Skip to main content

A Generalization of AT-free Graphs and a Generic Algorithm for Solving Treewidth, Minimum Fill-In and Vertex Ranking

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1517))

Included in the following conference series:

Abstract

A subset A of the vertices of a graph G is an asteroidal set if for each vertex aA, the set A∖{a} is contained in one component of G-N[a]. An asteroidal set of cardinality three is called asteroidal triple and graphs without an asteroidal triple are called AT-free. The maximum cardinality of an asteroidal set of G, denoted by an(G), is said to be the asteroidal number of G. We present a scheme for designing algorithms for triangulation problems on graphs. As a consequence, we obtain algorithms to compute graph parameters such as treewidth, minimum fill-in and vertex ranking number. The running time of these algorithms is a polynomial (of degree asteroidal number plus a small constant) in the number of vertices and the number of minimal separators of the input graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability—A survey. BIT 25, 2–23 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.: Kayles on special classes of graphs - An application of Sprague-Grundy theory. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 90–102. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Bodlaender, H.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM Journal on Discrete Mathematics 11, 168–181 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating tree-width, pathwidth and minimum elimination tree height. Journal of Algorithms 18, 238–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation graphs. SIAM Journal on Discrete Mathematics 8, 606–616 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MlT Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10, 399–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute dominating pairs in asteroidal triple-free graphs. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 292–302. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  12. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On vertex ranking for permutation and other graphs. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 747–758. Springer, Heidelberg (1994)

    Google Scholar 

  13. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  15. Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter. Order 11, 47–60 (1994)

    Google Scholar 

  16. Kloks, T.: Treewidth - Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  17. Kloks, T., Kratsch, D.: Finding all minimal separators of a graph. SIAM Journal on Computing 27, 605–613 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kloks, T., Kratsch, D., Müller, H.: Asteroidal sets in graphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 229–241. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of aster-oidal triple-free graphs. Theoretical Computer Science 175, 309–335 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kloks, T., Müller, H., Wong, C.K.: Vertex ranking of asteroidal triple-free graphs. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 174–182. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Leiserson, C.E.: Area efficient graph layouts for VLSI. In: Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, pp. 270–281 (1980)

    Google Scholar 

  22. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

    Google Scholar 

  23. Lin, I.J., McKee, T.A., West, D.B.: Leafage of chordal graphs, Manuscript (1994)

    Google Scholar 

  24. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal of Matrix Analysis and Applications 11, 134–172 (1990)

    Google Scholar 

  25. Möhring, R.H.: Triangulating graphs without asteroidal triples. Discrete Applied Mathematics 64, 281–287 (1996)

    Google Scholar 

  26. Parra, A.: Structural and algorithmic aspects of chordal graph embeddings, PhD. thesis, Technische Universität Berlin (1996)

    Google Scholar 

  27. Prisner, E.: Representing triangulated graphs in stars. Abh. Math. Sem. Univ. Hamburg 62, 29–41 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Walter, J.R.: Representations of chordal graphs as subtrees of a tree. Journal of Graph Theory 2, 265–267 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and Discrete Methods 2, 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broersma, H., Kloks, T., Kratsch, D., Müller, H. (1998). A Generalization of AT-free Graphs and a Generic Algorithm for Solving Treewidth, Minimum Fill-In and Vertex Ranking. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_8

Download citation

  • DOI: https://doi.org/10.1007/10692760_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65195-6

  • Online ISBN: 978-3-540-49494-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics