Skip to main content

Synchronous and Asynchronous Parallel Algorithms with Overlap for Almost Linear Systems

  • Conference paper
Vector and Parallel Processing – VECPAR’98 (VECPAR 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1573))

Included in the following conference series:

Abstract

Parallel algorithms for solving almost linear systems are studied. A non-stationary parallel algorithm based on the multi-splitting technique and its extension to an asynchronous model are considered. Convergence properties of these methods are studied for M-matrices and H-matrices. We implemented these algorithms on two distributed memory multiprocessors, where we studied their performance in relation to overlapping of the splittings at each iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bai, Z.: Parallel nonlinear AOR method and its convergence. Computers and Mathematics with Applications 31(2), 21–31 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baudet, G.M.: Asynchronous iterative methods for multiprocessors. Journal of the Association for Computing Machinery 25(2), 226–244 (1978)

    MATH  MathSciNet  Google Scholar 

  3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, 3rd edn. Academic Press, New York (1979). Reprinted by SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  4. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  5. Birkhoff, G.: Numerical Solution of Elliptic Equations. Vol. 1 of CBMS Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1970)

    Google Scholar 

  6. Bru, R., Elsner, L., Neumann, M.: Models of parallel chaotic iteration methods. Linear Algebra and its Applications 103, 175–192 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frommer, A.: Parallel nonlinear multi-splitting methods. Numerische Mathematik 56, 269–282 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fuster, R., Migallön, V., Penadës, J.: Non-stationary parallel multisplitting AOR methods. Electronic Transactions on Numerical Analysis 4, 1–13 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM 3 User’s Guide and Reference Manual. Technical Report ORNL/TM-12187. Oak Ridge National Laboratory, Tennessee (1994)

    Google Scholar 

  10. IBM Corporation: IBM PVMe for AIX User’s Guide and Subroutine Reference. Technical Report GC23-3884-00, IBM Corp. Poughkeepsie, New York, 148 (1995)

    Google Scholar 

  11. Mas, J., Migallön, V., Penadës, J., Szyld, D.B.: Non-stationary parallel relaxed multisplitting methods. Linear Algebra and its Applications 241/243, 733–748 (1996)

    Article  Google Scholar 

  12. O’Leary, D.P., White, R.E.: Multi-splittings of matrices and parallel solution of linear systems. SIAM Journal on Algebraic Discrete Methods 6, 630–640 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, San Diego (1970)

    MATH  Google Scholar 

  14. Ostrowski, A.M.: Über die determinanten mit überwiegender hauptdiagonale. Commentarii Mathematici Helvetici 10, 69–96 (1937)

    Article  MathSciNet  Google Scholar 

  15. Robert, F., Charnay, M., Musy, F.: Itérations chaotiques série-paralléle pour des équations non-linéaires de point x́e. Aplikace Matematiky 20, 1–38 (1975)

    MATH  MathSciNet  Google Scholar 

  16. Sherman, A.: On Newton-iterative methods for the solution of systems of nonlinear equations. SIAM Journal on Numerical Analysis 15, 755–771 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  18. White, R.E.: Parallel algorithms for nonlinear problems. SIAM Journal on Algebraic Discrete Methods 7, 137–149 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arnal, J., Migallón, V., Penadés, J. (1999). Synchronous and Asynchronous Parallel Algorithms with Overlap for Almost Linear Systems. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_12

Download citation

  • DOI: https://doi.org/10.1007/10703040_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66228-0

  • Online ISBN: 978-3-540-48516-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics