N
N

N

HAL

open science

Complexity classes and rewrite systems with polynomial
interpretation

Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, Hélene Touzet

» To cite this version:

Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, Héléne Touzet. Complexity classes and rewrite
systems with polynomial interpretation. CSI’98, 1998, Brno, République Tcheque, pp.372-384. inria-

00098689

HAL Id: inria-00098689
https://inria.hal.science/inria-00098689
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00098689
https://hal.archives-ouvertes.fr

Complexity classes and rewrite systems with polynomial
interpretation

G. Bonfante, A. Cichon, J.Y Marion and H. Touzet*

Abstract

We are concerned with functions over words which are computable by
a rewrite system admitting polynomial interpretation. We classify them
according to a criterion based on the interpretations of successor symbols.
This leads to the definition of three classes, which turns out to be exactly
the poly-time, linear exponential-time and doubly linear exponential time
computable functions. As consequence, we also characterize LINSPACE.

1 Introduction

We are interested in studying the relationship between termination orderings of
rewrite systems and feasible computation. One might suspect that polynomial
interpretations, introduced by [9], would be a good candidate for the investi-
gation of small complexity classes of functions. Various implementations have
been carried out [2, 6, 11, 12]. However, [8] have shown that any rewrite system
with a polynomial interpretation termination proof admits doubly-exponential
derivations.

The work of [3] initiated an alternative analysis of the effects of termination
proofs based on the use of polynomial interpretations. It was shown that a
particularly important aspect was the interpretations of the constructors which
were restricted to the set N = {0,s}, 0 a constant and s a unary successor
symbol.

The present paper reconsiders the situation. Firstly, we study functions over
strings, that is, rewrite systems based on several successors. Indeed words are
the canonical domains for computations. Secondly, we provide a stratification of
systems which is related to the kind of polynomials interpreting the successors.

We show that PTIME functions are characterized by rewrite systems ad-
mitting polynomial termination proofs where the successors are interpreted by
linear polynomials with leading coefficient 1. As a consequence, functions over
N turn out to be precisely LINSPACE functions.

Within the same framework, linear exponential time functions, i.e. func-
tions in ETIME = DTIME(?O(")), are characterized by rewrite systems admitting
polynomial termination proofs where the successors are interpreted by linear
polynomials. We shall also see that every language in DTIME(?”O(I)) is accepted
by this system, with respect to a polynomial reduction.

The linear doubly-exponential time functions, i.e. in E;TIME = DTIME(2
are characterized by rewrite systems admitting polynomial termination proofs
where the successors are interpreted by non-linear polynomials.

Machine independant characterizations of complexity classes were originated
by Cobham [4]. This approach is by mean of ‘bounded recursion on notation’
which imposes global restrictions on the functions’ rates of growth. In contrast,
in our work, polynomial interpretation imposes a condition on rewrite rules.

2D(n))

3

*Loria, Callligramme project, B.P. 239, 54506 Vandceuvre-lés-Nancy Cedex, France,
{bonfante,cichon,marionjy,touzet}@loria.fr.

Therefore, the different kinds of polynomial interpretations of successors are
somewhat akin to the notion of data tiering recently introduced in [1, 10]. It is
also worth mentioning the characterization of PTIME functions over finite models
in [7], because both consider basically the same system: the Herbrand-Godel
equations.

This paper is organized as follows. Section 2 defines functions computed by
rewrite systems with polynomial interpretation termination proofs. Then, the
main results with their consequences are presented in Theorem 1. In Section 3,
we establish the characterization of PTIME. In Section 4, we examine LINSPACE.
The last two sections are devoted to exponential classes and the proofs use
results of the previous sections.

2 Computability & polynomial interpretation

The term rewriting notations used throughout are based on [5]. In particular, let
F be a finite set of symbols of fixed arity and V a denumerable set of variables.

T(F,V) is the term algebra built up from F and V and 7 (F) is the set of
ground terms. The relation 5 (23) denotes the transitive (reflexive-transitive)
closure of —. If u and v are two terms of T (F,V), we write u-3v to mean that
u~sv and v is in normal form.

2.1 Functions definable by rewrite systems

We shall concentrate on functions over words which are computed by rewrite
systems. For this, we specify a set of constructors W and a disjoint set of defined
symbols [F. The set of constructors W contains at least one constant symbol.
All other constructors are unary and are called successors.

The set of rewrite rules R over the term algebra 7 (IF U W, V) defines each
function symbol of F. We always assume that R is terminating (strongly nor-
malizable) and also that R is confluent and determines for each term a unique
normal form in the constructor set 7 (W).

It is convenient to present a rewrite system as a tuple < R, F, W, f >, where

e W is the set of constructors;

e [is the set of defined function symbols;
e R is the set of rewrite rules;

e f is the main function symbol of IF;

Given an alphabet ¥ and a constructor set W, define an encoding function
a as an injective morphism of ¥ — W which is extended canonically to ¥* in
the usual manner :

ale) = ¢ (¢ is the empty word of ¥*).

a(iv) = a(i)(a(u)) (i€ X)

A pair (a, 8) of encoding functions is an encoding pair if whenever «(i) = 3(J)
then i = j.

A function ¢ : (X*)” — X* is said to be computed by the rewrite system
< R,F, W, f > if there is a pair (e, 8) of encoding functions such that, for all
wy, ..., Wy, v € XF

!
fla(wy), ... a(w,))=2BW) © é(wi,..., wy) =v
This definition allows to differentiate between input constructors and output
constructors, a feature which will be necessary soon.

Ezample 1. The rewrite system < A, {Add, Mul,Sq},N,Sq > where N={0s}
defined the tally square function.

Add(0,y) — y
Add(sz,y) — s(add(z,y))
A Mul(0,y) — O
Mul(sz,y) — Add(y,Mul(z,y))
Sq(z) — Mul(z,z)

= |*. Then, Sq
+1) = s(a(n)).

Each number n is represented in unary, say over {|}*, by n
is interpreted by one encoding function « : a(e) = 0 and «(n

Hence, Sq(a(n))—>a(n?)

2.2 Polynomial interpretation

A polynomaial interpretation termination prooffor a rewrite system < R, F, W, f >
consists in the assignment to each function symbol g of FUW, a polynomial [g]
with non-negative integer coefficients which satisfies the following conditions. If
the arity of g is k then [g] is a polynomial with k variables. [g¢] is monotonic,
that is,

e<y < gz,)<[gy)

Also, if the arity of g is 0 then [g] > 1, otherwise [g](z1, -, 2n) > x4, for
t=1,nand forall z; >0, =1,n.
[] is extended canonically to T (F UW) as follows

lg(ts, s ta)] =][], - - [ta))-
Lastly, [] must ensure that for all rules [— 7 of R
[> [r]

for all values of variables greater than the minimum of the interpretations of
the constants.

Ezxample 2. The rewrite system of example 2 admits the following interpretation

0 = 2
[(z) = 2+1

[Add](z,y) = 2z+vy,

al(ey) = Bey
[Sq(z) = 32?2+1

i, From now on, a rewrite system < R, F, W, f > with a polynomial interpre-
tation [] is denoted by < R, F, W, f,[] >.

We end this section by giving some general properties of such systems which
will be used later on. Firstly, whenever u = v, [v] < [u]. This observation
implies that the length of any derivation starting from a term ¢ is bounded by

[t].

Lemma 1. A rewrite system with a polynomial interpretation is terminating.

Define the size |t| of a term ¢ as follows:

It] = { 1 if ¢ 1s a constant or a variable

S+ it = f(t, .)
Lemma 2. Let <R, F,W, f,[] > be a rewrite system. For all terms t,
It < [i].

Proof. The proof goes by induction on |t|. The result is obvious if ¢ is a constant
because |t| = 1 and also [t] > 0 by assumption on []. Otherwise, t is of the form
f(t1,...,t,) and so

[f(tr, .. t)l = 1432 [t (by size def.)
< 14>, .Mt] (byind. assumption)
Since, for all 2 = 1..n, we require that for all zq, ... ,z, strictly greater than 0,

[f(z1, -, 2,)] > zi, we deduce that [f(z1, -, 2,)] > Zi:Ln z; So, we obtain

|f(t1a"':tn)| < 1+Zi:1,n[ti] < [f(.l‘l,"',;l‘n)]

2.8 Classes of functions and results

We shall now examine the intent of the successor interpretations in compu-
tations, as initiated by [8, 3]. Those interpretations will play a central role
throughout as the following example shows.

Ezample 3. On the constructor set Ny = {0, s, ¢}, we define the factorial func-
tion Fact by

Fact(0) — s(0)
Tr(q(z)) — s(Tr(z))
Tr(0) — O
Fact(q(z)) — Mul(s(Tr(z)),Fact(z))

The rules for Mul are provided in example 1. Clearly, Fact(¢”(0)) nN s"(0),
but we have two representations for natural numbers. Inputs are encoded with
q whereas outputs with s. To explictly say what the function computed by
fact is, we provide an encoding pair (o, 8). As previously, over {|}*, we set
a]) = ¢ and B(]) = s. Hence, Fact represents the factorial function since

Fact(a(n))->B(n!).

Now, to give a polynomial interpretation of Fact, we must interpret both
successors s and ¢ in a different way, say by [s](z) = z+1 and [¢](z) = 3(z +2)2.
It is then routine to check that the following interpretation works for Tr and
Fact:

[Tr](z) = 241
[Fact](z) = z+2
Tr is a coercion function that translates data of some kind to data of a lower

kind.

In fact, successor interpretations fall into three categories
kind 0: polynomials of the form P(X) =X + ¢ (¢ > 0),
kind 1: polynomials of the form P(X)=aX +b (a > 1,6 > 0)

kind 2: polynomials of the form P(X) = aX? + R(X) (a > 0,d > 1 and R is
a polynomial of degree strictly less than d)

This classification allows us to distinguish three classes of rewrite systems.

Definition 1. Let ¢ € {0,1,2}. A rewrite system < R, F, W, f,[] > is II(¢) if,
for each successor s of W, the interpretation [s] is a polynomial of kind less than
or equal to i. A function ¢ is II(¢)-computable if there is a II(4) rewrite system
which computes ¢.

For instance, example 1 shows that addition and multiplication are II(0)-
computable functions and example 3 that the factorial function is II(2)-computable.
We now state our main result.

Theorem 1.

1. The T1(0)-computable functions are exactly the PTIME functions.

2. The TI(1)-computable functions are exactly the ETIME functions, that is,
the functions computable in time 2°().
3. The I1(2)-computable functions are exactly the E2TIME functions, that is,
the functions computable in time 227t
Proof. The proof goes as follows. Lemma 6 shows how to simulate II(0)-
computable functions in PTIME. The converse is established in Lemma 9.
The characterization of ETIME is a consequence of Lemma 13 and Lemma 11.
Lastly, E2TIME is obtained by applying Lemmas 17 and 15 |

There are several corollaries worth noting. The first is a characterization of
LINSPACE in Section 4. The second is based on a padding argument.

Corollary 1. There is a II(1) rewrite system that recognizes every language L

which is contained n DTIME(?"k) for some k, with respect to a polynomial
time reduction.

Indeed, let L be a DTIME(Q”k) language. Say that L is accepted by the TM

M. Then, construct L' = {x@O”k with € L}, that is, a word of z is padded
by extra 0’s to have a length equal to the runtime of M. Therefore L’ is decided
in time 29(»). The characteristic function of L’ is TI(1) computable by (2) of
Theorem 1. i

Finally, a similar result can be established for languages in DTIME(?‘?n)
using the same padding technique.

Ot

2.4 General properties

For use as Lemmas, we now establish some properties of II(7)-systems.
Firstly, we show a property of weak closure by composition of II(Z)-computable
functions, enabling us to combine systems to define functions in a modular way.

Lemma 3. Let ¢; be a I1(¢)-computable function and ¢ be a I1(0)-computable
function. The function i defined by ¥(&,§) = ¢(¢i(Z),y) is I1(7)-computable.

Proof. Assume that ¢ is computed by the II(0)-rewrite system < R, F, W, f, [] >
with the pair (o, f) of encoding functions. Assume that ¢; is computed by the
TI(7)-rewrite system < R;,[F;, W;, fi,[]i > with the encoding (e, 5;) verifying
Without loss of generality, we also suppose that both [F and [F; are disjoint and
also that W and W; are two disjoint copies of the same set of constructors.
This means that there is a one-one mapping 7 from W; to W which respect
constructor arities.

The key point of the construction is the introduction of a coercion function
Tr that translates terms of W; into terms of W. Tr is defined thus :

Tr(e) — 7(e¢) e € W; is O-ary
Tr(s(z)) — 7(s)Tr(z) s € W; is a successor

where the function 7 verifies « = 7o a; and a = 70 f3;.

The function ¢ is computed by < R, FUF;, WUW;, fi, []+ > where the set
of rules R, just contains the set RUTR;, the above rules for Tr and the following
rule for f:

@y, ooyn) = FA(Te(fi(2), Tr(vi), ..., Tx(yn))

The encoding pair interpreting f. is (s, 3).
The polynomial interpretation [], is an extension of [] and [];. Let a =
max{c; [e] = ¢ or [s](z) = & + ¢ where ¢,s € W} + 1.

X, = [X],if Xe FUW
X]* [X]Z, if X € F; UW;
[Tr]«(z) = ax
fede(@oyrs oo yyn) = [(Tlelfil(@), [Trla(yr), - - [Trle(yn)) + 1

O

The next Lemma is convenient for determining upper bounds on the runtime
of II(i)-computable functions. The proposition claims that both (1) the length
of the derivation and (2) the size of any terms involved during the reduction
process are polynomially bounded in the interpretation of the inputs.

Definition 2. A class C of unary increasing functions over natural numbers
accommodates polynomials iff for all ¢ € C, for all polynomials P with natural
number coefficients, there is a function ¢’ € C such that P(¢(z)) < ¢'(z), for
all z > 0.

In the sequel, we shall deal with three main classes of functions: polynomials,
exponentials {2°° ; ¢ > 0} and doubly exponentials {227 ; ¢ > 0}. It is clear
that these classes accommodate polynomials.

Lemma 4. Let C be a class of functions which accommodates polynomials. Let
< R,F,W, f,[]> be a rewrite system. Assume that there is ¢ € C such that,
for all terms t in T(W), [t] < ¢(|t]). Then there is ¢' € C, such that for all
termsty, ... ty, € T(W) and f € T, the following holds:

(1) [F(tr, - ta)] < ¢'(max{[ti] ; 1 < i < n}).

(ii) The length of any derivation starting from f(t1,---,t,) is bounded by
¢/ (max{li]; 1< i <n)).

(i) If f(t1,... ,tn) r v, then |v] < ¢'(max{[t;] ; 1 <i< n}).
Proof. Let m = max{|t;],1 < i < n}. By hypothesis, we have

[t ta)] < [fl(é(m), ..., é(m))
< ¢'(m) for some ¢' in C

So (i) is proved. (ii) is a consequence of (i) since the length of any deriva-
tion is bounded by the polynomial interpretation of the term reduced. Finally,
Lemma 2 implies |v| < [v]. And since [v] < [f(t1, - ,tn)], we complete (iii) by
applying (i) again. O

3 PTiME is II(0)

3.1 II(0)-computable functions are PTIME

Lemma 5. Let < R,F,W, f,[] > be a I1(0) rewrite system. Then there is a
constant ¢ such that for allt € T(W) [t] < c.|t|.

Proof. By construction of II(0), for all constructors in W, there exists ¢ > 0 such
that [€] < ¢ and [s](z) < & + ¢. So, for all t € T (W), we have, by composition
of interpretations, [t] < c.|¢|. O

Corollary 2. Let < R,F, W, f,[] > be a I1(0) rewrite system. Then there is a
polynomial Py such that for all terms t1, ... t, € T(W),

1. the length of any derivation starting from f(ti,...,1,) is bounded by
Py(max{lts] ; 1< i< nl}).,

2. if f(t1, ... ,ty) Dr v, then |v| < Py(max{|t;] ; 1 < i< n}).

Proof. (1) is a consequence of Lemma 4-(ii) and Lemma 5. (2) is a consequence
of Lemma 4-(iii) and Lemma 5. O

Lemma 6. If ¢ is I1(0)-computable, then ¢ is in PTIME.

Proof. Let X be the alphabet for ¢. Suppose that ¢ is computed by the system <
R, W, T, f,[]>inII(0) and let w1, ..., w, be words in £*. Since all derivations
starting from f(a(wi),...,a(w,)) lead to the same normal form, we take any
strategy to compute the normal form of f(a(wi),...,a(w,)). The key point
is that at any step the size of the term is bounded by O(max(|w;|)?) ((iii) of
Lemma 2). So, in time bounded by O(max(|w;|)?), we select a redex and replace
it by the right hand side of the corresponding rule of R. The reduction lasts for
at most O(max(|w;])?) (see (ii) of Lemma 2). It follows that the runtime of the
computation of ¢(w1,...,w,) is bounded by O(max(|w;|)P*). O

3.2 Pt1IME functions are II(0)-computable

In this section we show that PTIME functions are II(0)-computable by simulating
a Turing Machine by a rewrite system with polynomial interpretations. The
outline of the proof is as follows. First of all, we construct a rewrite system
in TI(0) that simulates T steps of the computation of a Turing machine. This
will be done in Lemma 7. This part is independant from PTIME: it does not
take advantage of the polynomial bound on the computation runtime. Then we
show in Lemma 8 that polynomials can be computed by II(0) rewrite systems.
Finally, we conclude by composing both results.

3.2.1 Encoding a time bounded Turing machine

We consider multi-stack Turing machines, abbreviated STM. Of course, this
computational model delineates the same computational complexity classes as,
say, multi-tape Turing machines. But, this model makes the proof easier and
is convenient for the discussion, further on in Section 4, of computation on a
unary alphabet.

Formally, a k-stack TM, M, is defined by a tuple M =< X ¢,Q, g0, Qy,6 >
where ¥ is the alphabet and € is the bottom stack symbol; @) is the set of states
with ¢o € @ as initial state and Q7 C @ is the set of final states; and finally the
transition function is § : @ x (X U {e})* — Q x (X*)*.

The meaning of §(¢,a1, - ,ax) = (¢',u1, - -, ug) is the following. The STM
is in state ¢ and the letter on the top of the ith stack is a;. Then, the STM
replaces each a; by the word u; and switches to the state ¢’.

A configuration of the machine is a tuple < g, w1, -, wr > where ¢ € @) is
the current state, and w; is the content of the ith stack. Let = be the relation
which provides the next configuration of §. We define for M a function F[M]:
(X*)F = X by F[M](wy, - ,wg) = rg iff the normal form of (go,wy, -, w)
is rg.

Lemma 7. Let M =< X,¢,Q,90,Qf,0 > be a STM. Then there is a II(0)-
computable function ¢pr such that, for each input (wy,---,wyg), if M halts in
less than t steps then ¢pr(t,wy, -+, wg) = FIM](wy, -+, wg).

Proof. We construct a rewrite system R;s which computes ¢ps as follows:
o Constructors are W= {s; i€ X} U{e},

o the defined symbols are {q ; ¢ € @}, where, for all ¢ € @, q is a function
symbol of arity £ 4+ 1. The first parameter corresponds to the remaining
computation runtime and the k other parameters to stacks,

e the encoding pair is («, @) with «(i) = s; for all i € 3.

The rewrite rules are given by the following template:
If 6(‘]: Ay, Jak) = (qu Up, - ;uk) then

a(st,a(ar)er, - alar)zr) — Q'@ a(ur) (), -, a(ur)zg)

with the convention that a(e)z; = €, a(a;)z; = s;(z;) if a; € ¥, and a(a;v)z; =
si(a(v)(z;)). Otherwise, ¢ € Qf and qs(st,z1, -+ ,2x) — @ . It is
straightforward to verify that

<q"w1’..."wk>:><ql"w/1’..."wllc>

if and only if

q(st, e(w), - a(wg)) = ¢, a(wy), - a(wy))
and that
q is a final state iff q(¢, a(wq), -, a(w)) = a(wg)
Therefore, if M halts in less than ¢ steps on inputs wy, ..., wg then the result
of the computation is provided by the normal form of qo(¢, a(w1), - -, a(wg)),

which is exactly F[M](wy,- -, wg). So ¢ar is represented by far, thus
Itz xk) — qol(t,ze, -, k)

Lastly, we interpret each function symbol by

e = 2
[si](z) = x+1 VieXx
[al(t, z1, -, 25) = ketd+a1+---+ax Ye€Q
(] = lao]+1
where the constant c is strictly greater than the interpretation of any word that
is involved in the definition of §. We conclude that the system is TI(0). |

3.2.2 Simulating Poly-time
Lemma 8. Each polynomial is TI(0)-computable.

Proof. Each polynomial is defined by composition of addition and multiplica-
tion. Example 1 shows that addition and multiplication are II(0)-computable
functions. Lemma 3 leads then to conclusion. |

Lemma 9. If ¢ is in PTIME, then ¢ is II(0)-computable.

Proof. Let ¢ be a function, computed by a Turing machine M, such that the
time of computation is bounded by a polynomial P. The function ¢ is obtained
by composing ¢pr, as defined in Lemma 7, and P. Since ¢p5 and P are both
TI1(0)-computable, ¢ is also II(0)-computable by lemma 3. O

4 A characterization of LINSPACE

A function is in Linspace if it is computed by a multi-stack Turing machine
over an alphabet with at least two letters running in linear space. The proof
follows [10] which depends essentially on [7].

