
A Generalization of AT-Free Graphs and a

Generic Algorithm for Solving Treewidth,
Minimum Fill-In and Vertex Ranking

Hajo Broersma1, Ton Kloks1, Dieter Kratsch2, and Haiko Müller2

1 Faculty of Applied Mathematics
University of Twente, P.O. Box 217

7500 AE Enschede
the Netherlands

{H.J.Broersma,A.J.J.Kloks}@math.utwente.nl
2 Fakultät für Mathematik und Informatik

Friedrich-Schiller-Universität
07740 Jena
Germany

{kratsch,hm}@minet.uni-jena.de

Abstract. A subset A of the vertices of a graph G is an asteroidal set
if for each vertex a ∈ A, the set A\{a} is contained in one component of
G−N [a]. An asteroidal set of cardinality three is called asteroidal triple
and graphs without an asteroidal triple are called AT-free. The maximum
cardinality of an asteroidal set of G, denoted by an(G), is said to be the
asteroidal number of G. We present a scheme for designing algorithms
for triangulation problems on graphs. As a consequence, we obtain algo-
rithms to compute graph parameters such as treewidth, minimum fill-in
and vertex ranking number. The running time of these algorithms is a
polynomial (of degree asteroidal number plus a small constant) in the
number of vertices and the number of minimal separators of the input
graph.

1 Introduction

Graphs without an asteroidal triple are called asteroidal triple-free graphs (short
AT-free graphs) and attained much attention recently. Möhring has shown that
every minimal triangulation of an AT-free graph is an interval graph which im-
plies that for every AT-free graph the treewidth and the pathwidth of the graph
are equal [25]. Furthermore a collection of interesting structural and algorithmic
properties of AT-free graphs has been obtained by Corneil, Olariu and Stewart,
among them an existence theorem for so-called dominating pairs in connected
AT-free graphs and a linear time algorithm to compute a dominating pair for
connected AT-free graphs (see [10,11]).

The class of graphs with bounded asteroidal number extends the class of
AT-free graphs, based on a natural way of generalizing the concept of asteroidal
triples to so-called asteroidal sets, first given by Walter [29]. A set of vertices

J. Hromkovič, O. Sýkora (Eds.): WG’98, LNCS 1517, pp. 88–99, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

A Generalization of AT-Free Graphs 89

A of a graph G is called an asteroidal set if for every vertex a ∈ A all vertices
of A \ {a} are contained in the same component of G − N [a]. Walter, Prisner
and Lin et al. used asteroidal sets to characterize certain subclasses of the class
of chordal graphs [23,27,29]. We introduce the asteroidal number of a graph G,
denoted by an(G), as the maximum cardinality of an asteroidal set in G. Thus
AT-free graphs are exactly those graphs G with an(G) ≤ 2.

In this paper we consider the NP-complete graph problems Treewidth,
Minimum fill-in and Vertex ranking that all remain NP-complete when
restricted to AT-free graphs. In fact, each of the three problems remains NP-
complete on cobipartite graphs [2,6,30], that form a small subclass of the class of
AT-free graphs. Treewidth has been studied in numerous recent papers, mainly
since many NP-complete graph problems become solvable in polynomial time or
even linear time when restricted to the class of graphs with bounded treewidth
[1,4,16]. In this respect it is interesting, that for each constant k, there is a linear
time algorithm that determines whether a given graph has treewidth at most
k [5,16]. The Minimum fill-in problem stems from the optimal performance
of Gaussian elimination on sparse matrices and has important applications in
this area. Both Treewidth and Minimum fill-in ask for a certain chordal
embedding of the given graph. This often allows the design of similar algorithms
for both problems, when graphs of some special class are considered. The Ver-

tex ranking problem received much attention lately because of the growing
number of applications. The problem of finding an optimal vertex ranking is
equivalent to the problem of finding a minimum-height elimination tree of a
graph [12]. This measure is of importance for the parallel Cholesky factorization
of matrices [7,24]. Other applications lie in the field of VLSI-layout design [21].

Using an algorithm of [17] to list all minimal separators of a given graph G
in time O(n5 r), where n is the number of vertices of G and r is the number
of minimal separators of G, one has designed algorithms with a running time
bounded by a polynomial in the number of vertices and the number of minimal
separators of the input graph, that compute the treewidth and the minimum
fill-in [19] as well as the vertex ranking number [20] on AT-free graphs. It is
worth mentioning that the running time of these algorithms is not bounded by
a polynomial in the input length, since AT-free graphs may have ‘exponentially’
many minimal separators.

We generalize the method used in [19,20]. To be more precise, we focus on
certain sets of minimal separators called blocking sets. We show that these block-
ing sets have at most an(G) elements, and that they decompose the graph into a
number of so-called blocks, which is bounded by a polynomial of order an(G) in
the number of minimal separators of G. We consider graphs H obtained from a
block of G by making the separators of the blocking set complete, and establish a
relation between the blocks of H and the blocks of G. Together with some known
recurrence relations for the three aforementioned problems in terms of the min-
imal separators S of G and the components of G − S, this enables us to give a
scheme for recursive algorithms. In this way, for each of the three problems, we
obtain an algorithm that solves the corresponding problem for all graphs G in

90 H. Broersma et al.

time O(n5r + m + krk+1(n + m)n log n), where k = an(G) and r is the number
of minimal separators of G. Moreover, the algorithms can be implemented with-
out knowing the asteroidal number or the number of minimal separators of the
input graphs in advance. In that case, the algorithms will generate the correct
answers, within the stated timebound. This is of importance, since computing
the asteroidal number in general is NP-complete [18].

2 Preliminaries

Throughout the paper, let G denote a graph with vertex set V and edge set E.
We denote the number of vertices of G by n, the number of edges of G by m,
and the size of a maximum clique in G by ω(G). For a proper subset W ⊂ V ,
G− W denotes the subgraph of G obtained by removing the vertices of W . For
a vertex x ∈ V , we write G − x instead of G − {x}. For ∅ �= W ⊆ V , G[W]
denotes the subgraph of G induced by the vertices of W . For any set S, we
denote by S[2] the set of all subsets of S of cardinality 2. For any set S whose
elements are sets itself, we use

⋃
S to denote

⋃
S∈S S. For a vertex x ∈ V , N(x)

is the neighborhood of x and N [x] = {x} ∪ N(x) is the closed neighborhood of
x. We say that a sequence P = (u0, u1, . . . , ul) of pairwise distinct vertices of
G is a u, v-path of G if u = u0, v = ul, and for i = 1, . . . , l there is an edge
{ui−1, ui} ∈ E.

Definition 1. A subset A ⊆ V is called an asteroidal set of G if for each
a ∈ A the vertices of A \ {a} are contained in one component of G − N [a]. The
maximum cardinality of an asteroidal set of G is denoted by an(G), and is called
the asteroidal number of G.

By definition the vertices of an asteroidal set are pairwise nonadjacent. Hence
an(G) ≤ α(G), where α(G) denotes the maximum cardinality of an independent
set in G. Furthermore for every k there exist graphs of asteroidal number k, e.g.,
an(C2k) = k for k ≥ 2, where Cn is the chordless cycle on n vertices. Notice that
every subset of an asteroidal set is itself asteroidal.

An asteroidal set of cardinality three was called an asteroidal triple (short
AT) in [22], where it was shown that chordal graphs without AT are exactly
those that are interval graphs.

There are polynomial time algorithms to compute the asteroidal number
for graphs in some special classes like HHD-free graphs (including all chordal
graphs), claw-free graphs, circular-arc graphs and circular permutation graphs.
However the corresponding decision problem remains NP-complete on triangle-
free 3-connected 3-regular planar graphs [18].

Definition 2. A graph H is chordal (or triangulated) if it does not contain a
chordless cycle of length at least four as an induced subgraph.

Definition 3. A triangulation of G is a graph H with the same vertex set as G
such that H is chordal and G is a subgraph of H. A triangulation H of G is called
minimal if there is no proper subgraph H ′ of H which is also a triangulation of
G.

A Generalization of AT-Free Graphs 91

Definition 4. The treewidth of G, denoted by tw(G), is the minimum of ω(H)−
1 taken over all triangulations H of G.

Definition 5. The minimum fill-in of G, denoted by mfi(G), is the minimum of
|E(H) \ E| taken over all triangulations H of G.

Definition 6. Let t be an integer. A (vertex) t-ranking of G is a coloring c :
V → {1, . . . , t} such that for every pair of vertices x and y with c(x) = c(y) and
for every path between x and y there is a vertex z on this path with c(z) > c(x).
The vertex ranking number of G, denoted by χr(G), is the smallest value t for
which the graph G admits a t-ranking.

A proper subset S ⊆ V is a separator of G if G − S is disconnected.

Definition 7. A vertex set S ⊂ V is an a, b-separator of G if the removal of
S separates a and b in distinct components of G − S. If no proper subset of an
a, b-separator S is an a, b-separator then S is a minimal a, b-separator. A vertex
set S ⊂ V is a minimal separator of G if there exist nonadjacent vertices a and
b of G such that S is a minimal a, b-separator of G.

We define Comp(G) = {X : ∅ �= X ⊆ V and G[X] is a component of G}. By
Sep(G) we denote the set of all minimal separators of G. The following lemma
is well-known and was rediscovered many times (see, e.g., [14]).

Definition 8. Let S be a separator of G. A component H of G − S is full
(w.r.t. S) if every vertex of S has at least one neighbor in H.

Lemma 1. A set S of vertices of G is a minimal separator of G if and only if
G − S has at least two full components.

Notice that Lemma 1 enables the design of a linear time algorithm that decides
whether a given vertex set S is a minimal separator of a given graph G.

Dirac established the following characterization of chordal graphs [13].

Theorem 1. G is a chordal graph if and only if every minimal separator of G
is a clique.

Definition 9. Let S be any set of vertex subsets of G. Then GS = (V, E ∪⋃
S∈S S[2]) is the graph obtained from G by adding exactly those edges, which

are not present in G and which are edges of a complete graph on some S ∈ S.

Now we can state a characterization of minimal triangulations.

Theorem 2. A graph H is a minimal triangulation of G if and only if H =
GSep(H).

In the following lemma we mention two useful characteristics of minimal
triangulations (see e.g. [19]).

Lemma 2. If H is a minimal triangulation of a graph G then

1. If a and b are nonadjacent in H, then every minimal a, b-separator in H is
also a minimal a, b-separator in G.

2. If S is a minimal separator in H and if C is the vertex set of a component
of H − S, then C induces also a component in G − S.

92 H. Broersma et al.

3 Recurrence Relations and minimal separators

Some well-known graph parameters can be computed by applying recurrence
relations involving the set of all minimal separators of the graph under consid-
eration. The most prominent examples concern the treewidth, minimum fill-in
and vertex ranking, and appeared in [19], [19], and [12] respectively. In the next
theorem, G({S}, C) = G{S}[S ∪ C] and fill(S) =

(|S|
2

)
− |E(G[S])|.

Theorem 3. Let G be a graph which is not complete. Then

tw(G) = min
S∈Sep(G)

max
C∈Comp(G−S)

tw(G({S}, C)).

mfi(G) = min
S∈Sep(G)

(
fill(S) +

∑

C∈Comp(G−S)

(
mfi(G({S}, C)) − fill(S)

))
.

χr(G) = min
S∈Sep(G)

(
|S| + max

C∈Comp(G−S)
χr(G[C])

)
.

Besides many efficient algorithms on special graph classes for the three prob-
lems, one has obtained algorithms for AT-free graphs, that are based on the
abovementioned recurrence relations, in [19] and [20].

Our major goal in the remainder of this paper is to generalize the approach for
AT-free graphs to obtain a general scheme for designing recursive algorithms on
graphs which is applicable as soon as there is a recurrence relation for computing
the graph parameter under consideration similar to those in Theorem 3. Because
of space limitation, we omit all proofs in this extended abstract.

4 Blocks

Blocking sets and blocks are central concepts for the recursive algorithms and
the corresponding decompositions.

Definition 10. A set S of minimal separators of G is a blocking set if the
elements of S (except for possibly the empty set) are incomparable with respect
to set inclusion and for all S ∈ S the vertex set

⋃
S \ S is contained in one

component of G − S.

Note that in particular any minimal separator of G is a blocking set.

Definition 11. Let S be a blocking set of G with |S| ≥ 2. Then a vertex v ∈
V \

⋃
S is said to be in the interior of S if, for every S ∈ S, the vertex v and

the vertex set
⋃

S \ S are contained in one component of the subgraph G − S .

Lemma 3. For every blocking set S of G, |S| ≤ an(G) .

Definition 12. A pair (S, C) is a block of G if S is a blocking set of G, C ⊆ V
and one of the following conditions is fulfilled.

– |S| ≥ 2 and the set C is the set of all vertices in the interior of S.

A Generalization of AT-Free Graphs 93

– If S contains exactly one element S, then C is the vertex set of a component
of G − S or C = ∅.

– S = ∅ and C is the vertex set of a component of G.

The definition and Lemma 3 immediately imply

Observation 1 The number of different blocks of G is at most

(|Sep(G)| + 1) · |V | +
an(G)∑

k=2

(
|Sep(G)|

k

)

.

The following definition is motivated by the recurrence relations in Section
3 and Theorems 1 and 2.

Definition 13. The realization G(S, C) of a block (S, C) of G is the graph
GS[C ∪

⋃
S].

The definition implies that the realization of any block is a connected graph.

5 Decomposing Blocks

We consider a block (S, C) of G, its realization H = G(S, C) and a minimal
separator T of H . Then for an arbitrary component H [D] of H − T , the pair
({T }, D) is a block of H . Our major goal in this section is to prove a claim
stating that any block ({T }, D) of H can be described as a block of G in the
following sense: For any block ({T }, D) of H = G(S, C), there is a block (T, D′)
of G such that the corresponding realizations are exactly the same graphs, i.e.,
G(T, D′) = H({T }, D).

The consequence is that any algorithm, which recursively computes a minimal
separator T for the current graph H and then calls itself on the realization of
the block ({T }, D) for each component D of H − T until the current graph is
complete, will only work on realizations of blocks of the input graph G. Together
with Lemma 3 and Observation 1 this implies, that each recursive algorithm of
this type checks at most O(|Sep(G)|an(G)) realizations of blocks of the input
graph G.

We start with two lemmas that are essential for this section. First we consider
minimal separators of realizations.

Lemma 4. Let (S, C) be a block of G and let a and b be nonadjacent vertices
in G(S, C). Then every minimal a, b-separator in G(S, C) is a minimal a, b-
separator in G.

The next lemma classifies the minimal separators of realizations into three
types.

Lemma 5. Let (S, C) be a block of G and let T be a minimal separator of
H = G(S, C). Then exactly one of the following three conditions holds:

94 H. Broersma et al.

Type 1: there are distinct minimal separators S1, S2 ∈ S with T ⊂ S1 and
T ⊂ S2,

Type 2: there is exactly one separator S0 ∈ S such that T ⊂ S0,
Type 3: T \ S �= ∅ for all S ∈ S.

Furthermore, in Types 1 and 2 the graph H − T has exactly two components.

Proposition 1 (Type 1). Let (S, C) be a block of G and let T be a minimal
separator of H = G(S, C) such that there exist at least two different minimal
separators in S containing T . Then C = ∅, |S| = 2 and for each S ∈ S we
have H({T }, S \ T) = G({S}, ∅).

minimal separators in S

the minimal separator T

components of G−
⋃

S with ver-
tices not in the interior of S

vertices in the interior of S

Fig. 1. Type 1

Let ({S1, S2}, ∅) be a block of G. By Proposition 1 the unique minimal
separator T = S1∩S2 of G({S1, S2}, ∅) decomposes ({S1, S2}, ∅) into two other
blocks of G. We define the decomposition of ({S1, S2}, ∅) by

Dec({S1, S2}, ∅, T) = {({S1}, ∅), ({S2}, ∅)}.

Proposition 2 (Type 2). Let (S, C) be a block of G and let T be a minimal
separator of H = G(S, C) such that there is a unique separator S0 ∈ S with
T ⊂ S0. Let T = S \ {S0} and D = C ∪

⋃
T. Then H [D] and H [S0 \ T]

are the components of H − T . Furthermore ({T } ∪ T, C) is a block of G with
G({T } ∪ T, C) = H({T }, D), and ({S0}, ∅) is a block of G with G({S0}, ∅) =
H({T }, S0 \ T).

Let (S, C) be a block of G and let T be a minimal separator of H = G(S, C)
such that there is a unique separator S0 ∈ S with T ⊂ S0. Based on Proposition
2 we define

Dec(S, C, T) = {({S0}, ∅), ({T } ∪ S \ {S0}, C)}.

Proposition 3 (Type 3). Let (S, C) be a block of G and let T be a minimal
separator of H = G(S, C) such that T \ S �= ∅ for all S ∈ S. Let H [D] be a
component of H − T . Let T = {S : S ∈ S and S \ T ⊆ D} and D′ = D \

⋃
T.

Then ({T } ∪ T, D′) is a block of G and G({T } ∪ T, D′) = H({T }, D).

A Generalization of AT-Free Graphs 95

minimal separators in S

the minimal separator T

components of G−
⋃

S with ver-
tices not in the interior of S

vertices in the interior of S

Fig. 2. Type 2

minimal separators in S

the minimal separator T

components of G−
⋃

S with ver-
tices not in the interior of S

vertices in the interior of S

Fig. 3. Type 3

Let (S, C) be a block of G and let T be a minimal separator of H = G(S, C)
such that T \ S �= ∅ for all S ∈ S. In this case let {H [Di] : i ∈ I} be the set of
components of H − T . Based on Proposition 3 we define

Dec(S, C, T) = {({T } ∪ {S : S ∈ S and S ∩ Di �= ∅}, C ∩ Di) : i ∈ I}.

The following theorem summarizes Lemma 5 and Propositions 1, 2 and 3.

Theorem 4. Let (S, C) be a block of G and let T be a minimal separator of
H = G(S, C). Then we have a bijection between the blocks (T, D) corresponding
with the components of H − T and the blocks (T, D′) in Dec(S, C, T) such that
G(T, D′) = H({T }, D).

6 Algorithms

The approach of the previous section enables two different types of algorithms.
One type is a dynamic programming algorithm as used in [8,12,19,20].

Here we use another type of algorithm sometimes called recursive algorithm
with memoization (see e.g. [9]). First we describe the generic version. The input
is a graph G = (V, E). In a preprocessing the algorithm computes Sep(G) using
the listing algorithm given in [17].

The procedure compute is the heart of the algorithm. It is recursive via
access. The macros compute and main use collect, complete, initialize,
update and start, which are specific to the algorithmic problem.

The algorithm uses a data structure X that can store any block (S, C) of a
graph G = (V, E) with a value p(S, C), and retrieve these values. Suppose V =

96 H. Broersma et al.

procedure main;
begin

compute Sep(G);
p ← start;
for C ∈ Comp(G) do p ← collect(access(∅, C));
return(p)

end.

procedure access(S, C);
begin
if not present(S, C) then compute(S, C);
return(value(S, C))

end;

procedure compute(S, C);
begin

p ← complete;
if G(S, C) is not complete then
for T ∈ Sep(G) do
if T is a minimal separator of G(S, C) then
begin

q ← initialize;
for (T, D) ∈ Dec(S, C, T) do q ← update(access(T, D));
p ← min{p, q};

end;
store(S, C, p)

end;

{1, 2, . . . , n}. Any block (S, C) is stored as a set C ⊆ V followed by a sequence
of the minimal separators S1, S2, . . . , Sj in S that are lexicographically ordered
(as subsets of V). The data structure X supports the following operations:

– store(S, C, p) stores for the block (S, C) the value p,
– present(S, C) returns true, if an operation store(S, C, p) has been per-

formed before, for any value of p, and false otherwise, and
– value(S, C) returns the value p of the (last) operation store(S, C, p), if

present(S, C) = true.

