. Acta math. Acad. Sci. Hunger 30, 241–251 (1977)
Nishizeki, T., Chiba, N.: Planar graphs: Theory and algorithms. Annals of Discrete Mathematics Monograph 32 (1988)
Wada, K., Chen, W.: Linear algorithms for a k-partition problem of planar graphs without specifying bases. Tech. Rep. of Wada-Lab. of ECE, NIT, TR98- 01 (1998)
Wada, K., Kawaguchi, K.: Efficient algorithms for tripartitioning triconnected graphs and 3-edge-connected graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 132–143. Springer, Heidelberg (1994)
Wada, K., Takaki, A., Kawaguch, K.: Efficient algorithms for a mixed k-partition problem of graphs without specifying bases. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 319–330. Springer, Heidelberg (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wada, K., Chen, W. (1998). Linear Algorithms for a k-partition Problem of Planar Graphs without Specifying Bases. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_26
Download citation
DOI: https://doi.org/10.1007/10692760_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65195-6
Online ISBN: 978-3-540-49494-2
eBook Packages: Springer Book Archive