Theorem 2. A function ¢ is computable over a multi-stack Turing machine
over a unary alphabet in polynomial-time iff ¢ is in LINSPACE.

Proof. Let ¢ be an m-ary function. Assume that ¢ is computed by a k-stack
Turing machine M which works on the unary alphabet {|} and whose runtime
is bounded by P(wi,---,wp) for some polynomial P and for all inputs ws,

. ,Wm. From M, we construct a (k+1)-stack Turing machine N over the binary
alphabet {0,1}. The stack i, i = 1,k, of N contains the binary representation

of the number of |’s in the ith stack of M. Now, observe that M’s operations
just consist in adding or removing some fixed amount of |’s. So when, M adds ¢
|’s to some stack, for example, N will also add ¢ to the same stack in base two.
But, this is easily performed by N with the spare stack. Thus, the size of each
stack of N is bounded by O(log(maxi=1,m(w;))).

Conversely, assume that ¢ is computed by a k-stack Turing machine M over,
say, {a,b}*. Define u to be the dyadic representation of the word u € {a,b}*. (
That is ¢ =0, gu = 2.u+ 1 and bu = 2.u+ 2.) We build a (k + 2)-stack Turing
machine N on the unary alphabet {|} as follows. If there is u in the stack i of
M then there are u |’s in the stack i of N. Say that M pushes a onto a stack,
N doubles the number of |’s in this stack and then adds |. To multiply by two,
N uses the two extra stacks to duplicate the stack. N proceeds similarly to
push or pop a word given by the transition function of M. The runtime of M
is bounded by 2°™ where n is maximum size of the inputs. So, the runtime of
N is linear in 2°7 | that is, polynomial in the greatest input value. O

Theorem 3. A function is computed by a I1(0) rewrite-system < R, F, N, f,[] >
over the domain N = {s,0} iff it is LINSPACE.

Proof. Let ¢ be a function computed by the IT1(0) rewrite-system < R, F, N, f [] >.
By Lemma 6, ¢ is computable in polynomial time over a unary alphabet. So, by
Theorem 2, ¢ is in LINSPACE. Conversely, if ¢ is in LINSPACE, then Theorem 2
yields that ¢ is computable in polynomial time on some stack TM which works
on a unary alphabet. Therefore, by Lemma 9, ¢ is II(0)-computable. |

5 ETIME is II(1)

Define ETIME as the class of functions which are computable in time bounded
by 29(") on Turing machines where n is the maximum size of the inputs.

5.1 [I(1)-computable functions are ETIME

Lemma 10. Let < R,F,W, f,[] > be a II(1) rewrite system. Then there is a
constant ¢ such that, for all t € T(W), [t] < 2¢Itl.

Proof. By definition of TI(1), for all constructors in W, there is a constant ¢
such that [¢] < ¢ and and [s](z) < c.z, when > 0. It is clear that

()] < eft] < e20fl < 2olt+D) = gelst]

O
Corollary 3. Let < R,F,W, f,[] > be a II(1) rewrite system. Then there is a
constant ¢ such that, for all termsty,... t, € T(W),
1. the length of any derivation starting from f(ti,...,1,) is bounded by
2cmax{|t,| ; lgiSn}j
2. 4f f(t1,... ,tn) Bz v, then |v| < 2emaxiitd 1<i<n}
Proof. Consequence of Lemma 4 and Lemma 10. |

Lemma 11. If ¢ is II(1)-computable, then ¢ is in ETIME.
Proof. See the proof of Lemma 6. |

10

5.2 ETIME functions are lI(1)-computable

Lemma 12. Let ¢ be a constant. The function An. 2" is II(1)-computable

Proof. Let < A,{Add,Mul E {0,s,q},E > be the rewrite system defined as in
example 1 with the following rules :

{ E(0) — s0

E(qz) — Add(E(z),...Add(E(z),0)) (2° occurrences of Add)

E represents An. 2°" through the encoding pair («,) where a(1) = ¢ and
B(1) = s. The rewrite system is TI(1) :

() = 2% +2)
El) = z+2

Lemma 13. If ¢ is in ETIME, then ¢ is II(1)-computable.

