Skip to main content

Linear Algorithms for a k-partition Problem of Planar Graphs without Specifying Bases

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1517))

Included in the following conference series:

Abstract

This paper describes linear algorithms for partitioning a planar graph into k edge-disjoint connected subgraphs, each of which has a specified number of vertices and edges. If ℓ(≤ k) subgraphs contain the specified elements (called bases), we call this problem the k-partition problem with ℓ-base (denoted by k-PART-B(ℓ)). In this paper, we obtain the following results: (1)for any k ≥ 2, k-PART-B(1) can be solved in O(|E|) time for every 4-edge-connected planar graph G=(V,E), (2)3-PART-B(1) can be solved in O(|E|) time for every 2-edge-connected planar graph G=(V,E) and (3)5-PART-B(1) can be solved in O(|E|) time for every 3-edge-connected planar graph G=(V,E).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. Journal of Algorithms 10, 187–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gabow, H.N., Westermann, H.H.: Forests frames and games: algorithms for ma-troid sums and applications. Algorithmica 7(5/6), 465–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Györi, E.: On division of connected subgraphs. In: Proc. 5th Hungarian Combinational Coll. Combinatorics 1976, Keszthely, pp. 485–494. North-Holland, Amsterdam (1978)

    Google Scholar 

  4. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Computing 2(3), 135–158 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jou, L., Suzuki, H., Nishizeki, T.: A linear algorithm for finding a nonseparat-ing ear decomposition of triconnected planar graphs.Tech. Rep. of Information Processing Society of Japan, AL40-3 (1994)

    Google Scholar 

  6. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmic 16(1), 4–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lovász, L.: A homology theory for spanning trees of a graph. Acta math. Acad. Sci. Hunger 30, 241–251 (1977)

    Google Scholar 

  8. Nishizeki, T., Chiba, N.: Planar graphs: Theory and algorithms. Annals of Discrete Mathematics Monograph 32 (1988)

    Google Scholar 

  9. Wada, K., Chen, W.: Linear algorithms for a k-partition problem of planar graphs without specifying bases. Tech. Rep. of Wada-Lab. of ECE, NIT, TR98- 01 (1998)

    Google Scholar 

  10. Wada, K., Kawaguchi, K.: Efficient algorithms for tripartitioning triconnected graphs and 3-edge-connected graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 132–143. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Wada, K., Takaki, A., Kawaguch, K.: Efficient algorithms for a mixed k-partition problem of graphs without specifying bases. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 319–330. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wada, K., Chen, W. (1998). Linear Algorithms for a k-partition Problem of Planar Graphs without Specifying Bases. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_26

Download citation

  • DOI: https://doi.org/10.1007/10692760_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65195-6

  • Online ISBN: 978-3-540-49494-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics