Abstract
A subset A of the vertices of a graph G is an asteroidal set if for each vertex a ∈ A, the set A∖{a} is contained in one component of G-N[a]. An asteroidal set of cardinality three is called asteroidal triple and graphs without an asteroidal triple are called AT-free. The maximum cardinality of an asteroidal set of G, denoted by an(G), is said to be the asteroidal number of G. We present a scheme for designing algorithms for triangulation problems on graphs. As a consequence, we obtain algorithms to compute graph parameters such as treewidth, minimum fill-in and vertex ranking number. The running time of these algorithms is a polynomial (of degree asteroidal number plus a small constant) in the number of vertices and the number of minimal separators of the input graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability—A survey. BIT 25, 2–23 (1985)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)
Bodlaender, H.: Kayles on special classes of graphs - An application of Sprague-Grundy theory. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 90–102. Springer, Heidelberg (1993)
Bodlaender, H.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)
Bodlaender, H.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)
Bodlaender, H., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM Journal on Discrete Mathematics 11, 168–181 (1998)
Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating tree-width, pathwidth and minimum elimination tree height. Journal of Algorithms 18, 238–255 (1995)
Bodlaender, H., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation graphs. SIAM Journal on Discrete Mathematics 8, 606–616 (1995)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MlT Press, Cambridge (1990)
Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10, 399–430 (1997)
Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute dominating pairs in asteroidal triple-free graphs. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 292–302. Springer, Heidelberg (1995)
Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On vertex ranking for permutation and other graphs. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 747–758. Springer, Heidelberg (1994)
Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)
Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)
Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter. Order 11, 47–60 (1994)
Kloks, T.: Treewidth - Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)
Kloks, T., Kratsch, D.: Finding all minimal separators of a graph. SIAM Journal on Computing 27, 605–613 (1998)
Kloks, T., Kratsch, D., Müller, H.: Asteroidal sets in graphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 229–241. Springer, Heidelberg (1997)
Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of aster-oidal triple-free graphs. Theoretical Computer Science 175, 309–335 (1997)
Kloks, T., Müller, H., Wong, C.K.: Vertex ranking of asteroidal triple-free graphs. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 174–182. Springer, Heidelberg (1996)
Leiserson, C.E.: Area efficient graph layouts for VLSI. In: Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, pp. 270–281 (1980)
Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)
Lin, I.J., McKee, T.A., West, D.B.: Leafage of chordal graphs, Manuscript (1994)
Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal of Matrix Analysis and Applications 11, 134–172 (1990)
Möhring, R.H.: Triangulating graphs without asteroidal triples. Discrete Applied Mathematics 64, 281–287 (1996)
Parra, A.: Structural and algorithmic aspects of chordal graph embeddings, PhD. thesis, Technische Universität Berlin (1996)
Prisner, E.: Representing triangulated graphs in stars. Abh. Math. Sem. Univ. Hamburg 62, 29–41 (1992)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 266–283 (1976)
Walter, J.R.: Representations of chordal graphs as subtrees of a tree. Journal of Graph Theory 2, 265–267 (1978)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and Discrete Methods 2, 77–79 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Broersma, H., Kloks, T., Kratsch, D., Müller, H. (1998). A Generalization of AT-free Graphs and a Generic Algorithm for Solving Treewidth, Minimum Fill-In and Vertex Ranking. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_8
Download citation
DOI: https://doi.org/10.1007/10692760_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65195-6
Online ISBN: 978-3-540-49494-2
eBook Packages: Springer Book Archive