Proof. Let ¢ be a function, computed by a Turing machine M, such that the
time of computation is bounded by an exponential 2°” for some constant ¢. The
function ¢ can be obtained by composing ¢ s as defined in Lemma 7 and An 2°7.
Since ¢pr is II(0) and An 2°" is TI(1), ¢ is II(1)-computable by Lemma 3. O

6 II(2) is EoTIME

6.1 II(2)-computable functions are E;TIME

Lemma 14. Let < R,F,W, f,[] > be a II(2) rewrite system. Then there is a
constant ¢ > 0 such that, for allt € T(W), [t] < 226|t|.

Proof. By definition of TI(2), there is a constant a such that [¢] < a and [s](z) <
az®, for z > 0 and for all constructors. Define ¢ = 2a. It is easy to verify that

5] < al]® < a2 < 927 o g2l o ety
O
Corollary 4. Let < R,F, W, f,[] > be a I1(2) rewrite system. Then there is a
constant ¢ such that, for all termsty,... t, € T(W),
1. the length of any derivation starting from f(ti,...,1,) is bounded by

gaemax(ityl 1<i<n)

gc. max{|t;]; 1<i<n}

2. if f(tr,...,tn) g v, then |v] <2
Proof. Consequences of Lemmas 4 and 14. O

Lemma 15. If ¢ is I1(2)-computable, then ¢ is in E2TIME.

11

6.2 E,TIME functions are lI(2)-computable
Lemma 16. Let ¢ be a constant. The function An 22" is T1(2)-computable.

Proof. As in example 1, we define < A, {Add,Mul,D}, {0,s,q},D > where D is
defined thus,

D(0) — ss0
D(¢z) — Mul(D(x),...Mul(D(z),s0) (2°occurrences of Mul)

D represents An 227" through the encoding pair (a,3) where a(1) = ¢ and
B(1) = s. The rewrite system is II(2):

W) = (372(x+3)*
Dlx) = =+3

Lemma 17. If ¢ is in E2TIME, then ¢ is I1(2)-computable.

Proof. Let ¢ be a function computed by a Turing machine M, such that the
time of computation is bounded by a doubly exponential function, D. The
function ¢ is obtained by composing ¢as as defined in Lemma 7 and D. Since
¢ is TI(0)-computable and D is TI(2)-computable, Lemma 3 implies that ¢ is
T1(2)-computable. O

References

[1] S. Bellantoni and S. Cook, A new recursion-theoretic characterization of
the poly-time functions, Computational Complexity,2, 1992, p. 97-110.

[2] A. Ben Cherifa and P. Lescanne, Termination of rewriting systems by poly-
nomial interpretations and its implementation. Science of computer Pro-

gramming 9 (1987), p. 131-159.

[3] E.A Cichon and P. Lescanne, Polynomial interpretations and the complezity
of algorithms. CADE’11 (1992), p 139-147.

[4] A. Cobham, The intrinsic computational difficulty of functions, ed. Y. Bar-
Hillel, Proceedings of the International Conference on Logic, Methodology,
and Philosophy of Science, North-Holland, Amsterdam, 1962, p. 24-30.

[5] N. Dershowitz and J.P. Jouannaud, Rewrite systems. Handbook of Theo-
retical Computer Science vol.B, North-Holland.

[6] J. Giesl, Generating polynomial orderings for termination proofs. RTA-95,
Lecture Notes in Computer Science 914, p. 427-431.

[7] Y. Gurevich, Algebras of feasible functions., Twenty Fourth Symposium on
Foundations of Computer Science, IEEE Computer Society Press, 1983,
p- 210-214.

[8] D. Hofbauer and C. Lautemann, Termination proofs and the length of
derwations. RTA-88, Lecture Notes in Computer Science 355.

12

[9] D.S. Lankford, On proving term rewriting systems are Noetherien. Tech-
nical Report Memo MTP-3, louisiana Technical University, Ruston, LA
(1979).

[10] D. Leivant, Predicative recurrence and computational complexity I: Word
recurrence and poly-time, Feasible Mathematrics 11, ed. Peter Clote and
Jeffery Remmel, Birkhauser-Boston, 1994.

. Lescanne, Computer experiments wi e erm rewriting system
11] P. L C t 3 ts with the REVE t 173 t
generator. Tenth ACM symposium on principles of programming languages,

Austin, Texas (1983), p. 99-108

[12] J. Steinbach, Generating polynomial orderings. Information Processing Let-

ters 49 (1994), p. 85-93.

13

