Skip to main content

On the Power of Quantifiers in First-Order Algebraic Specification

  • Conference paper
Computer Science Logic (CSL 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1584))

Included in the following conference series:

  • 355 Accesses

Abstract

The well-known completeness theorem of Bergstra & Tucker [BT82,BT97] states that all computable data types can be specified without quantifiers, i.e., quantifiers can be dispensed with–at least if the introduction of auxiliary (hidden) functions is allowed.

However, the situation concerning the specification without hidden functions is quite different. Our main result is that, in this case, quantifiers do contribute to expressiveness. More precisely, we give an example of a computable data type that has a monomorphic first-order specification (without hidden functions) and prove that it fails to possess a monomorphic quantifier-free specification (without hidden functions).

This research has partly been supported by the “Deutsche Forschungsgemeinschaft” within the “Schwerpunktprogramm Deduktion”. The results were obtained in the course of [Kem98].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asveld, P.R.J., Tucker, J.V.: Complexity theory and the operational structure of algebraic programming systems. Acta Inform. 17, 451–476 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of algebraic specifications. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 193–204. Springer, Heidelberg (1981)

    Google Scholar 

  3. Broy, M., Dosch, W., Partsch, H., Pepper, P., Wirsing, M.: Existential quantifiers in abstract data types. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 73–87. Springer, Heidelberg (1979)

    Google Scholar 

  4. Berghammer, R.: On the characterization of the integers: the hidden function problem revisited. Acta Cybernetica 11(1-2), 85–96 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Bergstra, J.A., Tucker, J.V.: The completeness of the algebraic speci cation methods for computable data types. Information and Control 54, 186–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergstra, J.A., Tucker, J.V.: Algebraic specifications of computable and semicomputable data types. Theoret. Comput. Sci. 50, 137–181 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. In: Perspectives in Mathematical Logic. Springer, Heidelberg (1995)

    Google Scholar 

  8. Ehrig, H., Mahr, B.: Complexity of algebraic implementations for abstract data types. Computer and System Sciences 23(2), 223–253 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Proc. Of the Herbrand Symp., Logic Colloq (1981), pp. 105–135. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  10. Immerman, N.: Upper and lower bounds for first order expressibility. Computer and System Sciences 25, 76–98 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kempe, D.: Ausdrucksmächtigkeit von Quantoren in algebraischen Spezifikationen. Master’s thesis, Universität Karlsruhe (August 1998)

    Google Scholar 

  12. Loeckx, J., Ehrich, H.-D., Wolf, M.: Specification of abstract data types. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  13. Majster, M.E.: Data types, abstract data types and their specification problem. Theoret. Comput. Sci. 8, 89–127 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)

    Google Scholar 

  15. Orejas, F.: On the power of conditional specifications. ACM SIGPLAN Notices 14(7), 78–81 (1979)

    Article  Google Scholar 

  16. Robinson, A.: Introduction to model theory and to the metamathematics of algebra. In: Studies in Logic and the Foundations of Mathematics. North Holland, Amsterdam (1974)

    Google Scholar 

  17. Schönegge, A.: An answer to the hidden function question for algebraic specification methods (abstract). In: 4th Workshop on Logic, Language, Information and Computation. Logic Journal of the IGPL, vol. 5(6) (1997)

    Google Scholar 

  18. Schönegge, A.: The hidden function question revisited. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 451–464. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. Thatcher, J.W., Wagner, E.G., Wright, J.B.: Data type specification: Parameterization and the power of specification techniques. ACM Trans. on Programming Languages and Systems 4, 711–732 (1982)

    Article  MATH  Google Scholar 

  20. Wirsing, M.: Algebraic Specification. In: Handbook of Theoretical Computer Science, vol. B, pp. 675–788. Elsevier Science Publishers B. V, Amsterdam (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kempe, D., Schönegge, A. (1999). On the Power of Quantifiers in First-Order Algebraic Specification. In: Gottlob, G., Grandjean, E., Seyr, K. (eds) Computer Science Logic. CSL 1998. Lecture Notes in Computer Science, vol 1584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703163_4

Download citation

  • DOI: https://doi.org/10.1007/10703163_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65922-8

  • Online ISBN: 978-3-540-48855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics