Abstract
A new decision procedure for the existential fragment of ordering constraints expressed using the recursive path ordering is presented. This procedure is nondeterministic and checks whether a set of constraints is solvable over the given signature, i.e., the signature over which the terms in the constraints are defined. It is shown that this non-deterministic procedure runs in polynomial time, thus establishing the membership of this problem in the complexity class NP for the first time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comon, H.: Solving inequations in term algebras. In: Proc. 5th IEEE Symp. Logic in Computer Science (LICS), Philadelphia (June 1990)
Comon, H., Treinen, R.: The first-order theory of lexicographic path orderings is undecidable. Theoretical Computer Science 176 (April 1997)
Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)
Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1), 69–115 (1987)
Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–309. North-Holland, Amsterdam (1990)
Ganzinger, H., Nieuwenhuis, R., Nivela, P.: The Saturate System (1995), Software and documentation available from: http://www.mpi-sb.mpg.de
Hsiang, J., Rusinowitch, M.: On word problems in equational theories. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 54–71. Springer, Heidelberg (1987)
Jouannaud, J.-P., Okada, M.: Satisfiability of systems of ordinal notations with the subterm ordering is decidable. In: Leach Albert, J., Monien, B., RodrÃguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 455–468. Springer, Heidelberg (1991)
Kapur, D., Narendran, P., Sivakumar, G.: A path ordering for proving termination of term rewriting systems. In: Nivat, M., Floyd, C., Thatcher, J., Ehrig, H. (eds.) CAAP 1985 and TAPSOFT 1985. LNCS, vol. 185, pp. 173–187. Springer, Berlin (1985)
Kapur, D., Sivakumar, G.: Maximal Extensions of Simplification Orderings. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026. Springer, Heidelberg (1995)
Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints. Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990) (Special issue on automatic deduction)
Krishnamoorthy, M.S., Narendran, P.: Note on recursive path ordering. TCS 40, 323–328 (1985)
Lescanne, P.: On the recursive decomposition ordering with lexicographical status and other related orderings. J. of Automated Reasoning 6(1), 39–49 (1990)
Nieuwenhuis, R.: Simple LPO constraint solving methods. Inf. Process. Lett. 47(2), 65–69 (1993)
Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering constrained clauses. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 477–491. Springer, Heidelberg (1992)
Plaisted, D.: A recursively defined ordering for proving termination of term rewriting systems. Technical Report R-78-943, U. of Illinois, Dept of Computer Science (1978)
Steinbach, J.: Extensions and comparison of simplification orderings. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 434–448. Springer, Heidelberg (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Narendran, P., Rusinowitch, M., Verma, R. (1999). RPO Constraint Solving Is in NP. In: Gottlob, G., Grandjean, E., Seyr, K. (eds) Computer Science Logic. CSL 1998. Lecture Notes in Computer Science, vol 1584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703163_26
Download citation
DOI: https://doi.org/10.1007/10703163_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65922-8
Online ISBN: 978-3-540-48855-2
eBook Packages: Springer Book Archive