Skip to main content

Parallel Preconditioned Solvers for Large Sparse Hermitian Eigenproblems

  • Conference paper
Vector and Parallel Processing – VECPAR’98 (VECPAR 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1573))

Included in the following conference series:

  • 570 Accesses

Abstract

Parallel preconditioned solvers are presented to compute a few extreme eigenvalues and -vectors of large sparse Hermitian matrices based on the Jacobi-Davidson (JD) method by G.L.G. Sleijpen and H.A. van der Vorst. For preconditioning, an adaptive approach is applied using the QMR (Quasi-Minimal Residual) iteration. Special QMR versions have been developed for the real symmetric and the complex Hermitian case. To parallelise the solvers, matrix and vector partitioning is investigated with a data distribution and a communication scheme exploiting the sparsity of the matrix. Synchronization overhead is reduced by grouping inner products and norm computations within the QMR and the JD iteration. The efficiency of these strategies is demonstrated on the massively parallel systems NEC Cenju-3 and Cray T3E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  2. Basermann, A.: QMR and TFQMR Methods for Sparse Nonsymmetric Problems on Massively Parallel Systems. In: Renegar, J., Shub, M., Smale, S. (eds.) The Mathematics of Numerical Analysis, Lectures in Applied Mathematics, vol. 32 pp. 59–76. AMS (1996)

    Google Scholar 

  3. Basermann, A., Steffen, B.: New Preconditioned Solvers for Large Sparse Eigenvalue Problems on Massively Parallel Computers. In: Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing (CD-ROM). SIAM, Philadelphia (1997)

    Google Scholar 

  4. Basermann, A., Steffen, B.: Preconditioned Solvers for Large Eigenvalue Problems on Massively Parallel Computers and Workstation Clusters. Technical Report FZJ ZAM- IB-9713. Research Centre Jülich GmbH (1997)

    Google Scholar 

  5. Bücker, H.M., Sauren, M.: A Parallel Version of the Quasi-Minimal Residual Method Based on Coupled Two-Term Recurrences. In: Madsen, K., Olesen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184, pp. 157–165. Springer, Heidelberg (1996)

    Google Scholar 

  6. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Theory, vol. I. Birkhäuser, Basel (1985)

    MATH  Google Scholar 

  7. Freund, R.W., Nachtigal, N.M.: QMR: A Quasi-Minimal Residual Method for Non- Hermitian Linear Systems. Numer. Math. 60, 315–339 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kosugi, N.: Modifications of the Liu-Davidson Method for Obtaining One or Simultaneously Several Eigensolutions of a Large Real Symmetric Matrix. Comput. Phys. 55, 426–436 (1984)

    Article  MATH  Google Scholar 

  9. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wellein, G., Röder, H., Fehske, H.: Polarons and Bipolarons in Strongly Interacting Electron-Phonon Systems. Phys. Rev. B 53, 9666–9675 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Basermann, A. (1999). Parallel Preconditioned Solvers for Large Sparse Hermitian Eigenproblems. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_7

Download citation

  • DOI: https://doi.org/10.1007/10703040_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66228-0

  • Online ISBN: 978-3-540-48516-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics