Skip to main content

A Unified Approach to Parallel Block-Jacobi Methods for the Symmetric Eigenvalue Problem

  • Conference paper
Vector and Parallel Processing – VECPAR’98 (VECPAR 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1573))

Included in the following conference series:

  • 573 Accesses

Abstract

In this paper we present a unified approach to the design of different parallel block-Jacobi methods for solving the Symmetric Eigenvalue Problem. The problem can be solved designing a logical algorithm by considering the matrices divided into square blocks, and considering each block as a process. Finally, the processes of the logical algorithm are mapped on the processors to obtain an algorithm for a particular system. Algorithms designed in this way for ring, square mesh and triangular mesh topologies are theoretically compared.

The experiments have been performed on the 512 node Paragon on the CSCC parallel computer system operated by Caltech on behalf of the Concurrent Supercomputing Consortium (access to this facility was provided by the PRISM project).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Demmel, J., Stanley, K.: The Performance of Finding Eigenvalues and Eigenvectors of Dense Symmetric Matrices on Distributed Memory Computers. In: Bailey, D.H., Bjørstad, P.E., Gilbert, J.R., Mascagni, M.V., Schreiber, R.S., Simon, H.D., Torczon, V.J., Watson, L.T. (eds.) Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, pp. 528–533. SIAM, Philadelphia (1995)

    Google Scholar 

  2. Schreiber, R.: Solving eigenvalue and singular value problems on an undersized systolic array. SIAM J. Sci. Stat. Comput. 7(2), 441–451 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Schroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl. 10(3), 326–346 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bischof, C.H.: Computing the singular value decomposition on a distributed system of vector processors. Parallel Computing 11, 171–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Giménez, D., Hernández, V., van de Geijn, R., Vidal, A.M.: A block Jacobi method on a mesh of processors. Concurrency: Practice and Experience 9(5), 391–411 (1997)

    Article  Google Scholar 

  6. Auslander, L., Tsao, A.: On parallelizable eigensolvers. Ad. App. Math. 13, 253–261 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huss-Lederman, S., Tsao, A., Zhang, G.: A parallel implementation of the invariant subspace decomposition algorithm for dense symmetric matrices. In: Proceedings Sixth SIAM Conf. on Parallel Processing for Scientific Computing. SIAM, Philadelphia (1993)

    Google Scholar 

  8. Sun, X.: Parallel Algorithms for Dense Eigenvalue Problems. In: Whorkshop on High Performance Computing and Gigabit Local Area Networks, Essen, Germany, pp. 202–212. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Domas, S., Tisseur, F.: Parallel Implementation of a Symmetric Eigensolver Based on the Yau and Lu Method. In: José, M.L., Palma, M., Dongarra, J. (eds.) Vector and Parallel Processing-VECPAR 1996, pp. 140–153. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Pourzandi, M., Tourancheau, B.: A Parallel Performance Study of Jacobi-like Eigenvalue Solution. Technical report (1994)

    Google Scholar 

  11. El Mostafa, D., Abdelhak, L.: Exploiting the symmetry in the parallelization of the Jacobi method. Parallel Computing 23, 137–151 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brent, R.P., Luk, F.T.: The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat. Comput. 6(1), 69–84 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giménez, D., Hernández, V., Vidal, A.M. (1999). A Unified Approach to Parallel Block-Jacobi Methods for the Symmetric Eigenvalue Problem. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_4

Download citation

  • DOI: https://doi.org/10.1007/10703040_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66228-0

  • Online ISBN: 978-3-540-48516-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics