Abstract
Parallel preconditioned solvers are presented to compute a few extreme eigenvalues and -vectors of large sparse Hermitian matrices based on the Jacobi-Davidson (JD) method by G.L.G. Sleijpen and H.A. van der Vorst. For preconditioning, an adaptive approach is applied using the QMR (Quasi-Minimal Residual) iteration. Special QMR versions have been developed for the real symmetric and the complex Hermitian case. To parallelise the solvers, matrix and vector partitioning is investigated with a data distribution and a communication scheme exploiting the sparsity of the matrix. Synchronization overhead is reduced by grouping inner products and norm computations within the QMR and the JD iteration. The efficiency of these strategies is demonstrated on the massively parallel systems NEC Cenju-3 and Cray T3E.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1993)
Basermann, A.: QMR and TFQMR Methods for Sparse Nonsymmetric Problems on Massively Parallel Systems. In: Renegar, J., Shub, M., Smale, S. (eds.) The Mathematics of Numerical Analysis, Lectures in Applied Mathematics, vol. 32 pp. 59–76. AMS (1996)
Basermann, A., Steffen, B.: New Preconditioned Solvers for Large Sparse Eigenvalue Problems on Massively Parallel Computers. In: Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing (CD-ROM). SIAM, Philadelphia (1997)
Basermann, A., Steffen, B.: Preconditioned Solvers for Large Eigenvalue Problems on Massively Parallel Computers and Workstation Clusters. Technical Report FZJ ZAM- IB-9713. Research Centre Jülich GmbH (1997)
Bücker, H.M., Sauren, M.: A Parallel Version of the Quasi-Minimal Residual Method Based on Coupled Two-Term Recurrences. In: Madsen, K., Olesen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184, pp. 157–165. Springer, Heidelberg (1996)
Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Theory, vol. I. Birkhäuser, Basel (1985)
Freund, R.W., Nachtigal, N.M.: QMR: A Quasi-Minimal Residual Method for Non- Hermitian Linear Systems. Numer. Math. 60, 315–339 (1991)
Kosugi, N.: Modifications of the Liu-Davidson Method for Obtaining One or Simultaneously Several Eigensolutions of a Large Real Symmetric Matrix. Comput. Phys. 55, 426–436 (1984)
Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)
Wellein, G., Röder, H., Fehske, H.: Polarons and Bipolarons in Strongly Interacting Electron-Phonon Systems. Phys. Rev. B 53, 9666–9675 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Basermann, A. (1999). Parallel Preconditioned Solvers for Large Sparse Hermitian Eigenproblems. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_7
Download citation
DOI: https://doi.org/10.1007/10703040_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66228-0
Online ISBN: 978-3-540-48516-2
eBook Packages: Springer Book Archive