Skip to main content

Theorems of Péter and Parsons in Computer Programming

  • Conference paper
Computer Science Logic (CSL 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1584))

Included in the following conference series:

  • 346 Accesses

Abstract

This paper describes principles behind a declarative programming language CL (Clausal Language) which comes with its own proof system for proving properties of defined functions and predicates. We use our own implementation of CL in three courses in the first and second years of undergraduate study. By unifying the domain of LISP’s S-expressions with the domain ℕ of natural numbers we have combined the LISP-like simplicity of coding with the simplicity of semantics. We deal just with functions over ℕ within the framework of formal Peano arithmetic. We believe that most of the time this is as much as is needed. CL is thus an extremely simple language which is completely based in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buss, S.R.: The witness function method and provably recursive functions of Peano arithmetic. In: Prawitz, D., Skyrms, B., Westerstahl, D. (eds.) Logic, Methodology and Philosophy of Science IX (1991). North-Holland, Amsterdam (1994)

    Google Scholar 

  2. Cobham, A.: The intristic computational difficulty of functions. In: Bar- Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science II, pp. 24–30. North-Holland, Amsterdam (1965)

    Google Scholar 

  3. Colson, L.: About primitive recursive algorithms. Theoretical Computer Science 83(1), 57–69 (1991)

    Article  MATH  Google Scholar 

  4. Davis, M.: Computability and Unsolvability, 2nd edn. McGraw-Hill, New York (1985)

    Google Scholar 

  5. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  6. Kalmár, L.: A simple example of an undecidable arithmetical problem (Hungarian with German abstract). Matematikai és Fizikai Lapok 50, 1–23 (1943)

    MATH  Google Scholar 

  7. Kreisel, G.: On the interpretation of non-finitist proofs II. Journal of Symbolic Logic 17, 43–58 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Komara, J., Voda, P.J.: Syntactic reduction of predicate tableaux to prepositional tableaux. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS (LNAI), vol. 918, pp. 231–246. Springer, Heidelberg (1995)

    Google Scholar 

  9. Mints, G.: Quantifier-free and one-quantifier systems. Journal of Soviet Mathematics 1, 71–84 (1973)

    Article  Google Scholar 

  10. Parsons, C.: On a number-theoretic choice schema and its relation to induction. In: Intuitionism and Proof Theory: proceedings of the summer conference, Buffalo, N.Y.(1968), pp. 459–473. North-Holland, Amsterdam (1970)

    Chapter  Google Scholar 

  11. Péter, R.: Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion. Mathematische Annalen 110, 612–632 (1932)

    Article  Google Scholar 

  12. Péter, R.: Recursive Functions. Academic Press, London (1967)

    MATH  Google Scholar 

  13. Rose, H.E.: Subrecursion: Functions and Hierarchies. Oxford Logic Guides, vol. 9. Clarendon Press, Oxford (1982)

    Google Scholar 

  14. Sieg, W.: Herbrand analyses. Archive for Mathematical Logic 30, 409–441 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Smullyan, R.: First Order Logic. Springer, Heidelberg (1968)

    MATH  Google Scholar 

  16. Voda, P.J.: Subrecursion as a basis for a feasible programming language. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 324–338. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Wainer, S.S.: Basic proof theory and applications to computation. In: Schwichtenberg, H. (ed.) Logic of Computation. Series F: Computer and Systems Sciences, vol. 157, NATO Advanced Study Institute, International Summer School held in Marktoberdorf, Germany, July 25–August 6 (1995), pp. 349–394. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Komara, J., Voda, P.J. (1999). Theorems of Péter and Parsons in Computer Programming. In: Gottlob, G., Grandjean, E., Seyr, K. (eds) Computer Science Logic. CSL 1998. Lecture Notes in Computer Science, vol 1584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703163_15

Download citation

  • DOI: https://doi.org/10.1007/10703163_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65922-8

  • Online ISBN: 978-3-540-48855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics