Abstract
We consider the development and implementation of eigensolvers on distributed memory parallel arrays of vector processors and show that the concomitant requirements for vectorisation and parallelisation lead both to novel algorithms and novel implementation techniques. Performance results are given for several large-scale applications and some performance comparisons made with LAPACK and ScaLAPACK.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenny, A., Ostrouchov, S., Sorensen, D.: LAPACK: Linear Algebra PACKage. software available from, http://www.netlib.org under directory “lapack”
Arnoldi, W.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Appl. Math. 9, 17–29 (1951)
Bai, Z., Demmel, J.: Design of a parallel nonsymmetric eigenroutine toolbox, Part I, Tech. Rep. Computer Science Division Report UCB/CSD-92-718, University of California at Berkeley (1992)
Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK: Scalable Linear Algebra PACKage. software available from, http://www.netlib.org under directory “scalapack”
Demmel, J., Dhillon, I., Ren, H.: On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. Electronic Trans. Num. Anal (ETNA) 3, 116–149 (1996)
Dhillon, I.: Private communication (1997)
Dhillon, I., Fann, G., Parlett, B.: Application of a new algorithm for the symmetric eigenproblem to computational quantum chemisty. In: Proc. of the Eight SIAM Conf. on Par. Proc. for Sci. Comput. SIAM, Philadelphia (1997)
Dongarra, J., Van de Geijn, R.: Reduction to condensed form for the eigenvalue problem on distributed memory architectures. Parallel Computing 18, 973–982 (1992)
Harrar II, D.: Determining optimal vector lengths for multisection on vector processors. In preparation
Harrar II, D.: Multisection vs. bisection on vector processors. In preparation
Harrar II, D., Kahn, M., Osborne, M.: Parallel solution of some largescale eigenvalue problems arising in chemistry and physics. In: Kågström, B., Elmroth, E., Waśniewski, J., Dongarra, J. (eds.) PARA 1998. LNCS, vol. 1541. Springer, Heidelberg (1998) (to appear)
Hegland, M., Osborne, M.: Wrap-around partitioning for block bidiagonal systems. IMA J. Num. Anal. (to appear)
Henry, G., Watkins, D., Dongarra, J.: A parallel implemenations of the nonsymmetric QR algorithm for distributed memory architectures, Tech. Rep. Computer Science Technical Report CS-97-355, University of Tennessee at Knoxville (1997)
Ipsen, I.: Computing an eigenvector with inverse iteration. SIAM Review 39, 254–291 (1997)
Ladouceur, F.: Numerical Photonics Library, version 1.0 (1997)
Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45, 255–282 (1950)
Lehoucq, R., Meerbergen, K.: Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J. Mat. Anal. and Appl. (to appear)
Lehoucq, R., Sorensen, D.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Mat. Anal. and Appl. 8, 789–821 (1996)
Lehoucq, R., Sorensen, D., Vu, P.: ARPACK: An implementation of the Implicitly Restarted Arnoldi Iteration that computes some of the eigenvalues and eigenvectors of a large sparse matrix (1995)
Marcuse, D.: Solution of the vector wave equation for general dielectric waveguides by the Galerkin method. IEEE J. Quantum Elec. 28(2), 459–465 (1992)
Maschoff, K., Sorensen, D.: P-ARPACK: An efficient portable large scale eigenvalue package for distributed memory parallel architectures. In: Madsen, K., Olesen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184. Springer, Heidelberg (1996)
Meerbergen, K., Spence, A., Roose, D.: Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices. BIT 34, 409–423 (1995)
Nakanishi, M., Ina, H., Miura, K.: A high performance linear equation solver on the VPP500 parallel supercomputer. In: Proc. Supercomput. 1994 (1994)
Osborne, M.: Inverse iteration, Newton’s method, and nonlinear eigenvalue problems. In: The Contributions of J.H. Wilkinson to Numerical Analysis, Symposium Proc. The Inst. for Math. and its Appl., vol. 19 (1979)
Osborne, M., Harrar II, D.: Inverse iteration and deflation in general eigenvalue problems, Tech. Rep. Mathematics Research Report No. MRR 012-97, Australian National University (submitted)
Parlett, B.: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs (1980)
Parlett, B., Dhillon, I.: Fernando’s solution to Wilkinson’s problem: an application of double factorization. Lin. Alg. Appl. 267, 247–279 (1997)
Parlett, B., Saad, Y.: Complex shift and invert stategies for real matrices. Lin. Alg. Appl. 88/89, 575–595 (1987)
Rasmussen, A., Smith, S.: Private communication (1998)
Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems, III: Complex shifts for real matrices. BIT 34, 165–176 (1994)
Saad, Y.: Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Lin. Alg. Appl. 34, 269–295 (1980)
Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comp. 42(166), 567–588 (1984)
Saad, Y.: Least squares polynomials in the complex plane and their use for solving parse nonsymmetric linear systems. SIAM J. Numer. Anal. 24, 155–169 (1987)
Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Series in Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester (1992)
Sadkane, M.: A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices. Numer. Math. 64, 181–193 (1993)
Scott, J.: An Arnoldi code for computing selected eigenvalues of sparse real unsymmetric matrices. ACM Trans. on Math. Soft. 21, 432–475 (1995)
Simon, H.: Bisection is not optimal on vector processors. SIAM J. Sci. Stat. Comput. 10, 205–209 (1989)
Sorensen, D.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Mat. Anal. and Appl. 13, 357–385 (1992)
Thiel, W.: Program MNDO 1994, version 4.1 (1994)
Wilkinson, J.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)
Wright, S.: A collection of problems for which Gaussian elimination with partial pivoting is unstable. SIAM J. Sci. Stat. Comput. 14, 231–238 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harrar, D.L., Osborne, M.R. (1999). Solving Large-Scale Eigenvalue Problems on Vector Parallel Processors. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_9
Download citation
DOI: https://doi.org/10.1007/10703040_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66228-0
Online ISBN: 978-3-540-48516-2
eBook Packages: Springer Book Archive