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Abstract. Fast, simple and effective registration methods are needed in
a wide variety of computer-assisted surgical procedures in which readily
locatable anatomical landmarks are not available. Surface-based least-
squares registration methods can be used, but are susceptible to poor
initial pose estimates and to error contamination during intraoperative
data collection.
We have developed a fast, statistically robust method for surface-based
registration during orthopedic surgery. The method, based on the itera-
tive closest point (ICP) algorithm, fits a set of sparsely measured data
points to a planar facet model. A first registration estimate is obtained
by having the user contact the anatomy in a set of general anatomical
regions (rather than contacting distinctive features). A small number of
additional data points are acquired to refine the registration. Starting
from the refined estimate, a robust scored perturbation method is used
to find a better registration. This is followed by an M-estimate registra-
tion that is taken as the final registration. Simulation results show that
this method is robust for data sets containing up to 25% gross outliers.
The method has been tested in vitro on plastic bone models, where it
outperformed the least-squares estimate and maintained the required
1mm/2◦ accuracy. The in vivo use of spotlights in computer-enhanced
osteotomies of the knee have confirmed the usefulness of the method.

1 Introduction

Registration of a patient to a medical image is often performed by finding a rigid
transformation that minimizes the squared residual error between the surgical
points and points on a model derived from a 3D medical image. One widely cited
surface-based registration method is the iterative-closest-point (ICP) method of
Besl and McKay [2]. Two widely acknowledged problems with ICP-like surface
registration methods are the need for a good initial estimate and that minimizing
the sum-of-squared residual error is optimal only when the measurement errors
have Gaussian distributions. If measurements are accidentally taken far from the
target anatomy, a least-squares error measure can produce poor results.

Here we present a fast, robust method for surface-based registration that
provides reliability and accuracy in the presence of spurious data. The user in-
terface presents the surgeon with a visualization of the target anatomy in which
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restricted regions, termed Spotlights, are individually illuminated; Figure 1 shows
an example surface mesh of the proximal tibia and four spotlight regions. Ini-
tial contact points, one from each region, are used to compute a registration.
Additional points, collected from the exposed anatomy, are then used in a ro-
bustly perturbed M-estimation process to refine the final registration estimate.
The principal contribution of this work is our consideration of the effects that

Fig. 1. CT-based surface meshes (not to scale) of a phantom tibia and vertebra,
and spotlight regions for registration. The spheres mark the spotlight centers.

local-search methods have on the estimate of the registration. ICP, and previ-
ously investigated robust estimators, are susceptible to convergence on a local,
non-global minimum. The method presented here is mathematically robust and
was designed with the intent of avoiding false local convergence.

2 Robust Surface-Based Registration

Rigid-body surface-based registration is the process of finding a transformation
from a set of measured points on the target anatomy to the model surface derived
from medical images. Let P = {pi} be a set of n surface-data points measured
from the target anatomy by the surgeon, let X = {xi} be the set of all points
on the surface model, and let T (τ )z = R(q̂)z + t be a rigid transformation
of a point z with pose parameters τ . The registration goal is to find both the
rigid-body transformation T and some n-element subset Y of model surface
locations X to which the target anatomy locations P project under T . The
anatomical points P will not in general project exactly onto Y . A least-squares
solution to the surface-based registration can be stated as the minimum, over τ
and Y ⊆ X , of

F2(τ, Y ) =
n∑

i=1

‖yi − T (τ)pi‖2 (1)

where yi ε Y . In the general case this is a non-convex minimization problem with
multiple local minima.

Statisticians have long been aware of the need for robust methods of pa-
rameter estimation [9,14]. Robust methods have been applied widely in the
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computer vision community for many estimation problems, including pose es-
timation [6,10,11] which is mathematically similar to the registration problem.
Grimson et al. [5] performed point-to-surface matching by progressively refining
the registration using a series of objective functions. Although it was not stated
explicitly, their final objective function is the Huber [9] estimate.