All three operations can be executed by iterated search for a vertex in the uni-
verse V . A single search can be done in time O(log n) by standard techniques.
To find a whole block (S, C) we need |C| + |

⋃
S| single searches if |S| ≤ 1 and∑

S∈S |S| single searches if |S| ≥ 2. We refer to [3] for an implementation of a
related data structure that can easily be extended to one satisfying our purposes.
Notice that our algorithm calls value(S, C) only if present(S, C) = true. Fur-
thermore if store(S, C) is called, then present(S, C) = false, i.e., for each
block of G, store is called at most once.

A Generalization of AT-Free Graphs 97

treewidth minimum fill-in ranking number

collect(c) max{p, c} p + c max{p, c}
complete |C ∪

�
S| − 1 fill(C ∪

�
S) |C|

initialize 0 fill(T) |T ∩ C|
update(c) max{q, c} q + c − fill(T) max{q, c + |T ∩ C|}
start 0 0 0

We consider the running time of our algorithm on an input graph G = (V, E)
with |V | = n, |E| = m, |Sep(G)| = r and an(G) = k. First the algorithm in [17]
needs O(n5r + m) time to list all minimal separators of G.

For the following analysis, we assume that all macros can be evaluated in
constant time. (If this is not the case in a particular application, it should be easy
to achieve the corresponding time bound with a similar analysis.) To determine
the overall running time, we estimate the running time of compute(S, C) for
any block (S, C) of G without counting the running time of those recursive calls
compute(T, D) for which present(T, D) = false when compute(T, D) is called.
For any block (S, C) of G, access calls compute at most once, namely when
present(S, C) = false. In this case, for each minimal separator T of G, compute
needs O(n + m) time to test whether T is a minimal separator of G(S, C) and,
if so, to compute the blocks in Dec(S, C, T). For each of the at most n blocks
(T, D) in Dec(S, C, T), access(T, D) is executed. If access is called for a block
(T, D) of G, when present(T, D) = true, then access does not call compute.

Procedure access looks up the value p(S, C) in the data structure X . Using
an implementation of the data structure X , similar to the one described in [3],
one look-up can be done in time

∑
S∈S |S| · O(log n) = O(kn log n).

By Observation 1, the number of different blocks of the input graph G is at
most (r +1)n+

∑k
i=2

(
r
i

)
. Consequently, the total running time of the algorithm

is O(n5r + m + krk+1(n + m)n log n).

Theorem 5. The generic algorithm runs in O(n5r + m + krk+1(n + m)n log n)
time, where r is the number of minimal separators and k is the asteroidal number
of the input graph (under some assumptions on the macros).

The generic algorithm can be used to compute a graph parameter which can
be evaluated via a certain type of recurrence involving the minimal separators
of the graph (see e.g. Section 3). In particular, Theorem 5 has the following
consequence.

Corollary 1. For each of the problems Treewidth, Minimum fill-in and
Vertex ranking there is an algorithm to compute the corresponding graph
parameter for any input graph G in time O(n5r + m + krk+1(n + m)n log n),
where r is the number of minimal separators of G and k = an(G).

98 H. Broersma et al.

References

1. Arnborg, S., Efficient algorithms for combinatorial problems on graphs with
bounded decomposability—A survey. BIT 25 (1985), pp.2–23.

2. Arnborg, S., D. G. Corneil and A. Proskurowski, Complexity of finding embeddings
in a k-tree, SIAM J. Alg. Disc. Meth. 8 (1987), pp. 277–284.

3. Bodlaender, H., Kayles on special classes of graphs - An application of Sprague-
Grundy theory. Proceedings of the 18th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG’92, Springer-Verlag, 1993, LNCS
657, pp. 90–102.

4. Bodlaender, H., A tourist guide through treewidth, Acta Cybernetica 11 (1993),
pp. 1–23.

5. Bodlaender, H., A linear time algorithm for finding tree-decompositions of small
treewidth, SIAM Journal on Computing 25 (1996), pp. 1305–1317.

6. Bodlaender, H., J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, Zs. Tuza,
Rankings of graphs, SIAM Journal on Discrete Mathematics 11 (1998), pp. 168–
181

7. Bodlaender, H. L., J. R. Gilbert, H. Hafsteinsson, T. Kloks, Approximating tree-
width, pathwidth and minimum elimination tree height, Journal of Algorithms 18
(1995), pp. 238–255.

8. Bodlaender, H., T. Kloks and D. Kratsch, Treewidth and pathwidth of permutation
graphs, SIAM Journal on Discrete Mathematics 8 (1995), pp. 606–616.

9. Cormen, T. H., C. E. Leiserson and R. L. Rivest, Introduction to algorithms, MIT
Press, Cambridge, Massachusetts, USA, 1990.

10. Corneil, D. G., S. Olariu and L. Stewart, Asteroidal triple-free graphs, SIAM Jour-
nal on Discrete Mathematics. 10 (1997), pp. 399–430.

11. Corneil, D. G., S. Olariu and L. Stewart, A linear time algorithm to compute dom-
inating pairs in asteroidal triple-free graphs, Proceedings of ICALP’95, Springer-
Verlag, LNCS 944, 1995, pp. 292–302.

12. Deogun, J. S., T. Kloks, D. Kratsch and H. Müller, On vertex ranking for per-
mutation and other graphs, 11th Annual Symposium on Theoretical Aspects of
Computer Science, Springer-Verlag, LNCS 775, 1994, pp. 747–758.

13. Dirac, G. A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961),
pp. 71–76.

14. Golumbic, M. C., Algorithmic graph theory and perfect graphs, Academic Press,
New York, 1980.

15. Habib, M. and R. H. Möhring, Treewidth of cocomparability graphs and a new
order-theoretic parameter, Order 11 (1994), pp. 47–60.

16. Kloks, T., Treewidth – Computations and Approximations, Springer Verlag,
LNCS 842, (1994).

17. Kloks, T. and D. Kratsch, Finding all minimal separators of a graph, SIAM Journal
on Computing 27 (1998), pp. 605-613.

18. Kloks, T., D. Kratsch and H. Müller, Asteroidal sets in graphs, Proceedings of the
19th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’97), Springer-Verlag, LNCS 1335 (1997), pp. 229–241.

19. Kloks, T., D. Kratsch and J. Spinrad, On treewidth and minimum fill-in of aster-
oidal triple-free graphs, Theoretical Computer Science 175 (1997), pp. 309-335.

20. Kloks, T., H. Müller and C. K. Wong, Vertex ranking of asteroidal triple-free
graphs, Proceedings of the 7th International Symposium on Algorithms and Com-
putation, pp. 174–182, Springer Verlag, LNCS 1178, 1996.

A Generalization of AT-Free Graphs 99

21. Leiserson, C. E., Area efficient graph layouts for VLSI, Proceedings of the 21st
Annual IEEE Symposium on Foundations of Computer Science, 1980, pp. 270–
281.

22. Lekkerkerker, C. G. and J. Ch. Boland, Representation of a finite graph by a set
of intervals on the real line, Fundamenta Mathematicae 51 (1962), pp. 45–64.

23. Lin, I. J., T. A. McKee and D. B. West, Leafage of chordal graphs, Manuscript
1994.

24. Liu, J. W. H., The role of elimination trees in sparse factorization, SIAM Journal
of Matrix Analysis and Applications 11 (1990), pp. 134–172.

25. Möhring, R. H., Triangulating graphs without asteroidal triples, Discrete Applied
Mathematics 64 (1996), pp. 281–287.

26. Parra, A., Structural and algorithmic aspects of chordal graph embeddings, PhD.
thesis, Technische Universität Berlin, 1996.

27. Prisner, E., Representing triangulated graphs in stars, Abh. Math. Sem. Univ.
Hamburg 62 (1992), pp. 29–41.

28. Rose, D. J., R. E. Tarjan and G. S. Lueker, Algorithmic aspects of vertex elimina-
tion on graphs, SIAM Journal on Computing 5 (1976), pp. 266–283.

29. Walter, J. R., Representations of chordal graphs as subtrees of a tree, Journal of
Graph Theory 2 (1978), pp. 265–267.

30. Yannakakis, M., Computing the minimum fill-in is NP-complete, SIAM Journal on
Algebraic and Discrete Methods 2 (1981), pp. 77–79.

	Introduction
	Preliminaries
	Recurrence Relations and minimal separators
	Blocks
	Decomposing Blocks
	Algorithms