Many robust estimation techniques use M-estimation, in which the L2 norm
in (1) is replaced with a robust norm to yield an objective function of the form

FM (τ, Y ) =
n∑

i=1

ρ(yi − T (τ)pi; σ) (2)

where ρ(r; σ) is the robust norm applied to the residual r, and σ is a scale
parameter that depends on the form of the expected error distribution. One
robust estimator that has reportedly provided good performance on 3D range
data [13] is the Tukey biweight:

ρ(z; σ) =
{

σ2

2 (1− (1 − z2

σ2 ))3 if z ≤ |σ|
σ2/2 otherwise

(3)

We used ranked scores of perturbations of the least-squares estimator to improve
the least-squares surface registration. We then used a robust M-estimator version
of ICP to refine the registration further. These estimators form the basis of a
fast and accurate method for surface-based registration.
The main stages of our surface-based registration method are:

Spotlight: Surface data are gathered intraoperatively. The surgeon contacts
points on the exposed anatomical regions that correspond to the spotlights
shown on the model.

Centroid: The initial contact points are first matched to the spotlight centroids
on the model using a simple least-squares minimization method [8].

Patch: The initial contact points are then matched to the spotlight surface
regions on the model, using a least-squares ICP method.

Refinement: The surgeon then contacts another set of points on the exposed
anatomical region. These locations should be chosen to cover the anatomy
that will be involved in the image-guided surgery, and should provide suffi-
cient translational and rotational constraints on the registration.

Perturbation: The initial registration is repeatedly perturbed, and residuals
are calculated. The perturbation with the largest number of residuals that
are all less than a user-supplied threshold is taken as the best registration
estimate.

Final: The perturbation registration estimate is refined by use of an ICP algo-
rithm that incorporates the robust Tukey-biweight M-estimator.

Each iteration of the ICP algorithm actually involves two estimation steps: given
a registration estimate, one needs to find the set of closest points on the surface
to the transformed data points. It is important that this search for the closest
points be fast because it is one of the most computationally demanding steps
of the algorithm. From these closest points on the surface, one then needs to
update the registration estimate.
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2.1 Finding Nearest Neighbors on a Surface Model

Given a transformation, at each iteration of the algorithm the ICP method
requires solution of the nearest-neighbor problem: For each point pi and a
model X , the point xi in X that is nearest to pi under the transformation
must be found. If X is a triangulated surface mesh then the facet containing xi

must be found so that xi can be calculated. Exhaustive search over all facets is
impractical for large models.

Although heuristics have been proposed for finding the facet containing the
nearest point [1,12], we can guarantee that a nearest neighbor is always found.
For each model facet, we precompute the centroid and the largest centroid-to-
vertex distance and record the largest centroid-to-vertex distance found over all
facets, R, which is used to build a k-D tree from the facet centroids. To find a
nearest neighbor, we first find the nearest centroid and compute its distance r.
We then use the region search algorithm of [1] to find all facet centroids within
the sphere of radius R + r centered on the data point. Finally, we exhaustively
search all returned facets to find the true nearest neighbor.

This algorithm can return a large number of facets, especially when the da-
tum pi is very far away from the model or if the model contains some unusually
large facets. The requirement can be relaxed by limiting the number of returned
facets to a fixed number. Compared to exhaustive search, reductions in compu-
tation time of more than two orders of magnitude were observed for models that
contained tens of thousands of facets.

2.2 Robust Registration Estimation

A robust version of ICP was produced by modifying the process of updating the
registration. This requires a solution to the absolute orientation problem, for
which Horn’s method provides a common least-squares solution.

To obtain an M-estimate of absolute orientation, we use an iteratively
reweighted least-squares modification [7,6] of Horn’s method [8]. The scale pa-
rameter σ in Equation (3), is estimated, following Rousseeuw [14], as a function
of the parameters τ by using the median of absolute deviations of the residuals:
ri(τ) = yi − T (τ)pi:

σ = 1.4826 median
i=1 ..n

(
‖ri(τ)‖ −median

j=1 ..n
‖rj(τ)‖

)
(4)

2.3 Refinement of Registration Using Perturbation

Even when started from a reasonable spotlight estimate, traditional ICP and
simplistic robust variants suffer from “trapping” by converging to a local non-
global minimum of the registration parameters. To alleviate trapping we locally
explore the parameter space to find a better estimate, as suggested by Grimson
et al. [5]. Our implementation explored the effect of rotational parameters on
the estimate by assessing sixty-four uniformly distributed axes of rotation. The
surgical data were rotated, about their mutual centroid, around each of these



940 B. Ma et al.

axes by ±3 degrees and residual errors were calculated. For each of the 128
rotations, if half of the transformed surgical data had residuals that were less
than a provided threshold value (1 mm) then the rotation and maximum residual
were noted.

The perturbation that produced the minimum maximum residual for at least
half the surgical data was provided as the initial estimate for the final robust
iterative calculation of the registration transformation.

3 In Vitro Experiments

One application of computer-enhanced orthopedic surgery is to the high tibial
osteotomy, for which the surgical exposure is limited to the anterolateral aspect of
the proximal tibia. The only distinctive landmarks are the tibial tubercle (which
is concealed by the patellar tendon) and the fibular head (which is mobilized from
the tibia by osteoclasis). Spotlight registration was examined as an alternative
to fiducial registration, which is very accurate but invasive.

As a standard comparison, we also considered the procedure of pedicle-screw
insertion into a lumber vertebra, for which the posterior aspect of the ends of
the transverse and superior articular processes provide prominent landmarks.

3.1 Materials and Preparation

A plastic tibia and L1-vertebra (Sawbones, Vashon, WA) were instrumented
with three titanium-alloy anchor screws of 1.9 mm diameter (Wright Medical
Devices) that acted as fiducial markers. The phantoms were imaged by com-
puted tomography, and decimated isosurface models were produced. The tibial
mesh contained 34,537 vertices and 68,564 triangular faces, and the vertebral
mesh contained 27,096 vertices and 54,904 faces. The fiducial locations in CT
coordinates were found using a previously validated center-of-mass calculation [3]
and the locations were verified with Roentgen stereogrammetric analysis.

The phantoms were fixed in frames and the fiducial markers were contacted
using a six-degree-of-freedom mechanical pointer (FARO Technologies, Lake
Mary, FL) to obtain a registration that bore a known error to ground truth [4].
For the tibial phantom, twelve 10 mm×10 mm squares were drawn on the surface
in the area of typical surgical exposure and 100 data points were collected for
each square, attempting to keep the datum spacing as uniform as possible. For
the vertebral phantom, eight 8 mm×8 mm squares were drawn on the surface and
data were collected as for the tibial phantom. Four spotlights of radius 10 mm
were sampled with 100 data points each from the tibial phantom, and similarly
for the vertebral phantom (with spotlights of radius 7.5 mm). Figure 1 shows
the 3D tibial model and the spotlight locations.

3.2 Methods

A data set consisted of one point from each spotlight and one refinement point
from each square on the surface, yielding a total of sixteen points for the tibial
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phantom and twelve points for the vertebral phantom. One thousand sets were
randomly selected and assessed by six different methods. For all but Method 1,
all data in the set were matched to the entire isosurface:

1. Paired-point least-squares registration of initial data to spotlight centers.
2. Scored perturbation registration, starting from the estimate of Method 1.
3. Robust Tukey-estimator registration, starting from the estimate of Method 2.
4. ICP least-squares registration, starting from the estimate of Method 1.
5. Robust Tukey-estimator registration, starting from the estimate of Method 1.
6. Robust Tukey-estimator registration, starting from the estimate of Method 4.

The purpose of Methods 1, 2, and 3 are to provide an overall estimate of ro-
bust registration. Method 4 is the traditional ICP registration, to which robust
estimates can be compared (it also acts as an initial estimate for a robust esti-
mates). Method 5 is a robust M-estimator started from a naive initial estimate,
and Method 6 is a robust M-estimator started from an ICP estimate.

Traditionally the results of a registration with parameters τ are reported in
terms of the root-mean-square of the residual errors between the data P and
the nearest points Y ⊆ X derived from the model points X . We have previously
shown [4] that this fails to describe the errors arising from incorrect estimates of
the rotational parameters, so we used an axis-angle decomposition for analysis.

Suppose that the ideal transformation is TI(τ). One can form the residual
transformation between a given T (τ) and the ideal TI(τ) as

D(τ) = T (τ)TI(τ)−1

The matrix RD of the transformation D(τ) is a rotation about an axis k by
an angle θ. This angle is the angular error of the given T (τ) and is important
because the angular error produces an increasingly large positional error of a
transformed point as the point is increasingly far from the region from which
the registration was derived. By comparison the translational error, which is the
translational component of D(τ), is constant for all points.

To compare the results of surface registrations to the fiducial registration,
the surface registration was applied to the measured location of fiducial marker
nearest to the spotlight centroid. The distance between the transformed marker
and the CT coordinate of the fiducial location was then calculated. The ideal
registration transformation is unknown, so TI(τ) was taken to be a registration
derived from the fiducial markers (which were adjacent to the spotlight regions).

3.3 Results

The experiments produced an ensemble of 1,000 registrations for analysis, which
represent a sampling of how the spotlight registration to an anatomical region
might perform in practice. For each registration in this ensemble we calculated
the angular error as the rotational difference between the sample registration and
the fiducial registration. Histograms of the registration results of each method
were produced; results for the tibial phantom are shown in Figure 2.
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Fig. 2. Tibial rotational errors from 1000 sets of physical surface data, 16 points
per set. Rotational error was calculated as the maximum expected feasible de-
viation of nearby fiducial points.

4 An In Vivo Pilot Clinical Study

Spotlight registration has been conducted on six patients in Kingston Gen-
eral Hospital. Each patient presented with osteoarthritis confined to the medial
tibiofemoral compartment and was deemed appropriate for high tibial osteotomy.
Five of the six patients were instrumented with the type of fiducial markers used
in the in vitro study. In each case the process of drilling 4mm Kirschner guide
wires for a modified Coventry procedure was performed with the spotlight reg-
istration. Registration was validated visually by contacting bony surfaces both
within and outside the spotlight regions, and by contacting the fiducial markers
when they were present and unmoved by dissection.

The ultimate use of registration is in providing an appropriate treatment,
so a standard outcome measure was used. Postoperative A/P radiographs were
measured to determine the radiographic angle between the tibial plateau and
the tibial shaft. From this angle was subtracted the intended correction angle.
The resulting correction errors are tabulated in Table 1.
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Table 1. Osteotomy correction errors arising from computer-enhanced surgery
with spotlight registration.

Patient Number
Valgus correction 1 2 3 4 5 6
error (degrees) +1.5◦ −1.5◦ −1.5◦ −1.5◦ +0.5◦ −1.0◦

5 Discussion

The in vitro results for the tibial phantom demonstrate the utility of robust
registration, as well as the sensitivity of robust estimators to the choice of ini-
tial estimate. The final M-estimates of the registration had a median rotational
error that was about 60% of the conventional ICP estimate. However, if the
M-estimator was started from the ICP registrations then the error was a lit-
tle less than 80% of the ICP estimate, which is significantly different from our
method (#3) and from the ICP method (#4). Naive use of the M-estimator,
starting it from a closed-form registration to the spotlight centroids, produced
registrations for which the median rotational error was almost 10% larger than
for ICP.

The in vitro results for the vertebral phantom showed that ICP produced
accurate registrations, with a median rotational error of slightly more than 2◦.
With our robust method, starting the M-estimator from ICP produced a stable
result for which the median error was about 10% less than that of ICP. This
suggests that, for surfaces with numerous distinctive features, traditional least-
squares surface registration may be adequate.

The in vivo results measure the accuracy of the entire process of computer-
enhanced surgery: CT, isosurface extraction, decimation, computer-based plan-
ning, registration, the physical processes of resection and reduction, and angular
measurement from plain radiographs. The maximum error of 2◦ in the pilot
study compares very favorably with the results by traditional methods.

The main contributions of this work are the development of an intraoperative
data-collection scheme that is easy to use, and the implementation of a pair of
robust statistical methods for estimating 3D surface registration. The methods
have been tested extensively in the laboratory and have been used in early
clinical trials. The registration codes run in a few seconds on common UNIX
workstations.

Robust statistical methods are important for registration because they pro-
vide a sound mathematical basis for attenuating the influence of spurious data.
For intraoperative use we suggest that they are superior to manual editing of
the data and to ad hoc methods of attenuation. However, the implementation
of robust methods requires care: robust methods, like nonlinear least-squares
methods, can converge to local non-global minima.

Robust surface registration is potentially useful in computer-enhanced
surgery. The local nature of the search still leaves the method subject to “trap-
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ping”, and we recommend that such methods continue to undergo visual verifi-
cation by the surgeon until validated global registration methods are devised.
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